
Abstract
The paper presents an innovative application to identify areas

vulnerable to coronavirus disease 2019 (COVID-19) considering
a combination of spatial analysis and a multi-criteria learning
approach. We applied this methodology in the state of
Pernambuco, Brazil identifying vulnerable areas by considering a
set of determinants and risk factors for COVID-19, including
demographic, economic and spatial characteristics and the number
of human COVID-19 infections. Examining possible patterns over
a set number of days taking the number of cases recorded, we
arrived at a set of compatible decision rules to explain the relation
between risk factors and COVID-19 cases. The results reveal why
certain municipalities are critically vulnerable to COVID-19 high-
lighting locations for which knowledge can be gained about envi-
ronmental factors. 

Introduction
The world is experiencing a pandemic caused by the severe

acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2)
a new, highly contagious virus, which causes the coronavirus dis-
ease 2019 (COVID-19). In response to this situation, several stud-
ies have sought to understand patterns of how COVID-19 spreads
through communities exploring different forms of response and
prevention. The need to rapidly place the COVID-19 pandemic in
context motivated the interest in research by applying spatial visu-
alization with special spotlight tools, such as dynamic maps
(WHO, 2020) as well as prediction models of the infection’s dis-
persal over time (Souza et al., 2020). The advantage of producing
vulnerability maps means that places that have been subject to
previous pandemics and their risks (UNISDR, 2009; Hazarika et
al., 2018) can be identified in addition to a multidimensional com-
prehension of social, economic, ecological and geographical fac-
tors. However, there are many aspects related to the current con-
text (Adger, 2006; Younsi et al., 2020), which led us to construct
a decision-learning model to identify areas vulnerable to COVID-
19 using, simultaneously, demographic variables associated with
the occurrence of the disease, including space characteristics and
transmission dynamics. 

Models dealing with the transmission of infectious diseases
have been developed to understand the dynamics of transmission
and to explore relationship with environmental, social and eco-
nomic factors. Two of the best-known models use the basic repro-
duction number R0 to make evaluations over a time span based on
compartmental models to predict the size and duration of out-
breaks, e.g. the ‘susceptible - exposed - infected - removed (SEIR)’
chain (Getz et al., 2018) or the ‘susceptible - infected - recovered
(SIR)’ approach (Ball and Neal, 2002). Since then, alternative
ways have been developed to deal mathematically with transmis-
sion and prediction of virus spread in a geographical area.
Ambikapathy and Krishnamurthy (2020) built a model based on
first-order, ordinary differential equations to describe how differ-
ent lockdown scenarios would impact the number of COVID-19
infected cases in India. Others focused on the determinants gov-
erning the spread of the SARS-CoV-2 in order to prevent this
occurring in the future, e.g. Qiu et al (2020) investigated the rela-
tionship between confirmed cases and factors, such as population
density, population flow, the gross domestic product (GDP) per
capita, the number of doctors at the city level as well as meteoro-
logical variables. Pre-existing diseases in people and places have
also been shown to affect those vulnerable to SARS-CoV-2 infec-
tion (Du et al., 2020; Edler et al., 2020; Qi et al., 2020; Yang et
al., 2020).

The aim of geographical information systems (GIS) is to
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reveal spatial patterns of events in a given area and the network
dynamic involved, and this approach can therefore assist by indi-
cating places that are vulnerable due to certain characteristics (De
Toro et al., 2020). Several GIS applications with respect to the
context of the ongoing COVID-19 pandemic can be found in
health-related studies. For example, Kim and Bostwick (2020)
conducted a hotspot analysis that identified clusters of COVID-19
deaths, a social vulnerability index, a health risk score and the
racial composition of the deceased. Although the GIS framework
based on a multiple-criteria decision aid (MCDA) would have a
great practical value, there are only a few such studies supporting
decisions on communicable diseases. Li et al. (2007) built a model
to evaluate the pathogenic spread of influenza, whereas Stevens et
al. (2013) identified areas in Asia prone to occurrence of the
pathogenic influenza virus (H5N1). Dom et al. (2016) developed a
spatial tool combined with the analytic hierarchy process (AHP) to
support assessing the risk of dengue. Younsi et al. (2018) intro-
duced a spatiotemporal system based on what they called a ‘pref-
erence ranking organization method for enrichment of evaluation’
(PROMETHEE)-II to monitor and map potential high-risk areas of
seasonal influenza and other diseases. Fusade-Boyer et al. (2020)
applied the AHP method to weigh the risk factors to the delta
influenza virus (that causes influenza D) for posterior aggregation
and map visualization, while Younsi et al. (2020) used decision
rules to evaluate the risk of seasonal influenza.

Hongoh et al. (2011) emphasize the importance of maps in
identifying the spatial distribution of disease determinants and how
this aids public health policies. Following this approach, our study
presents a structured model implementation based on GIS-MCDA
as this made it possible to integrate mapping analysis and multiple-
criteria analysis. We developed a decision model within a GIS
framework based the MCDA to identify areas particularly vulner-
able to COVID-19 in the state of Pernambuco, Brazil. The model
integrates a spatial analysis and a decision-rule procedure in order

to reveal vulnerable municipalities. This requires a structural, spa-
tial analysis of vulnerability based on demographic data and
recorded cases of COVID-19, and it highlights locations and pro-
vides information that should help health staff determine what pub-
lic policies to apply.

Materials and methods 
We investigated the association between environmental fac-

tors, here a set of social, economic and demographic variables,
against the occurrence of COVID-19 and used this information to
build a decision-making model to pinpoint vulnerable areas. The
model sorts areas into three classes of vulnerability: low (Cl1);
moderate (Cl2); and high (Cl3). Importantly, we did not seek to pre-
dict where COVID-19 cases will occur, but where preventive
actions should be applied. 

Study site
The study comprised the whole state of Pernambuco in north-

eastern Brazil with its 185 municipalities (Figure 1). According to
the Institute of Geography and Statistics (Instituto Brasileiro de
Geografia e Estatística - IBGE), its 9 million inhabitants make the
state the seventh most populous among the 26 Brazilian states
(IBGE, 2020). Together with 14 other municipalities, the state cap-
ital Recife forms the Metropolitan Region of Recife (MRR) with
approximately 4 million inhabitants. Located close to the MRR,
Caruaru has 360,000 inhabitants and is the second largest urban
municipality and Petrolina is the third (350,000 inhabitants). Both
municipalities provide services to neighbouring municipalities.
Fernando de Noronha Island, an archipelago of 21 islands and
islets, was excluded from the study due to its special status as
marine national park.

                   Article

Figure 1. Location of Pernambuco and its municipalities.
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Spatial analysis
The proposed GIS-MCDA methodology is divided into three

stages as illustrated in Figure 2. The first involves defining the
characteristics of the municipalities of Pernambuco by gathering
primary data and exploring the factors that may be related to
COVID-19. This stage is confirmatory for correlate variables
(attributes) and COVID-19 cases, thereby establishing a spatial
association. Thus, spatial data analysis was used to map confirmed
cases, and geographically weighted regression (GRW) as
described by Fotheringham et al. (2002) was applied to verify the
relation between spatial features and the recorded COVID-19
cases. We also examined the potential spatial autocorrelation to
identify spatial clusters of the infection.

The second stage comprises building the GIS-MCDA model,
which considers available knowledge associated with a reference
map (or table). The model is based on the Preference Learning
Dominance-based Rough Set Approach (PL-DRSA) (Figueiredo
and Mota, 2019), where several subsets of reference objects (ROs)
are built to train (learn) vulnerability classification rules. The pref-
erences are represented by a set of decision rules of the type ‘if…,
then…’, that assign objects (areas) to (unions of) classes of vulner-
ability that we applied to the municipalities.

In the third stage, the rules are examined and then applied to
classify all objects of the study area leading to the establishment of
a regional map of vulnerability to COVID-19. This map was used
to identify the municipalities that need to implement more restric-
tive actions. The decision rules assist the understanding which
characteristics may lead to a municipality being more vulnerable
than another, and how it can best avoid the emergence of new
cases. For each category, a set of adopted strategies, e.g. imple-

menting social distancing and imposing lockdown, was repeated to
update a learning map and the decision rules taking the dynamic
aspects of COVID-19 distribution over time into account. The spa-
tial analysis was executed using ArcGIS 10.4.1 software (ESRI,
2011), while the DRSA evaluations were performed using the
jMAF platform (Blaszczynski et al., 2013), a ‘Rough Set Data
Analysis Framework’ (available from: http://idss.cs.put.
poznan.pl/site/139.html).

In spatial analysis, several tools are available to gain a better
understanding of the behaviour of the spatial variables. GWR, a
non-parametric model with spatially variable coefficients, can
often produce improved models that consider spatial autocorrela-
tion of the determinants, thus enabling spatial inference. GWR was
designed to investigate the quantitative relationship between two
or more variables with spatial distribution characteristics and is
mathematically described as:

yi = b0 (ui,vi) + ∑N

k=1
bk (ui,vi)xk,i + ei                                        (1)

where yi is the dependent variable at ith alternatives in space; b0 and
bk the estimated coefficients; (ui,vi) the vector coordinates of ith

alternatives in space; xk,i the kth explanatory variables at ith alterna-
tives in space; and ei the random error term at the ith alternative in
space. 

The goodness of fit of GWR models was evaluated by means
of adjusted R2 (a version of R2 that indicates that added input vari-
ables are unimportant for the outcome), Akaike’s information cri-
terion (AIC) and residuals. The correlation in the residuals was
inspected by calculating correlograms displaying Moran’s I
(Moran, 1950) of the residuals against distance as e.g. done by Sá

                                                                                                                                Article

Figure 2. Steps of the geographical information system-multiple-criteria decision aid (GIS-MCDA) methodology. IDW, inverse distance
weighting; OLS, ordinary least squares; GWR, geographically-weighted regression; PL-DRSA, preference learning dominance-based
rough set approach.
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et al. (2011). Moran’s I of the spatial autocorrelation was used to
measure the degree of similarity between samples for a given vari-
able due to spatial distance (Sá et al., 2011; Li et al., 2020).

Inverse distance weighting (IDW), another spatial statistic, has
been extensively applied to predict values for any unmeasured
locations, where it uses the values measured surrounding the loca-
tion for which a prediction is needed. IDW interpolation explicitly
assumes that things that are close to one another are more alike
than those that are farther apart according to Tobler’s law of 1970
(Watson and Philip, 1985). The formula of IDW takes this form:

                                                         

(2)

where Z* (x0) is the predicted variables at sampling site x0; xi the
data points within the chosen area; dij the distance between the pre-
dicted point and the data points; and r the weight related to dis-
tance by dij. 

The dominance-based rough set approach
Each DRSA application (Greco et al., 2002, 2013; 2016) is

based on a data table formally represented by a quadruple informa-
tion system S = {A,Q,V,f}, where A = a ‘non-empty’ finite set of
objects (ROs); Q = a ‘non-empty’ finite set of attributes; V =
Uq∈QVq (where Vq is a domain of the attribute q); and f: A×Q → V
= a total function defined such that f(a,q)∈Vq for each attribute
q∈Q and object a∈A. The set Q is often divided into a sub-set C
= {c1,c2,…,cm} of conditional attributes with C ≠ ø and a subset D
≠ ø of decision attributes, such that CUD = Q and C∩D ≠ ø.
Moreover, the ROs are considered learning objects due their ability
to become updated based on the addition of new objects.

The DRSA is enriched by introducing an outranking relation≽c into A* with respect to attribute c∈C, such that a1* ≽c a2* means
that a1* is at least as good as a2* with respect to attribute c, for the
sake of simplicity hereafter considered the case of a single decision
attribute, i.e. D = {d} is. More formally, let Cl = {Clt, t ∈{1,…
,n}}, be a set of classes of A such that each  a1* ∈A belongs to one
and only one class Clt ∈Cl. Suppose that Clr and Cls are two pre-
defined classes with r, s ∈T, a1* ∈Clr and  a2* ∈Cls. If r > s, then
a1* ≽ a2*. DRSA introduces the concept of an approximation of a
set of objects (or union of decision classes) with respect to a set of
attributes (or criteria). These are called the upward and downward
union decision classes defined as: Clt

≥  and Clt
≤ . A monotonic rela-

tionship with the decision class is assumed for each evaluation, and
the dominance relation is defined. Let P⊆C be a subset of the con-
dition attribute. It is said that a1* dominates a2* in the condition-
attribute space (denoted by a1*Dp a2*) if  a1* ≽c a2*∀ c∈P. Let Dp

+

(a1*) be the set of objects dominating a1* and Dp
– (a1*) be the set of

objects dominated by a1* , which are defined as:

                                                     
(3)

                                                     
(4)

For P⊆C, the collection of all objects that can be classified as
Clt

≥  and Clt
≤ without any ambiguity constitutes the P-upper

approximation of Clt
≥ (least classification) and Clt

≤ (most classifi-

cation). Analogously, one can define the P-lower approximation of
Clt

≥ and Clt
≤ with ambiguity These collections are denoted as fol-

lows: 

All objects that are classified as Clt
≥ and Clt

≤ with some ambi-
guities constitute the P-boundaries (P-doubtful regions) of Clt

≥ and
Clt

≤. BnP (Clt
≥ )= P(Clt

≥) – P(Clt
≥), BnP (Clt

≤)= P(Clt
≤) – P(Clt

≤),
t={1,…n}. For every P⊆C, the quality of approximation of the
ordinal classification Cl by the set of attributes is considered to be
the ratio expressed by the cardinality between the universe A and
all P-correctly classified alternatives:

                 
(5)

where gP (Cl) can be seen as a degree of consistency of the objects
from A, where P is the set of attributes and Cl is the ordinal classi-
fication considered. Every minimal subset P⊆C, such that gP (Cl) =
gc (Cl), is called a reduct of C with respect to Cl and is denoted by
REDCl(P). A data table may have more than one reduct, such that
the intersection of all of the reducts is the core, which is denoted
by CORECl. 

These approximations are explored to induce decision rules of
the type ‘if …, then…’ used to assign the objects into unions of
classes Clt

≥ and Clt
≤. According to Greco et al. (2002), five types

of decision rules may be considered: i) certain D≥-decision rules
generated from the lower approximation P(Clt

≥); ii) possible D≥-
decision rules generated from the upper approximation P(Clt

≥),
with or without any ambiguity; iii) certain D≤-decision rules gen-
erated from P(Clt

≤); iv) possible D≤-decision rules generated from
the P(Clt

≤), with or without any ambiguity; and v) approximate
D≤ ≥-decision rules generated from P-boundaries, representing
doubtful knowledge. Thus, this method creates a set of decision
rules based on a training table and, additionally, a training map. To
build the table, we selected a subset of ROs to be assigned to only
one class Clt according to its vulnerability level. All evaluations for
choosing ROs were made in a GIS environment to avoid the use of
tables. To achieve decision rules, DomLEM algorithms
(Blaszczynski et al., 2013) were used and extracted from the jMAF
platform.

Preference learning in dominance-based rough set
approach

In this study we applied the PL-DRSA for the decision rules
(Figueiredo and Mota, 2019), which allows new information to
update the decision rules. The process analyses the quality of the
rules to create an aggregated set that can be updated so that it
accounts for the evolution in the number of COVID-19 cases. In
this way, it can be discovered whether or not there are changes in
the vulnerability class cardinalities.

Decision rules must first be obtained for each set of ROs. They
are called instances (j), each of which has a set of ROs (ai,j), and
each is associated with a unique decision class. Let RI j be the set

                   Article
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of rules for each instance; ai,j ∈A an object belonging to the infor-
mation base that will be sorted in Clt,j; and φ the function that
returns the set of criteria belonging to the decision rules for each
instance:

φ: RI
j ×A⟶RI

j                                                                          (6)    
                                                                                                      
RI

j×ai,j⟶{rt
Ij ,t∈{1…n}}                                                            (7)    

                                                                                                      
where n is the number of rules of the classification; r (Ij,ai,j,Clt,j) a
classification at the ai,j by Ij on approximation of unions Cl≥

t,j (resp.
Cl≤

t,j); then P(Cl≥
t,j) (resp P(Cl≤

t,j) T. Let rt
Ij be part of the rule that

originated from the RI j set of the instance Ij and C the finite set of
criteria. The function that returns a set of criteria contained in the
premise of a rule is called v:

ν: RI
j ⟶ C                                                                                (8)

rt
Ij ⟶ {ci,i∈{1…m}}                                                                (9)

where m is the number of criteria from C that forms part of the rule
rt

Ij.
Redundant decision rules were identified. This happens when,

given two parts of the rules, it is observed that: 

rt'
Ij ⊆ rt''

Ij+1,∀ j∈ J                                                                    (10)

an assumption which generates a semantic conflict, which defines
what rule must be used such that: 

i.   If f(ai,j,ci) ≥ rt'
Ij Then ai,j ∈ Cl≥

t,j

ii.  If f(ai,j+1,ci) ≥ rt''
Ij+1 Then ai,j+1∈ Cl≥

t,j+1 ; (2) ∀ i=1,…,n

with rt'
Ij ≥ rt''

Ij+1, ∀ j∈ J ∀ t ∈ T

An approach to dealing with this type of case is to eliminate
the redundancy that may occur in the rules. Then, after verifying
what is happening with rt'

Ij ⊆ rt''
Ij+1,∀ j∈ J the rule is removed using

a smaller range. In the situation above, for condition ii of rule,
there is the options to exclude the redundant part or to change the
examples to represent situations of Clt, thus obtaining new results
for  Cl≥

t,j (resp.Cl≤
t,j).

Identifying environmental risk factors for COVID-19
The first two confirmed cases of COVID-19 and 17 suspected

cases in Pernambuco were recorded on 12 March 2020. Two
months later, the state had recorded almost 26,000 confirmed cases
and 2,000 deaths due to this infection (Ministry of Health, 2020).
We conducted a preliminary analysis of the first three months of
the pandemic (March to May 2020), gathering data from three dif-
ferent stages: the beginning, the peak and the decreasing phase.

Due to the recent discovery of COVID-19, there are still few
studies on environmental risk factors in Brazil. Thus, we pre-
selected variables to characterize vulnerability in the municipali-
ties on studies that explore factors used to analyse the evolution of
transmission rates (Liu, 2020; Requia et al., 2020; Zhai et al.,
2020). As a result, we selected the following determinants: the
number of cases, the size of the population of the municipality and
that of the urban area. Primary data were taken from the Brazilian
demographic census (IBGE, 2020) and a subset of variables was

calculated with the aid of GIS: i) small communities located in the
rural area of some municipalities, represented by the number of
residences (range 10-20); ii) total territorial area of the municipal-
ities (in km2); iii) total estimated population in the municipality
according to IBGE (2020); iv) size of the economically active pop-
ulation (in number); v) ratio of those economically active to the
total population (employment rate); vi) population density in the
municipalities per km²; vii) urban area in the municipalities (in
km2). Towns far away from metropolitan regions have small such
areas.

Process development
We determined these relationships by correlating available

COVID-19 data with the set of variables presented above. We
chose eight different days with cumulatively recorded cases of
COVID-19 as dependent variables of ordinary least squares (OLS).
The results can be found in Table 1. For all variables, the models
for each day analysed explain more than 98% of recorded COVID-
19 cases in the municipalities investigated. The results also con-
firm that risk factors are related to the evolution of the disease in
the municipalities.

Additionally, all variables were submitted to GWR (Table 2)
considering the same dates as those in Table 1. The bandwidth pre-
sented the same results for the eight days, which suggested that
there is the same degree of smoothing in the model between days.
Also, the spatial autocorrelation of GWR residuals resulted in non-
significant Moran’s I outcomes, thus implying little evidence of
any autocorrelation in them. AIC, multiple R2 and adjusted R2 pre-
sented some values similar to the OLS results, which implies that
there is no significant difference between these models. 

Additionally, we used IDW for spatial interpolation of the con-
firmed cases of COVID-19, considering two specific dates (12
May and 19 May) in order to predict a value for any unmeasured
location. This resulted in a density map (Figure 3) over the region
indicating where the incidence of cases was at its most intense. 

This visual inspection was useful to guide the process of
selecting ROs when building the GIS-MCDA model based on the
PL-DRSA. We compared the results of the COVID-19 vulnerabil-
ity maps with the IDW results of confirmed cases of COVID-19 in
different periods to support the construction of the learning map.

Geographical information system-multiple-criteria
decision aid model to identifying vulnerable areas:
training 

To accurately analyse the spread of COVID-19, we added the
following condition attributes: the total number of cases; the num-

                                                                                                                                Article

Table 1. Ordinary least squares analysis.

Month-Day             AIC                 Multiple R2              Adjusted R2

03-12                           1027.560                        0.9920                                0.992
03-27                              14.346                          0.9920                                0.992
04-06                             591.520                         0.9880                                0.988
04-18                           1385.885                        0.9890                                0.989
04-27                           1703.319                        0.9890                                0.989
05-09                           2239.514                        0.9690                                0.991
05-12                           1984.754                        0.9900                                0.989
05-19                           2325.030                        0.9736                                0.989
AIC, Akaike’s information criterion.
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ber of cases per 100,000 inhabitants; and the weekly rate of
COVID-19 expansion. The latter analysis obviously requires data
from two separate days: i) first-day registered cases (registered
cases 1); ii) second-day registered cases (recorded cases 2); iii)
growth of the number of cases between first and second date
(Rate_Day1_Day2); iv) first-day number of cases per 100,000
inhabitants (1); v) second-day number of cases per 100,000 inhab-
itants (2). Since the peak of the first wave in Pernambuco occurred
in May, we began the analysis by considering two specific dates in
this period, i.e. 12 and 19 May. Table 3 shows the descriptive
statistics of the attributes, whose type (maximization/gain and min-
imization/cost) were set according to the relationships indicated in
the OLS and GWR models based on the number of confirmed
cases of COVID-19. These attributes were used to choose the ROs
(from the municipalities of the state of Pernambuco) so that the
demographic factors, i.e. the characteristics of the space and rate of

disease evolution, could be analysed simultaneously by the DRSA.
Three preference-ordered classes of vulnerability level were estab-
lished Cl = {Clt, t ∈ T} with T = {1,…3}: one area with low (Cl1);
one with moderate (Cl2); and one with high vulnerability (Cl3). 

The variables shown in Table 3 were used to classify each of
the ROs into Clt. For the initial analysis, the days of 12 and 19 May
were considered. Nine sample instances consisting of ROs were
obtained with reference to these days. Other variables included
were the number of inhabitants; the number of confirmed cases;
the evolution of the disease (rate of spread); and the size of the
urban area in each municipality. The GIS interface was used to
conduct this analysis in order to make the process more under-
standable. For each instance, a set of ROs was selected to be
assigned to the classes of vulnerability. Figure 4 shows the nine
instances of ROs, using the notation I_Day1_Day2_Number of the
instances. Red represents the RO assigned to the most vulnerable

                   Article

Figure 3. Inverse distance weighting analysis of COVID-19 cases.
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Table 2. Geographically-weighted regression analysis.

Month-Day                 Bandwidth              Multiple R2                 Adjusted R2                    AIC                    Moran’s I                        P-value

03-12                                             4.50                                 0.9925                                   0.9921                             1069.913                       –0.009332                                 0.641506
03-27                                             4.50                                 0.9932                                   0.9928                             5428.000                       –0.003721                                 0.836681
04-06                                             4.50                                 0.9894                                   0.9888                              585.980                        –0.001390                                 0.627943
04-18                                             4.50                                 0.9895                                   0.9890                             1384.968                       –0.003773                                 0.841979
04-27                                             4.50                                 0.9897                                   0.9892                             1701.397                       –0.003721                                 0.836681
05-09                                             4.50                                 0.9903                                   0.9800                             2066.666                         –0.0014                                   0.434300
05-12                                             4.50                                 0.9906                                   0.9901                             1981.788                       –0.005434                                 0.999932
05-19                                             4.50                                 0.9908                                   0.9904                             2133.577                       –0.003844                                 0.847831
AIC, Akaike’s information criterion.
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class, while low vulnerability is represented by blue.
Figure 5 shows the distribution of class in terms of unions of

decision classes Cl≥
t and Cl≤

t (i.e. based on the approximations
‘Least’ and ‘Most’). It can be observed a similar result for all
instances in terms of class cardinality. For all instances, the select-
ed ROs gave most support at the union of classes of type ‘Least

moderate’ and ‘Most moderate’, while the ‘Least high’ received
fewer objects. Thus, a similar distribution can be seen. Table 4 pre-
sents other measures related to the Reducts and Core, with reducts
being the minimal subset of attributes capable to sort objects with
the same quality and core being the intersection of all reducts. We
observed that all the instances of quality of approximation =1 and

                                                                                                                                Article

Table 4. Dominance-based rough set approach parameters used for the nine instances.

                        I_1219(1)      I_1219(2)       I_1219(3)      I_1219(4)      I_1219(5)         I_1219(6)       I_1219(7)  I_1219(9)     I_1219(9)

Reducts                           3                           10                           16                          39                          39                              33                             7                      26                        26
Core                                 0                            0                             0                            0                            0                                0                              2                       0                          0

Table 3. Difference between the municipalities: descriptive statistics of the attributes.

Criterion                                                                   Code                 Maximum         Minimum            Mean                   SD              Type

Small communities                                                                   S_Comu                          32.00                         0.00                          2.10                           3.21                   Gain
Municipality area                                                                         A_Mun                         4,561.87                      25.70                       532.88                       685.99                 Cost
Municipality population                                                                Pop                        1,645,727.00                4,548.00                 51,923.97                 139,647.26              Gain
Employed population                                                                Em_Pop                      717,517.00                   310.00                    9,383.86                   54,202.15               Gain
Employed population rate                                                   Em_Pop_RT                       0.49                          0.04                          0.10                           0.07                   Gain
Density                                                                                             Den                            9,503.20                       8.43                        267.59                       964.62                 Gain
Urban area                                                                                   U_area                          222.76                        0.61                         15.34                         30.60                  Cost
Registered cases 1                                                                    RC_0512                       3,656.00                       0.00                         38.11                        280.05                 Gain
Registered cases 2                                                                    RC_0519                       4,710.00                       0.00                         51.66                        362.89                 Gain
Rate_Day1 Day2                                                                        RT_12_19                          4.33                          0.00                          0.43                           0.64                   Gain
Number of cases per 100,000 inhabitants 1                        RT_0512                         222.15                        0.00                         18.14                         31.40                  Gain
Number of cases per 100,000 inhabitants 2                        RT_0519                         286.20                        0.00                         27.35                         42.46                  Gain
SD, standard deviation.
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Figure 4. Reference objects.
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the accuracy of approximation in the union of classes also =1, thus
indicating that most instances were suitable for obtaining precise
classification (i.e. without ambiguity) of the ROs. Those results
show the strength of using decision rules in classifying the munic-
ipalities in the region taking the corrected assignment of ROs as a
measure of consistence (for each instance). Thus, the ROs for each
instance explain the decision classes. However, it is necessary to
guarantee that other alternatives classified by the decision rules
maintain reality.

Preference learning dominance-based rough set
The decision rules generated by the DRSA by means of the

learning map helps classifying the overall alternatives, here the

municipalities with respect to levels of vulnerability. To avoid mis-
representation of reality (which is one the potential outcomes) our
proposed methodology comprises an interactive learning proce-
dure. This is implemented by several instances to update the set of
ROs, and thus increase the ability to infer the vulnerability of all
municipalities. Each instance generates a set of decision rules rel-
ative to a RO subset. Figure 6 present the results for nine instances.
Note that most of the municipalities were assigned as low vulner-
ability ones. To obtain the decision rules, we considered a level of
consistency equal to 1 and a union of class of the monotonic type
to induce decision rules. We established the parameters of the type
certain for the induction of rules by means of DRSA. As a result
the procedure sorts the alternatives into low, moderate and high

                   Article

Figure 5. Distribution of class by union approximation for the nine instances.

Figure 6. Vulnerability level for COVID-19 in nine instances.
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vulnerability. The model can be run in an ArcGIS system in com-
bination with the jMAF software in an interactive way that gener-
ates a map with vulnerability classifications using the preference
model based on decision rules. 

Results
In relation to the three urban zones (MRR, Caruaru and

Petrolina) there were some interesting observations. Most of the
MRR municipalities maintained at a high vulnerability level for all
instances, with the exception of the I_1219(1) instance. The
Caruaru zone had high vulnerability in six instances: I_1219(2),
I_1219(4), I_1219(5), I_1219(7), I_1219(8) and I_1219(9), the
Petrolina zone high vulnerability in I_1219(2) and I_1219(7),

while the other municipalities were classified as moderate or of
low vulnerability. The decision rules induced presented a goodness
fitness index to sort the municipalities. It is important to highlight
that most of the MRR municipalities served as ROs when creating
the instances.

We compared the results of nine instances (Figure 6) and the
result of the IDW for the confirmed cases of COVID-19 (Figure 3)
for both dates. We observed similarities between them, e.g. the
IDW surface was consistent with the outcome produced by the
decision rules, in which the results achieved in instances:
I_1219(2); I_1219(5); I_1219(6), and I_1219(7) could better rep-
resent the situation. We observed that all municipalities had been
sorted into three vulnerability classes for the four best instances of
the ROs based on decision rules. Table 5 describes the decision
rules for instances: I_1219(2); I_1219(5); I_1219(6) and I_1219(7)

                                                                                                                                Article

Table 5. Decision rules for the datasets: I_1219(2); I_1219(5); I_1219(6) and I_1219(7).

I_1219(2)                                                                                                                     
Objects (no.)               Rule (ID)           Description of rule                                    Class                         Supporting objects (no.)

19                                             1                                  Pop≥157,828                                                                 At least 3                           5
                                                2                                  RC_1205≥7                                                                   At least 2                           12
                                                3                                  RC_1205≤1                                                                   At most 1                           7
                                                4                                  Pop≤83,641                                                                   At most 2                           14
I_1219(5)                                                                                                                     
Objects (no.)               Rule (ID)           Description of rule                                    Class                         Supporting objects (no.)

25                                             1                                  RC_1905≥78                                                                 At least 3                           6
                                                2                                  RC_1205≥18                                                                 At least 2                           10
                                                3                                  RT_1205≥27.11                                                            At least 2                           9
                                                4                                  RC_1205≥16 & RC_905≥27                                       At least 2                           10
                                                5                                  RC_1205≤17 & RT_905≤28.25                                  At most 1                           12
                                                6                                  RC_1205≤15 & RT_1205≤21.78                                At most 1                           11
                                                7                                  RC_1905≤62                                                                 At most 2                           19
I_1219(6)                                                                                                                     
Objects (no.)               Rule (ID)           Description of rule                                    Class                         Supporting objects (no.)

27                                             1                                  Den≥2,714.47                                                                At least 3                           4
                                                2                                  U_area≤1.3                                                                   At least 3                           1
                                                3                                  RC_1205≥44                                                                 At least 3                           7
                                                4                                  A_Coun≤110.82 & RC_1205≥2                                 At least 2                           4
                                                5                                  U_area≤3.31 & RC_1205≥1                                      At least 2                           3
                                                6                                  RT_1905≤10.42                                                            At most 1                           11
                                                7                                  Em_Pop≤0.044                                                            At most 1                           1
                                                8                                  RT_1219≤0.69 & RT_1905≤15.74                             At most 1                           11
                                                9                                  A_Count≥503.95 & U_area≥201.48                         At most 1                           1
                                                10                                A_Coun≥445.89 & RT_1219≤0.63                            At most 1                           7
                                                11                                RC_1205≤18.0 & RT_X1219≤0.39                            At most 1                           10
                                                12                                A_Coun≥885.99                                                            At most 2                           9
                                                13                                RC_1205≤126.0 & RT_1219≤1                                  At most 2                           21
I_1219(7)                                                                                                                     
Objects (no.)               Rule (ID)           Description of rule                                    Class                         Supporting objects (no.)

27                                             1                                  RC_1205≥44                                                                 At least 3                           9
                                                2                                  RT_1219≥4.33                                                              At least 3                           1
                                                3                                  S_Comum≥2.0 & Pop≥84,418                                  At least 3                           3
                                                4                                  EM_pop≥7836                                                             At least 2                           13
                                                5                                  U_area≤7.18                                                                 At least 2                           6
                                                6                                  S_Comu≤0 & RC_1905≤11                                       At most 1                           2
                                                7                                  Pop≤48,554.0 & U_area≥10.49                                 At most 1                           7
                                                8                                  Pop≤48,554                                                                   At most 2                           14
                                                9                                  Pop≤79,758.0 & RT_1219≤0.63                                 At most 2                           10
                                                10                                S_Comu≤1 & Em_Pop≤12,958                                At most 2                           8
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so that the MRR mostly had a high vulnerability level (I_1219(2),
I_1219(5) and I_1219(7)) or moderate vulnerability (I_1219(6)).
Only Petrolina varied between low (I_1219(5)), moderate
(I_1219(7)) and high vulnerability (I_1219(2), I_1219(7)),
although it recorded 17 COVID-19 cases on May 12 and 22 on
May 19. 

Every decision rule specifies the recommended vulnerability
level for COVID-19 cases and the reasons why that level was sug-
gested. For every rule, it is also possible to know which ROs sup-
ported that rule. However, we highlighted only the number of
objects supporting each rule. The decision rules can be read as fol-
lows: for rule 2, if the population (pop) is greater than or equal to
157,828 than the object would be sorted into the least, Class 3. The
other decision rules should be interpreted in a similar way.

The results for the first instance I_1219(2) obtained four deci-
sion rules (for approximation of decision class) and there were 19
ROs. The vulnerability levels can be explained by the attributes of
the recorded cases - 12 May (RC-1205) and the population num-
ber. Although these rule sets produced a good quality of fitness
index, we considered it weak, especially if applied in isolation
(separately from other instances) to sort the overall municipalities
into vulnerability levels. With respect to I_1219(5) we noticed that
all conditional attributes considered only cases of COVID-19 rep-
resented by the following attributes: RC_0519, RC_0512,
RT_0512 and RT_0519. The onset of I_1219(6) consisted of 27
ROs and 13 decision rules, and thus more municipalities could be
assigned to a moderate vulnerability level. However, a few munic-
ipalities were assigned as high vulnerability. Comparatively,
I_1219(7) decision rules produced a result closer to reality (current
scenario), which indicated that the municipalities with a large
number of confirmed cases were more vulnerable. The MRR, was
all high vulnerability and the level of vulnerability of the other
municipalities as shown in Figure 6.

Table 6 presents municipalities per vulnerability class for the
selected four instances analysed. The number of municipalities
with high vulnerability varied between 8 and 15. All the four
instances kept the following municipalities in high vulnerability:
Recife (the state capital), Cabo de Santo Agostinho, Camaragibe,
Jaboatão dos Guararapes and Olinda. All of these municipalities
belong to the MRR. Caruaru was also classified at the high and
moderate vulnerability. The other municipalities varied between
moderate and low vulnerability. 

In the training phase, we included a procedure to select the
instances to be used. Notice that when DRSA results (Figure 6) and
IDW analysis (Figure 3) are compared, the results can be seen to
be satisfactory, although only four instances were selected:
I_1219(2), I_1219(5), I_1219(6) and I_1219(7). Using the PL-
DRSA, we observed a similar distribution of the municipalities
across the categories of vulnerability (Table 6) compared to the
concentrations of the confirmed cases of COVID-19. It was noted
that five municipalities were always considered within the high
vulnerability level. As of 19 May these five municipalities had

accumulated a total of 7473 confirmed COVID-19 cases (78.6% of
all cases in Pernambuco at the time), together accounting for 3 mil-
lion inhabitants (33.8% of the population of Pernambuco). Thus,
the larger the population of a region the more rapidly the virus
spreads.

Regarding the low and moderate vulnerability municipalities,
there were 166 municipalities assigned to these levels, due to the
instance decision rules considered. On 12 May there were 618
recorded cases and on 19 May 379 new cases had been added. As
expected, urban places thus were a risk factor for the propagation
of the virus. Also, in 26 municipalities, any additional confirmed
cases were reported on 19 May. Besides, on 12 May, the mean
number of cases was 0.11 per 1000 inhabitants, which increased to
0.18 on 19 May. In municipalities with a population above 50,000,
these means were 0.46 (12 May) and 0.66 (19 May). Thus, the
increase in number of cases is low in municipalities with a small
populations.

Revealing vulnerable areas by preference learning
dominance-based rough set

PL-DRSA allows updating the vulnerability results to account
for the evolution of the number of COVID-19 cases, or even to
include new condition attributes. We eliminated redundant deci-
sion rules, combining only decision rule sets from qualified
instances, which enabled analysis of new examples. In this study,
we updated data regarding the number of cases, but social and eco-
nomic variables remained the same. Therefore, the changes were
made for: Recorded cases 1 (Day_1); Recorded cases 2 (Day_2);
Rate of cases (RT_Day1_Day2); Number of cases per 100,000
inhabitants (Day_1); and Number of cases per 100,000 inhabitants
(Day_2).

After consolidating the decision rules, we evaluated five differ-
ent dates, starting in July and ending in November 2020: 1 July 01
and 7 July; 20 July and 27 July; 6 August and 12 August; 28
August and 3 September; 1 November and 7 November. Table 6
presents the consolidated decision rules. The condition part of the
instances was allocated and separated by connector OR. Figure 7
presents the results considering the decision rules consolidated for
each period. 

Regarding the analysis applied for new cases (after the training
tests) there were two distinct moments, which covered the months
of July, August and September 2020. The first represented a reduc-
tion in the incidence of the disease in the whole state. The second,
also called the second wave, was characterized by a sharp increase
in new cases starting in November 2020 resulting in an insupport-
able situation at the health care institutions. In July, the mean num-
ber of new cases in the state was 3.58, with numbers above 30 only
in the (MRR area). In August and September, we observed a few
regions of high vulnerability, as a result of the growth of the num-
ber of new cases in particular areas. In November, however, new
cases appeared in most of the municipalities. 

                   Article

[page 14]                                                          [Geospatial Health 2022; 17(s1):1000]                                                                         

Table 6. Classification of the municipality vulnerability.

Level                        I_1219(2)                                I_1219(5)                             I_1219(6)                                                I_1219(7)

Low                                            141                                                         151                                                     103                                                                              159
Moderate                                   35                                                           22                                                       75                                                                                10
High                                             8                                                             11                                                        6                                                                                 15
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We applied an interactive learning approach in which we
explored the model using different instances in the training phase.
We included a procedure to select the instances to be used as a
learning procedure to build the rules. The rules were then updated
to represent the situation presented in Figure 7. It was noted that
the model was capable to classify the municipalities in a consistent
way, considering the updated data of new cases and the socio-
demographic condition. We also observed that the virus spread
more rapidly within municipalities with larger populations. For
instance, in November 2020, in these municipalities, there was a
mean rate of cases greater than 40% and an accumulated total of
126,339 confirmed COVID-19 cases, represented by 21% of all
municipalities but 59% of the total population.

Discussion
The detailed nature of the coronavirus pandemic and for how

long it will pose a major threat to society remain uncertain. The
pandemic has incurred various adverse impacts on people’s lives
and on the economy. Thus, the present study makes use of a pref-
erence learning method to induce decision rules to support deci-
sion-making policies to control and reduce the number of new
cases of infections by actions such as social distancing and, in
extreme cases, lockdown.

The GIS-MCDM model was found to be satisfactory for clas-
sifying municipalities according to their level of vulnerability to
COVID-19, considering registered of new cases and other vari-

                                                                                                                                Article

Figure 7. Vulnerable analysis for updating the recording of cases.
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ables (social, economic and demographic) representing the charac-
teristics of the municipality. It is important to note that preventive
or responsive management decisions also influences the level of
vulnerability of each municipality, reinforcing the dynamic nature
of this study. As an example, an increasing number of cases were
observed from October to November 2020, represented by a relax-
ation in social distancing restrictions (in November, there were
elections for mayors and councillors, in Brazil).

Several studies have pointed out vulnerable areas using map-
ping tools for cases of COVID-19 (Ye and Hu, 2020; Han et al.,
2021), trend estimations (Coelho et al., 2020) and investigations on
the determinants of COVID-19 across different regions (Maciel et
al., 2020; Andersen et al., 2021), while other authors have focussed
on deprivation indicators (Maciel et al., 2020; Adersen et al., 2021).
Our results confirm that populous areas and high-density areas are
associated with higher transmissions rates and the proposed
methodology has the advantage of considering multiple attributes
that should help to guide decision-making related to actions against
COVID-19 by means of a holistic learning approach based on
maps. It avoids the effort needed to define model parameters, such
as weights or preference thresholds, as required in most traditional
MCDM methods, and we were able to identify areas vulnerable to
COVID-19 using decision rules derived from a set of attributes of
recorded cases, rates and risk factors. 

From the perspectives of public policies and social distance
rules, preventive measures have been considered. Also, there is a
need to implement well-targeted policies tailored to support the
return of economic activities. A study in Recife (Silva et al., 2020)
verified a decreasing trend in cases after a strict quarantine had
been imposed, compared to daily deaths in the absence of this
intervention. To avoid the spread of the virus, it is imperative to
identify and prioritize preventive actions for each risk group more
effectively. The extracted rules and the vulnerability levels may be
used to guide public policies decisions regarding the COVID-19
cases, as they consider the spatial characteristic of each municipal-
ity. Our model highlights the norm used for classification by means
of the decision rules. Moreover, it can classify municipalities with
distinct characteristics at the same level of vulnerability. For exam-
ple, the level ‘high’, contains municipalities with more than
100,000 inhabitants as well as municipalities with less than 20,000
inhabitants. However, as it would be beyond the scope of this
paper, we did not associate management actions with vulnerability
levels, such as imposing restrictions, including quarantine mea-
sures (Singh et al., 2020), provision of new health services, eco-
nomic support, incentives, educational and training programs. 

Classification was not related to identifying and recommend-
ing specific measures of prevention. It is an application of a dataset
used as criteria to guide how to categorize municipalities accord-
ing to vulnerability levels. Also, the application of this model
needs to be run constantly since the data should be updated as
closely as possible to real time. Other relevant factors could also
be added to the model, such as population morbidity issues and
obesity. We also did not use hospital data and the results from test-
ing for COVID-19. Such information could be usefully considered
in future studies on aiding management decisions.

Conclusions
We propose the GIS-MCDA approach to identify and sort

areas vulnerable to COVID-19, based on a multicriteria learning

approach and spatial visualization. The main contribution and
innovation of this study concerns two matters. First, the proposed
methodology reveals the set of attributes and condition rules that
mostly impact the levels of vulnerability. Second, the methodology
identifies the municipalities that are the most vulnerable to the
spread of COVID-19, based on a combined spatial data analysis
and a holistic preference learning decision model.
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