
Abstract

For detecting anomalies or interventions in the field of forest mon-
itoring we propose an approach based on the spatial and temporal
forecast of satellite time series data. For each pixel of the satellite
image three different types of forecasts are provided, namely spatial,
temporal and combined spatio-temporal forecast. Spatial forecast
means that a clustering algorithm is used to group the time series
data based on the features normalised difference vegetation index
(NDVI) and the short-wave infrared band (SWIR). For estimation of
the typical temporal trajectory of the NDVI and SWIR during the veg-
etation period of each spatial cluster, we apply several methods of
functional data analysis including functional principal component
analysis, and a novel form of random regression forests with online
learning (streaming) capability. The temporal forecast is carried out
by means of functional time series analysis and an autoregressive
integrated moving average model. The combination of the temporal
forecasts, which is based on the past of the considered pixel, and spa-

tial forecasts, which is based on highly correlated pixels within one
cluster and their past, is performed by functional data analysis, and
a variant of random regression forests adapted to online learning
capabilities. For evaluation of the methods, the approaches are
applied to a study area in Germany for monitoring forest damages
caused by wind-storm, and to a study area in Spain for monitoring
forest fires. 

Introduction

Forests and other wooded land which cover over 40% of the
European Union’s land area, are multifunctional and are serving eco-
nomic, social and environmental purposes. The urgent need for mon-
itoring forest health and vitality, including forest disturbances (i.e.,
forest fires, storm damage, drought stress, insect and disease out-
breaks) is emphasised e.g. by the Green paper (European
Commission, 2010) and in the new EU Forest Strategy (European
Commission, 2013).
Currently, operational monitoring of forests is mainly applied on

the basis of ground sampling data collected in national forest inven-
tories. Typically, for several thousand randomly selected plots with a
size below one hectare each, detailed forest parameters are meas-
ured in the field. The field measurements are time and cost intensive
and typically the measurements, data processing, statistical analysis
and reporting requires several years until the final results are provid-
ed. Whereas such inventories can provide accurate estimation of for-
est parameters at the regional level, they do not provide spatially
explicit information. Further, in case of forest disturbances such as
e.g. caused by storm damage or forest fires, up-to-date information
on the damages is required. Remote sensing based monitoring meth-
ods can complement traditional field based national forest invento-
ries for both aspects. Especially with the upcoming Sentinel2 satel-
lites, remote sensing based forest monitoring capabilities will be
improved significantly, as the Sentinel2 satellites will provide wall-
to-wall data on forests with high spatial resolution of 10 m, high tem-
poral resolution of 5 days and high radiometric resolution by provid-
ing measurements covering the optical, near infrared and short-wave
infrared spectral regions. 
Current remote sensing methods for monitoring forests are often

based on the assessment of one to several image acquisitions.
However, to fully utilise the comprehensive information content of
up-coming Sentinel2 satellites, methods which exploit the informa-
tion provided by dense time series are required. Dense time series
are currently acquired by medium resolution sensors such as moder-
ate resolution imaging spectrodiometer (MODIS) or Proba-V vegeta-
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tion instrument, but at relatively low spatial resolution. For the cur-
rent work, we used MODIS as pre-processed data is easily accessible.
However, the tested methods can also be used with higher spatial res-
olution time series imagery, e.g. from Sentinel2 for future forest mon-
itoring applications. 
To allow qualitative and quantitative evaluations, the forecasting

methods were applied to a test site in Germany for monitoring forest
damages caused by wind storm, and to a test site in Spain for moni-
toring forest fires. The achieved accuracies were evaluated for both
test sites for all methods on the basis of a sampling approach.

Materials and Methods

Time series data
As basis for the methodological tests, we used time series of the

MODIS product MCD43A4, Version 5, which provides 500 m
reflectance data adjusted using a bidirectional reflectance distribu-
tion function. To reduce noise and to fill data gaps in the original
MCD43A4 MODIS data (e.g. cloud covered areas), we applied
Savitzky-Golay filtering (Savitzky and Golay, 1964) over n=15 MODIS
MCD43A4 8 day mosaics. This leads to a significant noise reduction
and provides as result a spatial and temporal consistent wall-to-wall
cover also in areas with frequent cloud-cover such as, e.g. in the Alps.
This filtering leads to a smoothed signal which is taken into account
in the change detection process as described in the results section
below. Of the time series data we used band 6, which covers the short-
wave infrared spectral region (1628-1652 mm), and the normalised
difference vegetation index (NDVI) (Kriegler et al., 1969) with:

where NIR is the reflectance in the near infrared spectral region and
RED is the reflectance in the red spectral region. We selected the
NDVI as index because of the long term proven robustness in various
applications and ecosystem regions. Further, this index only requires
data in the red and near infrared spectral regions, which is provided
by a large number of operational satellites. We used the data over
forested areas over the vegetation period from end of May until end
of August in 8-day steps with temporal coverage from 2000 to 2013. 

Study area 
Two study areas were selected for testing and evaluation of the

methods: Study area 1 is located in the south of Germany where storm
damages occurred in the monitoring period. The MODIS time series
covers this area as a raster with 541 x 541 pixels with a spatial reso-
lution of 500 x 500 m on the ground. Study area 2 is located in north-
ern Spain where forest fires frequently occur. Also this study area is
covered with MODIS time series raster data of 541 x 541 pixels with
a spatial resolution of 500 x 500 m.

Functional time series analysis
Actually, functional data analysis (FDA) is an infinite dimensional

(Hall and Hosseini-Nasab, 2006) analysis method. Main characteris-
tics of functional data are repeated measurements, high frequency
and multi dimensions, and that it is taken as function of an independ-
ent variable. An advantage of FDA is the usage of additional informa-

tion of functions, e.g. the slope, curvature and other characteristics of
curves. 
If the measurements are dependent on time, we call them function-

al time series. With the technique of functional time series analysis
(FTSA) it is possible to capture the underlying dynamic of seasonality
in the data (Shang, 2013). Let Xt (x) be measurements, e.g. the vege-
tation index in year t with discrete observation number x. Let ft (x)
denote functional data, st (x) describes the quantity of noise varying
with x, and wt,i is a standard normal variable with zero mean and unit
variance sw

2. Then, the smooth function ft (x) can be extracted from
the following equation: 

where time t=1,…, n with n as the number of years considered, and
i=1,…, p with p as the number of observations during one year. In
Germany and Spain, the number of observations p equals 33. The
smooth function ft (x) can be calculated using functional principal
component analysis (FPCA), which reduces the infinite dimension of
functional data to a finite level, and points to the most significant
components of the data (Hall and Hosseini-Nasab, 2006). In the liter-
ature, there are numerous examples for FPCA with different applica-
tion fields: sea surface temperature forecasting (Shang and
Hyndman, 2011), call center arrivals forecasting (Shen and Huang,
2008), age-specific breast cancer mortality forecasting (Erbas et al.,
2007) and fertility rates forecasting (Hyndman and Shang, 2009). 
The functional principal component decomposition can be

described through the following equation:

where is the estimated mean function,  F̂ k(x) is 

the kth estimated orthonormal eigenfunction of the empirical covari-
ance operator:

which maximises the variance, β ̂ t,k is the kth principal component 
score for year t. This score is given by the projection of
in the direction of the kth eigenfunctionF̂ k(x), that is

The residual is denoted by ŵ (x) as
iid random functions with zero mean, and the optimal number of
principal components is denoted by K<n (Hall and Hosseini-Nasab,
2006; Shang, 2013). The estimated mean function can also be weight-
ed unequally with geometrically decreasing weights wt=l(1-l)n-t with
0<l<1, and can be written in the form . Since we
assume temporal autocorrelation, a reason for decreasing weights is
the probability that more recent data affect the results more than data
in the distant past (Hyndman and Shang, 2009). 
The main aim of our calculations is to receive h-step-ahead fore-

casts following the equation:

by conditioning on the smooth functions f(x)=|f1 (x),…,fn(x)|T and
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the functional principal components F(x)=|F1(x),…,FK(x)|T. The h-
step-ahead forecasts of the principal component scores βn+h,k���are
denoted by β̂ n+h|n,k and are obtained by using an univariate time
series model, e.g. an exponential smoothing (ETS) model. The pur-
pose of the ETS technique is the estimation of a trend and seasonal
component with additive and/or multiplicative terms (or none of
them).
The error, trend and seasonal component follow the equations

(Hyndman et al., 2002):

Level: lt= aLt+ (1- a)Kt, 
Slope: st=βSt + (d-β)st–1,

Seasonal component: ct= gCt + (1-g)ct–m,

where m denotes the number of seasons each year, a, β, d, and g are
constants. The values Lt, Kt, St, and Ct differ depending on the trend
and seasonal component terms (Hyndman et al., 2002; Hyndman 
and Khandakar, 2008). From the h-step-forecast X̂n+h|n and the vari-
ance of the prediction error   ŝ n+h|n assuming Normal distribution, the
lower and upper limits of the (1- a)-prediction interval can be calcu-

lated by X̂n+h|n with  qa/2 as the th quantile of the 

Standard Normal distribution (Hyndman et al., 2008).

Autoregressive integrated moving average
A classical and widely used approach to model time series is the

autoregressive integrated moving average (ARIMA) model. It is a
flexible model, which combines the autoregressive (AR) model, the
moving average (MA) model and the autoregressive moving average
(ARMA) model. These three main model types can be used if the time
series data are stationary. But in practice time series often have a
trend over time or a non-constant mean and hence they are non-sta-
tionary. Such non-stationary time series can be handled with an inte-
grated ARMA(p,q) model, the ARIMA(p,d,q) model. In the ARIMA
approach the non-stationary time series is differenced d times to
obtain a stationary process. Generally an ARIMA model (Shumway,
2006) can be written as:

f (B) (1-B)d Xt = q (B)wt

where Xt describes the time series, wt is a Gaussian white noise
series with mean zero and variance s2

v and  B is the backshift oper-
ator with Bk Xt = Xt–k. f(B) and q(B) are the autoregressive and mov-
ing average operators, respectively, with:

The ARIMA(p,d,q) model can be extended to an multiplicative sea-
sonal autoregressive integrated moving average model to account for
seasonal effects – so called SARIMA model, where autoregressive and
moving average terms for seasonal effects are included in the same
manner. The structure of this model – denoted as
ARIMA(p,d,q)(P,D,Q) – is:

with autoregressive and moving average operators:

The model selection is done via Akaike information criterion (AIC).
Let the model forecast h steps ahead be

which is expressed through the condi-
tional expectation of xn+h given all past information up to n. The vari-
ance of the prediction error is . With the
calculation of a prediction interval the precision of the forecast can be
assessed. The lower and upper limits of the (1- a)-prediction interval
are given by:

where qa/2 denotes the  X quantile of the standard Normal distribution

(Shumway, 2006).
The ARIMA model approach based on remote sensing data is

applied for various questions. For example, Jiang et al. (2010) use a
SARIMA model approach to model the leaf area index (LAI) time
series of the years 2000 to 2006 and predict LAI values for the year
2007. The model and forecast results of the SARIMA approach are
compared with two other methods with respect to different land cover
types. Whereas the model performance of these three model
approaches varies with land cover type, the SARIMA model and fore-
cast perform very well overall. Han et al. (2010) use ARIMA models to
predict drought in the Guanzhong Plain in China based on the vege-
tation temperature condition index (VTCI).

Online random regression forests
Random forest classifiers (RFC) (Breiman, 2001) are well known

and studied classification methods. They show better or at least com-
parable performance in comparison to other state of the art classifi-
cation algorithms such as support vector machines (SVM) (Vapnik,
2000) or boosting technologies (Freund and Schapire, 1997). They
have been successfully applied to a number of applications. Moreover,
they have also recently been adapted to density estimation, manifold
learning, semi-supervised learning and regression tasks in a very
successful manner. They have also shown their practical feasibility in
famous commercial products such as e.g. Microsoft’s KINECT®

(Microsoft Corp., Redmond, WA, USA). Criminisi et al. (2011) pro-
posed a unified approach of random decision forests, which has been
applied to a number of machine learning, computer vision and med-
ical image analysis.
Analysing the change of a dependent variable (e.g. a certain forest

monitoring parameter) with respect to a set of (multi-dimensional)
independent variables (e.g. observations from satellite data) is a typ-
ical regression task. Thus it is natural to take into account regression
variants of randomised decision trees as an alternative model gener-
ation technique. Since satellite data typically arrive sequentially and
the processing time of model prediction becomes an important issue,
multiple standard offline calculation of the regression is not feasible.
Thus streaming or online learning capabilities become an essential
requirement for that type of practical application. 
We propose a novel regression method termed online random

regression forests (ORRF) to build a proper, adaptive model for satel-
lite data. The method follows to some extend the generic approach of
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Criminisi’s framework (2011) for transferring standard classification
forests to regression problems. But coevally some of the concepts
introduced by Saffari et al. (2009) have to be used to change struc-
ture, layout and learning rules of the forest in order to enable the
algorithm for having proper online learning capabilities. 

The basics behind random forests
Random (classification) forests are an ensemble combination of

several binary decision trees where each binary decision tree is treat-
ed independently. The final output decision of the forest is obtained
by e.g. a simple majority voting of all the individual leaf node predic-
tions or other combinations with respect to probabilities.
Each tree itself consists of a singular root node, which subsequent-

ly splits up into two child nodes in a hierarchical manner. A simple
test function on a training sample is applied to decide about the path
the sample moves down the tree. During the offline training, the best
split for each individual tree node is calculated by globally optimising
several random test functions with respect to the overall information
gain obtained by each split.
Taking into account a large number of samples continuously arriv-

ing over time, the main disadvantages of such offline optimised clas-
sification forests are the increasing calculation time and the necessi-
ty for storing all samples. If boundary conditions change or if addi-
tional retraining is done the required execution time typically
exceeds the processing capabilities of a system.

Online adaptation of classification forests and intro-
ducing regression capabilities
Online adaptation of classification forests has been introduced by

Saffari et al. (2009). The authors combined the ideas from online
bagging and extremely randomised forests. They proposed a novel
procedure (algorithm) for growing a decision tree in an online fash-
ion for visual tracking and interactive real-time segmentation tasks. 
For our approach we use the basic idea of online bagging in a sim-

ilar way. In particular we use the basic principle of modelling the
sequential arrival of data by Poisson distribution sampling according
to Oza and Russell (2001). This allows continuous growing and updat-
ing the tree structure.
Although the main difference between classification and regres-

sion trees is the change of the output labels from discrete class
labelling to continuous prediction values, the scheme of Criminisi’s
framework (2011) cannot directly be applied due to numerous rea-
sons. In the following we mention the most important ones for our
problem and describe the solutions to deal with.
First, the strict online learning constraints (strict online learning

means, that it is not allowed/possible to store any data samples for
later usage. Data has to be processed on the fly with no buffering as
e.g. used in incremental learning) require for an incremental update
of the individual probabilities and statistics for each node of the for-
est. This is no problem for the classification case, because class-sta-
tistics are discrete histograms and their update is trivial.
As regression trees use continuous densities it is necessary to

store them and to enable incremental update without having access
to previous data points. Although it would be possible to sample the
density function and store as a regular raster, this approximation of
the density function turns out to be not feasible because of a high
memory amount required. We approximate the density probability
function by a simple Gaussian distribution with mean m and vari-
ance s². The two parameters can be incrementally updated via the
following formulas:

sn = sn–1+ wn (xn - mn–1) (xn - mn)

where wn is the weight of the actual sample xn in iteration n of the
node, mn denotes the mean of sample xn and sn is the respective stan-
dard deviation. 
A second important issue of changing online classification to

regression behavior is the proper choice of a prediction model for
each leaf node. While each node in higher levels of the tree directs an
incoming sample down the tree, the leaf node has to deliver a proper
prediction of the continuous output as well as the respective confi-
dence. The forms of prediction functions of each leaf node can vary
e.g. polynomial functions as proposed in Criminisi et al. (2011). It
makes sense to adapt that function to the expected target function. In
general a simple constant model related to mn is sufficient, if the need
for higher forest complexity is less important. The regression forest‘s
overall posterior is then calculated by the median of all individual tree
posteriors. 
Another important aspect is the proper choice of an objective func-

tion for maximising information when splitting intermediate nodes
during online training of the forest/tree. In the offline case, the opti-
mal split can be determined during the global training step. 
In contrast to the offline case an early split decision has to be made

during the samples arriving. The criteria for performing a split are
similar to the ones in Saffari’s approach (2009). In particular a node
only splits if i) a minimum number of samples has already passed the
node (ensures statistical significance), ii) the depth of the tree has
not exceeded the predetermined maximum model complexity
(ensures a final size model), and iii) the minimal information gain
required by a split is reached (avoids early growing).
The objective function for the information gain is the sum of all n

label’s differences between actual (y) and the node’s labels (m), for all
parent (P) and left/right (L, R) child (C) nodes.

Another challenge introduced by stream processing tasks is the
unknown range of feature dimensions. Extremely random forest
approaches select random dimensions and random thresholds of the
samples for decision candidates (weak learners). In the offline case,
feature ranges can be trivially calculated from the whole dataset, but
in the online case this is usually not possible. It is reasonable to care-
fully select and adapt the feature dimension’s boundaries, to avoid
useless calculations and a waste of memory. We allow changing the
feature dimension boundaries during the growth of the tree, starting
with very conservative feature ranges and extending them dynamical-
ly to the highest/lowest values seen so far.
One problem introduced by this strategy is the fact, that it changes

the tree configuration over time and the actual splitting criterions
might no longer be optimal. Thus it is necessary to remove certain
trees from time to time. Additionally we allow a novel tree to learn
focusing optimally on novel examples with updated tree configura-
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tion. Therefore we introduce a jig-saw criterion, calculated on the
out-of-bag error value calculation (Oza and Russell, 2001). Thus we
also are able to react on slightly changing boundary constraints of the
problem (e.g. changing geological conditions when drilling down to
the earth). It is also possible to derive some measure for the overall
prediction quality of the forest by averaging or taking the mean of the
individual trees’ out-of-bag errors already calculated for the jig-saw
criterion introduced above. 

Detection of unusualness of vegetation parameters
The detection of unusualness of the vegetation index and short-wave
infrared band with above described methods follows a common
scheme. First of all the NDVI and SWIR are modelled from the satellite
data and the expected time series for a certain year is forecasted
using the FTSA, ARIMA or ORRF method. Therefore the 80, 95 and
99% prediction intervals, as already mentioned in the respective
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Figure 1. Region with forest fire (circled) in the south-east of Spain study site in 2012.
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method’s descriptions above, are calculated for the FTSA and ARIMA
method. Since ORRF is a non-parametric method, it turns out, that a
much simpler estimation of the prediction intervals as the one pro-
posed, leads to more stable and better results. In particular, we vali-
date the ORRF’s predictions on all the training/update data of the pre-
ceding year by comparing all real training values to the ORRF’s model
prediction for all pixels and time points. The upper and lower bound-
aries for including 80, 95 and 99% of the training values (with respect
to the ORRF prediction value at each observation time point in the
year) can then be treated as estimation for the prediction boundaries

in the actual year of observation. More formal, let X̂n+h|n be the h-step
forecast and r=Xn+h – X̂n+h|n the estimation error, then the empirical
a-quantiles of the prediction error qr;a are calculated. Hence, the
lower and upper boundaries of the (1-a)-prediction interval follow 

the equations X̂n+h|n – and  X̂n+h|n + approximately. 

Subsequently, for all methods unusualness is detected, if the original
time series is outside the prediction boundaries. The forecast models
are done solely spatial (FTSA and ORRF), solely temporal (FTSA and
ARIMA) and combined spatio-temporal (FTSA and ORRF).

                   Article

Figure 2. Pixel (squared) within that region in south-east of Spain study site in 2012.
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Figure 3. Spatial forecast for year 2012 using the methods functional time series analysis (blue) and online random regression forests
(red) in comparison with the observed time series for the year 2012 (green).

Figure 4. Temporal forecast for year 2012 using the methods functional time series analysis (blue) and autoregressive integrated moving
average (red) in comparison with the observed time series for the year 2012 (green).

Results

The results of above methods provide for each pixel for each obser-
vation the probability that the reflectance in the SWIR spectral
region or NDVI has changed significantly over time. To reduce noise

which is inherent in the time series measurements (such as e.g.
caused by locally varying atmospheric conditions during image
acquisition, sensor noise, etc.) change detection is not based on sin-
gle observations but on the aggregation of three observations, as the
forest changes to be observed are in general long term processes
(e.g. crown cover recovery needs several years after a storm dam-
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age). A pixel was therefore classified as changed only in case of at
least three consecutive results that the respective pixel is an outlier
at the 95% prediction interval. 
Figure 1 shows Spain study site where forest fire happened in 2012

(red colored pixels in the black cycle). Pixels with green color mean
that no unusualness was detected with the forecasting methods
whereby yellow, orange and red mean that the original vegetation

index time series was significantly different from unusualness. From
that region we consider one certain pixel corresponding to the region
indicated by the yellow bounding box in Figure 2.
For this certain pixel, Figures 3-5 show the forecasts of each of the

three model types (spatial, temporal and spatio-temporal) using the
corresponding methods (FTSA, ARIMA, ORRF) for 2012. Additionally,
the prediction intervals are plotted as dotted lines. Unusualness hap-

                   Article

Figure 5. Spatio-temporal forecast for year 2012 using the methods functional time series analysis (blue) and online random regression
forests (red) in comparison with the observed time series for the year 2012 (green).

Figure 6. Functional time series analysis forecast (blue line) with original time series (green line) and the 80, 95 and 99% (yellow, orange
and red dots, respectively) prediction intervals.
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pened if the original time series is above the upper or below the lower
prediction boundaries. As the time series data are pre-processed for
noise reduction and gap-filling over time (e.g. gap-filling in case of
cloud cover at the satellite image acquisition) by Savitzky-Golay filter-
ing (Savitzky and Golay, 1964), the change of the signal is not abrupt.
We can see that phenomenon in all three plots starting at about obser-
vation number 25 when forest fire occurred. The difference between

FTSA and ORRF in the case of the spatio-temporal forecast (Figure 5)
is caused by the different adaptation sensitivities of the forecast
methods. Figure 6 shows the original time series and the FTSA pre-
diction with the 80, 95 and 99% prediction intervals. The temporal
forecast and the three prediction intervals based on ARIMA are shown
in Figure 7. The spatio-temporal forecast and its prediction intervals
based on ORRF can be seen in Figure 8. 
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Figure 7. Autoregressive integrated moving average forecast (blue line) with original time series (green line) and the 80, 95 and 99%
(yellow, orange and red dots, respectively) prediction intervals.

Figure. 8. Online random regression forests forecast (blue line) with original time series (green line) and the 80, 95 and 99% (yellow,
orange and red dots, respectively) prediction intervals.
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Qualitative and quantitative accuracy assessment 
A qualitative evaluation of the monitoring results was performed

by comparing the detected changes with time series of higher res-
olution Landsat thematic mapper (TM) satellite imagery with spa-
tial resolution of 30 m by 30 m per pixel. These comparisons have
shown that the derived change detection results correspond well
with the changes visible in the TM imagery. 
For quantitative evaluation of the different monitoring methods

in addition a sampling based approach was applied. As only small
parts of the study areas are affected by damages, stratification was
performed as a first step. As basis for the stratification, a forest
loss map generated by Hansen et al. (2013) who mapped forest loss
at the Landsat pixel scale was used. These maps were aggregated
according to the MODIS spatial resolution (e.g. from 30m by 30m
pixels to the MODIS resolution). As the qualitative evaluation has
shown that the change detection methods are not only capable of
indicating changes at the pixel level but also at the sub-pixel level,
stratification was applied for the strata no forest loss, forest loss
below 20% and forest loss above 20%. Within the stratum no forest
loss and the stratum forest loss above 20% 25 grid cells were select-
ed in both strata randomly. As in the German study site only small
areas are affected by storm-damages, the stratum forest loss above
20% covered only 23 MODIS pixels. For this stratum, no random
sampling was therefore performed but all 23 grid cells were select-
ed for the accuracy assessment. For each of the selected MODIS
grid cells, the percentage of forest loss mapped by Hansen et al.
(2013) was calculated by aggregation. Then, the grid cells were
visually checked on the basis of Landsat TM time-series data and
the MODIS time series and the Hansen et al. (2013) estimate was
revised in cases of clear deviations. Such deviations occurred e.g.

in case of misclassification in the Hansen et al. (2013) map. For
both study areas then contingency tables were derived for all select-
ed change detection methods (Table 1). As a measure of the
achieved accuracy, the percentage of grid cells, which were classi-
fied correct was calculated and is given in percent. 
A main factor influencing the achieved accuracy is the nomen-

clature definition of the category forest loss. In the current study we
selected a very ambitious threshold for the definition of this cate-
gory with forest loss indicated already in case that only 20% of the
area covered by one pixel are affected e.g. by a storm damage or for-
est fire. The current methods are therefore performing change
detection at the sub-pixel level. In the following, the results are
shortly discussed for each of the monitoring methods.

Functional time series analysis
Exceptional high accuracy was achieved for both study areas

with the combined spatio-temporal as well as with the temporal
approach. No significant errors could be identified. For the spatial
approach, the achieved accuracies are in the range of current oper-
ational monitoring methods with overall accuracies between 72 and
92 percent. Processing time is a drawback for functional time
series analysis methods, which requires processing time of about 8
hours per study area on a usual PC (i7 processor). Software is cur-
rently implemented in the R packages ftsa (Shang, 2013) and fore-
cast (Hyndman et al., 2008), where each pixel is treated separately.
For large area applicability a pre-requisite would be a significant
optimisation of the implementation, e.g. via graphics processing
unit (GPU) processing. 

                   Article

Table 1. Evaluation results as contingency tables with reference category in columns, classified category in rows, and achieved accuracy
given in percent. 

                                                                                                      Spain                                                                   Germany
                                                                                Change                        No change                    Change                                    No change

FTSA - Temporal                                 Change                                 24                                                1                                           20                                                               2
                                                               No change                            1                                                24                                           3                                                               23
                                                               AA (%)                                                         96.0                                                                                               89.6
FTSA - Spatial                                       Change                                 15                                                1                                           22                                                               3
                                                               No change                           10                                               24                                           1                                                               22
                                                               AA (%)                                                         78.0                                                                                               91.7
FTSA - Spatio-temporal                     Change                                 22                                                0                                           20                                                               0
                                                               No change                            3                                                25                                           3                                                               25
                                                               AA (%)                                                         94.0                                                                                               93.8
ARIMA - Temporal                               Change                                 18                                                0                                           13                                                               0
                                                               No change                            7                                                25                                          10                                                              25
                                                               AA (%)                                                         86.0                                                                                               79.2
ORRF - Spatial                                     Change                                 11                                                1                                           22                                                               3
                                                               No change                           14                                               24                                           1                                                               22
                                                               AA (%)                                                         70.0                                                                                               91.7
ORRF - Spatio-temporal                   Change                                 14                                                1                                           21                                                               1
                                                               No change                           11                                               24                                           2                                                               24
                                                               AA (%)                                                         76.0                                                                                               93.8
FTSA, functional time series analysis; ARIMA, autoregressive integrated moving average; ORRF, online random regression forests; AA, achieved accuracy.
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Autoregressive integrated moving average
The qualitative evaluation by comparison of the monitoring

result with the Landsat time series showed that the ARIMA method
is less sensitive to sub-pixel changes compared to the functional
time series analysis approach. However, the quantitative accura-
cies with 86% in the Spain study area and 79% in the German study
area are high as we perform change detection at the sub-pixel level.
In case that the nomenclature specification of the forest loss cate-
gory is defined with a minimum change of 50% instead of 20%,
overall accuracies for both study sites are above 96%. Main draw-
back for operational application is the processing time of about 3
hours per study area on a usual PC (i7 processor). The R-package
forecast is used (Hyndman et al., 2008). As with the functional time
series analysis method, significant optimisation with (GPU) pro-
cessing would be required for operational application.

Online random regression forests
Accuracy of the spatial approach is 70% for the German and 92%

for the Spain study site. Qualitative evaluation has shown a local
bias of the change detection result (overestimation of changes in
the southern area of the Spain study site). For the spatio-temporal
approach, high accuracies were achieved with overall accuracies of
76% in the Spain and 94% in the German study site. As with the
ARIMA method, accuracy increases significantly in case of changed
nomenclature specification. In case that the nomenclature specifi-
cation of the forest loss category is defined with a minimum change
of 50% instead of 20%, overall accuracies for both study sites are
above 94%. A main advantage of the online regression forest
method is that the required processing time is low, in the range of
several seconds per study area on a usual PC. This method allows
therefore near real time processing. 

Discussion

Exceptional high accuracies were achieved with the temporal
and spatio-temporal functional time series analysis methods,
which however need significant optimisation of the software imple-
mentation to allow large area applicability (GPU processing). It is
expected that near real time monitoring based on upcoming
Sentinel2 satellite data can be achieved in this case at the local to
regional level. Implementation can be recommended for such appli-
cations but also for applications based on medium resolution satel-
lite data, e.g. MODIS or upcoming Sentinel3 time series data. For
near real time, continuous forest monitoring at the national to con-
tinental level based on upcoming Sentinel2 satellite data the imple-
mentation of spatio-temporal online random forest method is rec-
ommended, however because of sensitivity issues, monitoring
should focus on severe changes only (e.g. monitoring at the pixel
level with change fraction above 50%). 

Conclusions

The results demonstrate the applicability of dense time series of
remote sensing data for large area forest monitoring with spatial-
explicit wall-to-wall coverage. Compared to more simple methods,
which are often based on bi-temporal comparison of satellite

imagery, the methods applied in this publication are based on wall-
to-wall, fully consistent time series and allow fully automatic pro-
cessing. This automation is a specific requirement for future forest
monitoring applications based on satellite imagery with high spa-
tial and high temporal resolution such as e.g. Sentinel2 time series.
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