
Abstract
To balance the protection of geo-privacy and the accuracy of

spatial patterns, we developed a geo-spatial tool (GeoMasker)
intended to mask the residential locations of patients or cases in a
geographic information system (GIS). To elucidate the effects of
geo-masking parameters, we applied 2010 dengue epidemic data
from Taiwan testing the tool’s performance in an empirical situa-
tion. The similarity of pre- and post-spatial patterns was measured
by D statistics under a 95% confidence interval. In the empirical
study, different magnitudes of anonymisation (estimated K-
anonymity ≥ 10 and 100) were achieved and different degrees of

agreement on the pre- and post-patterns were evaluated. The
application is beneficial for public health workers and researchers
when processing data with individuals’ spatial information.

Introduction
Increasing awareness of health data privacy is an inevitable

trend around the world (Lawlor and Stone, 2001; Verschuuren et
al., 2008). In 1996, the United States (U.S.) Congress passed an
important privacy protection law, the Health Insurance Portability
and Accountability Act, which took effect in 2003 (U.S.
Government Printing Office, 1996). The U.S. Department of
Health and Human Services also announced corresponding guide-
lines for limiting the usage of public health information in 2003
(Center for Disease Control and Prevention, 2003), which listed
the types of public health information and the requirements before
using the information.In Taiwan, the government revised the
Personal Information Protection Act in 2010, which took effect in
2012 (Ministry of Justice, 2010). This privacy protection law lim-
ited the extent to which identifiable and personal information may
be used, including demographic information, health examination
data, patients’ history, contact information, etc. However, environ-
ment-related epidemiological studies such as those related to envi-
ronmental health, infectious diseases and chronic diseases need
location information to make the inference between environmen-
tal exposure and health outcomes, or to identify possible disease
clusters at the community level (Kounadi and Leitner, 2014). If
individual-based data are not available, controlling for con-
founders in aggregated data is difficult, and what is called the eco-
logical fallacy may result (Beale et al., 2008). However, directly
plotting cases’ locations on a disease map also risks disclosing
their personal location by reverse-identification techniques
(Brownstein et al., 2006). With the advancement of geographical
information systems (GIS), address geocoding and digitalising the
points on a map are substantially easier than before (Edwards et
al., 2014). In order to balance the conflict between privacy rights
and the needs of public health research, many researchers have
proposed possible solutions to the dilemma, such as attribute
transforming masks (aggregation, nearest-neighbour information
and attribute perturbation) and displacing masks (affine transfor-
mation and random spatial perturbation) (Duncan and Pearson,
1991; Armstrong et al., 1999; Zimmerman et al., 2007). Recently,
more advanced methods leveraging the underlying population
information, such as the donut method (Hampton et al., 2010) and
linear programming (Wieland et al., 2008), have been introduced
to improve the displacing mask methods.

Unlike the attribute-transforming mask, which erases useful
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spatial information, the key principal of the displacing mask is to
move the studied subjects to a new location within a minimal dis-
tance or a user-defined distance away from the original location
(Kwan et al., 2004; Leitner and Curtis, 2004). At the same time,
the movement needs to consider the heterogeneity of population
distribution and the persistence of point patterns.

The aim of this study is to present a method, named
GeoMasker, which balances geo-privacy and spatial patterns
through carefully considering essential geo-masking parameters:
grid size, K-anonymity, and D statistics. With this application
researchers and public health workers can relocate their point
data’s position by calibrating geo-masking parameters with an
interactive interface using GIS software. The actual 2010 dengue
epidemic data in Kaohsiung City (located in southern Taiwan)
were tested to evaluate the performance of the tool in reality.

Materials and Methods
To illustrate our approach, we used the GeoMasker tool with

an empirical dataset of 1,007 dengue cases in 2010 from Taiwan’s
Centers for Disease Control (Figure 1; and
http://idv.sinica.edu.tw/tachien/geomasker). The information in
this dataset only had masking x and y coordinates, without any
other personal information. As the precision of the cases’ coordi-
nates allows a 10-meter tolerance to protect their privacy, informed
consent was not needed for the study. The similarity of pre- and
post-spatial patterns and the extent of privacy protection were
evaluated. This study was approved by the Institutional Review
Board (IRB) of Academia Sinica (IRB#: AS-IRB-BM 13002).

The GeoMasker tool was developed using a testing environ-
ment consisting of a desktop computer running a 64-bit Windows
8 operating system with an Intel® Core™ i5-4570 (3.2GHz) CPU
and 4 GB of RAM. The ArcPy package and Python language (ver-
sion 2.7.2) in ArcMap 10.1 (ESRI Inc., Redlands, CA, USA) are
described by Zandbergen (2013).

The GeoMasker tool
We considered two parameters when developing the

GeoMasker tool, namely, grid size (GS) and estimated K-anonymi-
ty (K) under conditional perturbation. When executing the
GeoMasker tool, the catchment of the study area is divided into
square polygon grids (Gij) and the value of K-anonymity is pre-
specified (Figure 2). Each case (c), denoted , is located 
within Gij with two attributes: the geographic coordinates (x,y) and
the estimated population count p(i,j). If p(i,j)≥K, is randomly
assigned within Gij; if p(i,j)<K, the algorithm relocates a point
within the increasing size of GS (denoted ...)
iteratively until the estimated total population count within K.
We chose 25 meters as the initial GS since the average density
(0.0085 pop/m2) of the study areas times 25×25 m2 was around
5.13 (people), which is greater than the minimum requirement of
K=2 (Sweeney, 2002). The rate of GS increase was 1.5.

We evaluated the GeoMasker tool using the 2010-dengue epi-
demic data as depicted in Figure 3. The median population density
and village area of old Kaohsiung City were 19,560 persons/km2

and 179 km2, respectively. We generated four datasets from the
original 1,007 dengue cases by specifying different combinations

of parameters: GS={25×25 m2, 50×50 m2}; K={≥10, ≥100}.

Evaluation: point pattern comparison
The overall similarity or agreement of two point patterns (geo-

masked vs original) is evaluated by computing the differences of
two K functions (Kpostmasked vs Kpremasked). Ripley’s K function
(Ripley, 1976) tests for clustering of spatial point process from a
completely random process (CRS) and it takes the following form:

                                                                 
Eq. 1

where |A| is the area of the study region, n the total number of
events in the area and x the average number of events in all spatial
circles of radius r.

In an epidemiological setting, the K function would be expect-
ed to vary with population density. To rule out the effect of popu-
lation density, Bailey and Gatrell (1995) calculated the difference
of two K functions, defined as D statistics by Lin et al. (2011) to
assess departure from random labelling between two types of
events. Lin et al. (2011) applied D statistics to compare the degree
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Figure 1. A screenshot of the GeoMasker tool. Original point:
data points with x-coordinate and y-coordinate in the attribute
table. Base polygon: the boundary that data points should be
inside. Density field: the densities of different areas on the bound-
ary map. Grid size: the width of square polygons. Minimum K-
anonymity: pre-defined K-anonymity. Output feature: setting the
pathway of post-masked points.

Figure 2. The GeoMasker’s algorithm.
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of aggregation between multidrug-resistant and non-multidrug-
resistant cases when assessing spatiotemporal patterns of tubercu-
losis bacteria of different sensitivities.

In our study, we assessed the differences of two K functions
using the formula:

                
Eq. 2

where r is the radius. When the D statistic is above the simulation
envelope, this is consistent with increased aggregation of post-
masked points (relative to pre-masked points); when it is within the
simulation envelope, this is consistent with similar aggregation
between pre- and post-masked points; when it is below the simula-
tion envelope, this is consistent with increased aggregation of pre-
masked points. D statistics were derived from R script, version 3.3.1
(R Project for Statistical Computing available at http://cran.r-pro-
ject.org). R’s ecespa package provides functions to estimate D statis-
tics and the corresponding 95% confidence interval (CI) envelopes.

Results

Visualising patterns of pre- and post-masked points
Presented by kernel density a setting search radius=250 meters

and a GS=25 meters for four datasets, Figure 4 portrays the pre-
(Figure 4C) and post-masked (Figure 4) point patterns according to
different combinations of GS and K. As GS increased from 25
meters to 50 meters, points were allowed to randomly displace

                   Article

Figure 3. The catchment of the empirical study in the City of
Kaohsiung, Taiwan.

Figure 4. Kernel density plots given different combinations of grid size (GS) and K-anonymity (K).
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within a greater grid resulting in more dispersed patterns [for
instance, the inner sea is shrinking within the inlaid frame (purple
in the figure) between Figure 4A and 4D]. Similar patterns were
observed as K increases from 10 to 100, since a higher K value
requires relatively a larger grid area to accomplish (for example,
see how the peninsulas are connected to the continent within the
frame in Figure 4A and 4B).

Comparisons of similarity
The overall agreement between pre- and post-masked points is

presented in Figure 5. When K is small (K≥10 in Figure 5A and
5C), D statistics converged quickly where the threshold distance
was <100 meters. As K≥100, the pre- and post-masked points are
statistically similar when the threshold distance >200 meters
(Figure 5B and 5D). Overall, D statistics were below the simula-
tion envelope, indicating an increased aggregation of pre-masked
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                                                                              [Geospatial Health 2017; 12:573]                                                           [page 297]

Figure 5. Assessment of D statistics (Kpost-masked – Kpre-masked) and 95% simulation envelopes given different combinations of grid size
and K-anonymity (5A-5D), and comparison with the DonutGeomask (5E and 5F). When the D statistic is above the simulation enve-
lope, this is consistent with increased aggregation of post-masked points (relative to pre-masked points); when it is within the simula-
tion envelope, this is consistent with similar aggregation between pre- and post-masked points; when it is below the simulation enve-
lope, this is consistent with increased aggregation of pre-masked points.
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points compared to the post-masked points. Given the same level
of K, we also evaluated D statistics by using another geo-masking
tool (DonutGeomask, 2017) observing that the two methods have
similar distance thresholds when K≥10 (Figure 5A, 5C, and 5E).
When K≥100, the convergence performance of DonutGeomask is
better than that of GeoMasker under the 95% confidence interval
(Figure 5B, 5D, and 5F).

Discussion
In this study, we have shown the development and testing of

the GeoMasker application with added geo-masking parameters
(GS and K) in a Python-based environment (Appendix). This is the
first time these functions have been collected into a user-friendly
application in a GIS platform. Users can choose their favourite
parameters according to their precision requirements and research
purposes. We also demonstrate how to evaluate the geo-masking
parameters according to D statistics, which compare the differ-
ences in the intensity of aggregation of the two point patterns in R
software. Although the algorithm of geo-masking is revealed in
this paper, since GS is unknown (specified by individual
researchers) in the real case and the points are displaced randomly
within the grid, we believe the moved location is not prone to re-
engineering.

Some studies have calculated the average distances or mid-
points from patients to hospitals and used these to evaluate
patients’ access to the hospitals or syndromic surveillance at the
community level (Olson et al., 2005). In these cases, they could
easily use our GeoMasker tool to re-construct the patients’ loca-
tions and maintaining geo-privacy with little loss of precision.
Although the GeoMasker provides possible solutions for geo-
masking, a clear policy is needed for managing and regulating the
released geo-masking data (Boulos et al., 2006).

In this study, the agreement of pre- and post-masking patterns
was measured by D statistics. Comparing to other point pattern
evaluation methods like a grid-based density map (Kwan et al.,
2004; Kounadi and Leitner, 2016), our approach is not prone to the
GS effect and is robust. Alternatively, other techniques to detect
point patterns could be adopted (Kulldorff, 1997; Wheeler, 2007).
Health data cartography is another area where application of D
statistics could be useful, particularly when dealing with raw point
data and geo-masking of these points is needed. The threshold dis-
tance revealed by D statistics might help researchers define a prop-
er scale to visualise the masked data while preserving the overall
pattern. For example, in Figure 6A, the pre- and post-masked
(GS=50, K≥100) point patterns might be still distinguished on a
large scale (1/20,000) where the D statistics does not converge
(threshold distance <200 meters). However, on a small-scale map
(1/100,000), the pattern of red dots (post-masked) in Figure 6B is
statically similar to that of green dots (pre-masked) according to D

                   Article

Figure 6. Threshold distance, scale, and cartography. Small scale (6A) against large scale (6B).
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statistics. In this case, researcher might use the red dots to present
their study without leaking real location information.

Spatial heterogeneity is an important concern of geo-masking
(Allshouse et al., 2010). The distribution of the population is typi-
cally uneven in the real world, and the sparse population in some
areas might possibly cause another spatial heterogeneity issue.
Therefore, including additional information like household
addresses or the street network might help to release the assump-
tion of an evenly distributed population in our study (Kounadi and
Leitner, 2016).

Conclusions
Leveraging the predefined K-anonymity and grid size, we

quantified the agreement of spatial patterns and the geo-privacy for
individual-based epidemiological data in the study. The balance
between the agreement of point patterns and the protection of geo-
privacy is realised by properly calibrating the geo-masking param-
eters, including GS, K, and D statistics, in a GIS platform. The
application is beneficial for using and sharing individual-based
epidemiological data with location information, while maintaining
privacy and keeping spatial patterns.
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