Mapping malaria risk using geographic information systems and remote sensing: The case of Bahir Dar City, Ethiopia

Submitted: 11 December 2017
Accepted: 5 March 2018
Published: 7 May 2018
Abstract Views: 4625
PDF: 1855
HTML: 1059
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

The main objective of this study was to develop a malaria risk map for Bahir Dar City, Amhara, which is situated south of Lake Tana on the Ethiopian plateau. Rainfall, temperature, altitude, slope and land use/land cover (LULC), as well as proximity measures to lake, river and health facilities, were investigated using remote sensing and geographical information systems. The LULC variable was derived from a 2012 SPOT satellite image by supervised classification, while 30-m spatial resolution measurements of altitude and slope came from the Shuttle Radar Topography Mission. Metrological data were collected from the National Meteorological Agency, Bahir Dar branch. These separate datasets, represented as layers in the computer, were combined using weighted, multi-criteria evaluations. The outcome shows that rainfall, temperature, slope, elevation, distance from the lake and distance from the river influenced the malaria hazard the study area by 35%, 15%, 10%, 7%, 5% and 3%, respectively, resulting in a map showing five areas with different levels of malaria hazard: very high (11.2%); high (14.5%); moderate (63.3%); low (6%); and none (5%). The malaria risk map, based on this hazard map plus additional information on proximity to health facilities and current LULC conditions, shows that Bahir Dar City has areas with very high (15%); high (65%); moderate (8%); and low (5%) levels of malaria risk, with only 2% of the land completely riskfree. Such risk maps are essential for planning, implementing, monitoring and evaluating disease control as well as for contemplating prevention and elimination of epidemiological hazards from endemic areas.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

How to Cite

Minale, A. S., & Alemu, K. (2018). Mapping malaria risk using geographic information systems and remote sensing: The case of Bahir Dar City, Ethiopia. Geospatial Health, 13(1). https://doi.org/10.4081/gh.2018.660

List of Cited By :

Crossref logo