
Abstract
There is a vast amount of geo-referenced data in many fields

of study including ecological studies. Geo-referencing is usually
by point referencing; that is, latitudes and longitudes or by areal
referencing, which includes districts, counties, states, provinces
and other administrative units. The availability of large geo-refer-
enced datasets for modelling has necessitated the development
and application of spatial statistical methods. However, spatial
varying coefficients models exploring the abundance of tick
counts remain limited. In this study we used data that was collect-
ed and prepared by researchers in the Department of Biological
Sciences from the Old Dominion University, Virginia, USA. We
modelled tick life-stage counts and abundance variability from 12
sampling locations, with 5 different habitats (numbered 1-5), three
habitat types; namely: woods, edges and grass; collected monthly
from May 2009 through December 2018. Spatio-temporal Poisson
and spatio-temporal negative binomial (NB) count data models
were fitted to the data and compared using the deviance informa-

tion criteria (DIC). The NB model outperformed the Poisson mod-
els with all its DIC values being smaller than those of the Poisson
model. Results showed that the covariates varied spatially across
counties. There was a decreasing time (in years) effect over the
study period. However, even though the time effect was decreas-
ing over the study period, space-time interaction effects were seen
to be increasing over time in York County. 

Introduction
Infectious agents that are transmitted by tick bites cause tick-

borne diseases, such as Rocky Mountain spotted fever, Lyme dis-
ease, Ehrlichiosis, tularaemia, babesiosis, Colorado tick fever, and
relapsing fever (Tälleklint and Jaenson, 1998; Bowman et al.,
2004; Bratton and Corey, 2005). Ticks are a highly specialized
group of obligate, bloodsucking and non-permanent ectoparasitic
arthropods that feed on mammals, birds and reptiles in most
regions of the Earth. They are characterized by having relatively
large body sizes among the acari; ingesting enormous quantities of
vertebrate blood, digested tissues, or lymph; laying 200 to 23,000
eggs; and having moulting and reproduction regulated by blood
ingestion (Anderson, 2002). 

In Europe, ticks have spread and become established in areas
that were previously not considered to be favourable for them. The
reason is not only directly due to climate change, but also due to
continuous changes in vegetation, landscape features and human
social habits which are leading to new areas of contact between
ticks, their pathogens and the interface between animals and
humans (Salman, 2012). Tälleklint and Jaenson (1998) attribute
these changes to climate change, which has led to the Ixodes rici-
nus species being detected in northern Sweden where they have
now colonized relatively high altitude ranges in the mountains. In
African countries, Asia, the Near East and parts of Europe, serious
outbreaks of Crimean-Congo haemorrhagic fever have been
reported. This fever is said to mainly be the result of tick-bites by
Hyalomma marginatum, which is the most common tick species in
Mediterranean-type environments and in the African steppes, but
neither found in America nor Australia with absence of reported
cases there to date (Salman, 2012).

Amblyomma americanum (lone star tick) is a major human-
biting tick in eastern, southern and mid-western U.S. (Goddard
and Varela-Stokes, 2009). As in much of the world, tick-borne dis-
eases are an emerging public health threat in this part of the U.S.
(Sayler et al., 2017). According to Stromdahl and Hickling (2012),
people who live and usually visit state parks and national forests
in North America are at a higher risk of exposure to tick bites and
their associated pathogens than those whose activities keep them
outside of these areas. In this part of the U.S., there are only five
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tick species, i.e. A. americanum L., A. maculatum Koch,
Dermacentor variabilis Say, Ixodes scapularis Say, and
Rhipicephalus sanguineus, that commonly bite humans
(Stromdahl and Hickling, 2012; Nathavitharana and Mitty, 2015).
According to Childs and Paddock (2003), A. americanum is the
primary vector for Ehrlichia chafleensis and E. ewingii, and it is
associated with southern tick-associated rash illness and a number
of other diseases. Despite its prominence as a nuisance biter and
vector of human pathogens in the U.S., there is a lack of efforts to
define the species’ geographical range. This deprive us of informa-
tion not only about identification of human populations at risk for
A. americanum and its associated pathogens, but also in determin-
ing the landscape, host assemblage and environmental conditions
that are favourable for the establishment and rapid reproduction of
this tick species. It has emerged as one of the most important tick
vectors in the U.S. transmitting pathogens to both humans and
domestics animals (Childs and Paddock, 2003; Mixson et al.,
2006; Goddard and Varela-Stokes, 2009; Fritzen et al., 2011).
Hendricks et al. (2017) state that domestic dogs and cats are poten-
tially effective sentinel populations for monitoring occurrence and
spread of Lyme disease.

The focus of this study was to develop statistical models to
model tick count data that include areal referencing. We wished to
know whether the lone star tick life stage counts vary over time,
across, and between, counties in south-eastern Virginia in the U.S.
The lone star tick abundance is largely influenced by the availabil-
ity of suitable animal hosts for the life stages and by the availabil-
ity of habitats with physiographic features that offer protection for
hosts and guard against desiccation of the tick (Childs and
Paddock, 2003). Spatial and spatiotemporal statistics can reveal
important environmental and temporal characteristics, for exam-
ple, by incorporating time, space, and space time covariate interac-
tions into the model. The main objective of this research was to use
spatiotemporal analysis to explore environmental and temporal
relationships with tick life-stage count data using data collected
from 2009 through 2018. The knowledge and information
unpacked are as essential in tick-related disease surveillance, as it
is for effective planning and decision-making. This study could
also be of interest with respect to the use of the INLA package in
the R statistical software as compared to the Markov Chain Monte
Carlo (MCMC) in the WinBUGS statistical software package.

Materials and methods

Data source and study area

We used data collected and prepared by researchers in the
Department of Biological Sciences from Old Dominion University,
Virginia. U.S. Ticks were collected using standard flagging tech-
niques (CDC, 2020) along established transects and identified
species and life-stage according to (Sonenshine, 1979). Larvae-,
nymph- and adult-stage count data were recorded for each different
location, habitat and habitat type throughout the four seasons of the
year. Eight counties and independent cities were sampled in this
state, namely; City of Chesapeake, City of Hampton, Isle of Wight
County, City of Norfolk, Northampton County, City of
Portsmouth, City of Virginia Beach and York County (Figure 1).
For brevity, all will be referenced as counties. Data collection was
done at least once a month on varying days of the week and at 12
different sites in southeast Virginia from May 2009 through

December 2018 (H. Gaff unpublished data). The data were collect-
ed at random from multiple areas referred to as habitats, and each
area was designated by a unique number ranging from 1 to 5 for
different habitats. The habitat type was used to designate the kind
of area (woods, edges or grass) where the data were collected. The
number of the week (from 1 to 53) was also recorded during data
collection. Week 1 is the first week of the year, and while fewer
ticks were observed in winter, the adult stage of I. scapularis is
active in winter. To help align the information from year to year,
we recorded data collected during the last week of December as
week 53, which was also the first week of January of the following
year. We also kept track of the month and year for the data collec-
tion. The ten-year study period was grouped into two-year succes-
sive periods such that 2009 and 2010 were grouped together, 2011
and 2012, 2013 and 2014, 2015 and 2016 and 2017 and 2018. This
predictor variable was used to capture residual spatial effects on
the abundance of tick counts. The paired time segmentation was to
help find out if there were times when counts were significantly
high or low compared with the rest of the data. The above-men-
tioned variables were used as predictors of tick life-stage count
outcome data to find relationships using count regression models. 

Model descriptions
Various statistical models have been developed to model count

data. In this study, we applied the Poisson and the negative bino-
mial distribution models. The classical Poisson model, which
assumes that mean and variance of the count responses are equal,
is often of limited use when the empirical data sets exhibit over-
dispersion or have more zeros than expected. This can be
addressed by introducing a dispersion parameter in this model or
by extension to models that can account for excessive zeros in the
data (Zeileis et al., 2008). As mean and variance are identical in the
standard Poisson model, this means that the dispersion parameter
is fixed to 1. In the presence of over-dispersion, the Poisson model
underestimates the variance and render all model-based tests more
conservative. Violation of the equal mean and variance assumption
indicates correlation in the data, which may affect both standard
errors of the parameter estimates and the model. In this study, the
tick count data showed greater proportion of zeros than that of pos-
itive counts, which is an indication of zero-inflation and over-dis-
persion.

The negative binomial (NB) distribution is commonly used to
model over-dispersed count data. A dispersion parameter in the NB
model caters for over-dispersion allowing the variance to be
greater than the mean while also accommodating the unobserved
heterogeneity in the data. In addition to over-dispersion, it is com-
mon that many empirical count data sets exhibit more zero obser-
vations than would be expected by the classical Poisson model. A
model capable of capturing both properties is the zero-inflated
Poisson (ZIP), which assumes that zero counts occur with some
probability, while a Possion (l) random variable is observed with
probability 1 – p. The ZIP distribution model approaches the clas-
sical Poisson distribution when p → 0. It is worth noting that zero
observations arise from both the zero-component distribution and
the classical Poisson distribution. The zero-component distribution
accounts for the inflated zeros that are observed in addition to
zeros that are expected to be observed under the classical Poisson
distribution. A more detailed account of the development of zero-
inflated models can be found in (Lambert, 1992). 

Let yijkm be a tick count for life-stage m (m=1: larvae; m=2:
nymphs; and m=3: adults) in habitat-type k, habitat j and location i
modelled by the multi-hierarchical Poisson model. Under the
Poisson model, we assume that the dependent variable yijkm is
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Poisson-distributed, i.e.:

yijkm | mijkm ~ Poisson(mijkm)

where mijkm is the mean tick count in the respective life-stage, habi-
tat type, habitat and location.

Let Xijkm = (am; xijkm1, xijkm2,…, xijkmp)’ be a vector of p continu-
ous predictors with the first component accounting for the constant
and Wijkm = (wijkm1, wijkm2,…, wijkmr)’ be a vector of r categorical pre-
dictors. The link function h(·) relates the mean mijkm to the predic-
tors as follows:

h(mijkm) = X’bm + W’gm                                                                (1)

where W = Wijkm and X = Xijkm; while h(·) is the log link function,
bm an m-dimensional vector of regression coefficients for continu-
ous predictors; and gm a vector of the categorical predictors.

In order to cater for non-linear effects of the continuous covari-
ates, the spatial autocorrelation, and temporal effects in the data,
we incorporated the random walk model of order 2 (RW2); the
convolution models; the linear trend over years; and the space-time
interactions into the model such that (Eq. 1) becomes:

h(mijkm) = b0m + ∑
p

i=1
fi(Si, xijkm) + fmonth (m) + fspat (Sim) + fyear (t) + fit

(Si, t)                                                                                           (2)

where the function fi(Si, xijkm) represents the space-covariate inter-
action; fmonth (m) a non-linear twice differentiable smooth function
for the continuous month covariate effect; and the functions fspat
(Sim), fyear (t) and fit (Si, t) functions for space, time (years) and
space-time interaction, respectively. The convolution model
assumes that the spatial effect can be decomposed into two; name-
ly, the spatially structured and spatially unstructured components.
This means that fspat (Sim) = fstr (Sim) + funstr (Sim) where m = 1, 2 or 3
(Manda and Leyland, 2007; Ngesa et al., 2014; Okango et al.,
2015).

The spatially structured random effects account for the unob-
served covariates, which vary spatially across counties, while the
spatially unstructured random effects account for the unobserved
covariates that are inherent within counties or correlations within
counties, for example, the climate and common cultural practices
among other things. The spatially structured random effects are the
spatial autocorrelations and they are technically defined as the cor-
relation computed among the values of a single geo-referenced
variable that is attributable to the geographic proximity of the
objects, to which the values are attached (Cliff and Ord, 1981).
Moreover, fyear (t) represents random time effects which can be
modeled as a first-order random walk (RW1) or a first-order
autoregressive process (AR1), while fit (Si, t)is a space-time inter-
action. 

In the presence of over-dispersion, the Poisson model is
replaced by the negative binomial model, where the variance
depends on the mean as m(1 + mΨ), and where Ψ is an over-disper-
sion parameter, which measures the extent at which variance devi-
ates from the mean. We assumed that a tick count variable yijkm fol-
lows a negative binomial distribution, such that 

yijkm | mijkm ~ NB(m,Ψ)

The mean function E(yijkm) = mijkm relates to the predictors in the
same way as that of the Poisson distribution model in Eq. 1. In this
study, a full Bayesian estimation approach was used, where param-
eters were assigned prior distributions.

Model diagnostics
The models were compared using the deviance information

criterion (DIC), which is obtained by adding the posterior mean of
the deviance that measures the goodness of fit to the number of
effective parameters as: DIC = (θ) + pD where is the posterior
mean deviance and pD is the effective number of parameters in the
model, which penalizes the fit for complexity of the model.
Spiegelhalter et al. (2002) state that pD values less than zero indi-
cate substantial conflict between the prior and the data or that the
posterior mean is a poor estimator. The best model is said to be the
one with the smallest DIC value. Low values of suggest a better
fit, while small values of pD suggest model parsimony as discussed
in Spiegelhalter et al. (2002).

Fitted models
Four spatio-temporal models were fitted in the R statistical

software, version 3.5.1 using the ‘INLA’ package to predict the
effects of the ecological covariates on the distribution of larvae,
nymph and adult tick counts in the eight previously mentioned
counties of Virginia, U.S. Preparation, organization and merging of
the data with the map was done using the QGIS software, version
3.6.3-Noosa (QGIS, 2009). The first approach modelled the space-
covariate effects f (Si, xijkm), non-linear effects of the month covari-
ate, fmonth (m), the temporal time effects fyear (t) and the space-time
effects fit (Si, t). This model (M1) does not consider the spatially
structured and spatially unstructured random effects and the three
life-stage counts were modelled independently as follows:

M1: log(mijkm) = b0m + ∑
p

i=1
f (Si, xijkm) + fmonth (m) + fyear (t) + fit (Si, t)

                                                                                                        
                                                                                                   (3)

where m equals 1 for larvae; 2 for nymphs; and 3 for adults with
respect to counts. The second model (M2) is the same as M1 but
with spatially unstructured effects to cater for the unobserved
covariates that are inherent within the counties. The spatially
unstructured effects were specified by the identically and indepen-
dent distributed (iid) with the normal distribution.

M2: log(mijkm) = log(mijkm) = b0m + ∑
p

i=1
f (Si, xijkm) + f (month) + funstr

(Si) + fyear (t) + fit (Si, t)                                                                (4)

The third model (M3) is the same as M1 but with spatially
structured effects which cater for any unobserved covariates which
vary spatially across counties, specified by the conditional autore-
gressive model (CAR).

M3: log(mijkm) = log(mijkm) = b0m + ∑
p

i=1
f (Si, xijkm) + f (month) + fstr

(Si) + fyear (t) + fit (Si, t)                                                                (5)

The fourth model (M4) is the same as M1 with a convolution
of spatially unstructured and spatially structured effects, which are
specified by the iid normal distribution and CAR model respec-
tively.

M4: log(mijkm) = log(mijkm) = b0m + ∑
p

i=1
f (Si, xijkm) + f (month) + funstr

(Si) + fstr (Si) + fyear (t) + fit (Si, t)                                                  (6)

We used the Poisson and the negative binomial count data dis-
tributions and compared them using the DIC. We then interpreted
the results from the best performing models based on the DIC. 

DD

D

                                                                                                                                Article

                                                                             [Geospatial Health 2021; 16:1004]                                                          [page 351]

ghdef.qxp_Hrev_master  15/12/21  21:22  Pagina 351

Non
-co

mmerc
ial

 us
e o

nly



[page 352]                                                           [Geospatial Health 2021; 16:1004]                                         

Assessment
Before presenting the study results, we first performed an

exploratory data analysis and also compared all the models using
the DIC. We compared spatio-temporal Poisson models with their
corresponding spatio-temporal negative binomial models.

Exploratory data analysis
Table 1 shows environmental and time predictor variables used

in this study. Table 2 shows the number of positive and zero counts
in the data. It is obvious that the data have more zero counts than
positive counts for all tick life stages.

Our records show that the larvae were more abundant in the
environment than the nymph and adult stage ticks at all times. As
seen in Figure 2, the blue bars for larvae are on average, approxi-
mately 7 and 14 times taller when compared with the orange and
grey bars for the nymph and adults, respectively, during the study
period from 2009 through 2018.

Model comparisons 
Table 3 shows the DICs for four spatio-temporal Poisson and

NB models, where the model with the smallest DIC is the one with
the best fit. As seen, all the spatio-temporal NB models have lower
DICs compared to the corresponding spatio-temporal Poisson
models. M1 showed the best fit for the tick larvae count data com-
pared to the all the other models, which also suggests that unob-
served covariates vary significantly over time. Similarly, M4
showed the best fit for the nymph and adult tick count data. The
differences in the DIC values suggest that the spatio-temporal NB
model would be the best model compared to the spatio-temporal
Poisson model. This outcome also suggests that unobserved
covariates vary spatially across counties and over time.

Results

Space-covariate effects
Spatio-temporal NB models out-performed the spatio-tempo-

ral Poisson models in our case. We show the choropleth maps
(Figures 2-4) of all the models with the smallest DICs for the fitted
larvae, nymph and adult tick count data, respectively. The choro-
pleth maps show the space-covariate interaction effects for the
selected counties in Virginia. A yellow shade was used if the
effects are greater and black or dark shade if the effects were lower. 

Larvae
The effect of location on the log mean tick counts was highest

in Hampton County followed by York and Chesapeake counties
(Figure 3). The effect was lower in Norfolk, Portsmouth and Isle
of Wight counties. Virginia Beach County showed the lowest effect
of the location variable. The effect of habitat was almost the same
across all the counties except for Isle of Wight County. The effect
of change in weeks was evident in York and Norfolk counties. The
effect of habitat type on the log of mean larvae tick counts was
high in Chesapeake County. The effect of change in season was
very low in Isle of Wight County compared to other counties.

                   Article

Table 1. Predictor variables and their types.

Predictor                                                               Type

Habitat                                                                               Environmental
Habitat type                                                                      Environmental
Location                                                                             Environmental
Year                                                                                             Time
Month                                                                                          Time
Season                                                                                        Time

Table 2. Tick counts in the data, 2009-2018.

Variable                                Positive counts          Nil counts

Larvae                                                            726                                 3767
Nymphs                                                        1770                                2723
Adults                                                            1365                                3128

                                                                           
Table 3. Deviance information criteria values for spatio-temporal Poisson and negative binomial models.

Response                                                                                               Spatio-temporal models
                         Total counts                    Model       Poisson                 NB
                                                                                                           DIC                              pD                          DIC                                 pD

Larvae                            145020                                                                                 281147.18                               71.79                           12563.79                                    13.31
Nymphs                           20637                                        1                                         29982.53                                79.52                                  -                                               -
Adult                                10509                                                                                   13990.35                                62.55                                  -                                               -
Larvae                            145020                                                                                 277483.97                               73.81                           12591.82                                     9.64
Nymphs                           20637                                        2                                         30176.78                                67.67                           14203.41                                    49.58
Adult                                10509                                                                                   14308.39                                62.55                           10101.87                                    47.52
Larvae                            145020                                                                                 295800.95                               71.16                           12600.72                                    10.82
Nymphs                           20637                                        3                                         34093.74                                65.24                           14518.67                                    45.97
Adult                                10509                                                                                   14317.57                                62.60                           10101.87                                    47.52
Larvae                            145020                                                                                 277468.27                               73.88                           12591.73                                     9.64
Nymphs                           20637                                        4                                         30176.53                                67.64                           14202.29                                    49.36
Adult                                10509                                                                                   14308.23                                62.55                           10100.97                                    47.13
DIC, deviance information criteria; NB, negative binomial.
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Nymphs
The effect of location on the log mean nymph counts was high

in Hampton County and very low in Norfolk County compared to
the others (Figure 4). The effect of habitat was very low in Isle of
Wight County, and low in Northampton County followed by
Chesapeake, Hampton and Portsmouth counties. However, there
was high effect of habitat in Norfolk County. The effect of change
in week was very low in York County and Northampton County
but high in Portsmouth County. The effect of habitat type on the
log nymphal counts was evident in Chesapeake County but low in
Isle of Wight County. The effect of change in seasons was very low
in Isle of Wight County, while a higher effect can be observed in
York, Hampton and Norfolk counties (Figure 4). 

Adults
The effect of location on the log mean adult counts was high in

York County, while it was generally low in other counties. The
effect of habitat was high in Norfolk and Hampton counties, but it
was a very low in Isle of Wight County. The effect of change in
week was also evident in the latter. A very low effect in this respect
can be observed in York County (Figure 5). The effect of habitat
type was very high in Chesapeake County and very low in York
County compared with other counties. The effect of change in sea-
son was very high in Norfolk County and very low in Isle of Wight
County. Other counties had low effects as compared to the effect in
the latter.

                                                                                                                                Article
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Figure 2. Tick counts of larvae, nymph and adult species in Virginia, USA 2009-2018. 

Figure 1. Map of Virginia with names of counties where ticks were sampled.
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The non-linear effects of the month
Figure 6 shows non-linear associations between time (month)

and larvae, nymph and adult tick counts. These figures give the
posterior mean (black line in the figure) of the smooth function and
their corresponding 95% credible intervals (red and blue lines).
From the figures it is evident that there is a non-linear relationship
between month and tick counts. 

We could confirm the general changes along the seasons in the
study area. Thus we report the probability of observing larvae

increases between January and April, fluctuates between April and
June and then starts to increase even further between June and
August. After those chances of observing larvae decrease until
December. The chances of observing nymphs increase slightly
between January and February, the number of larvae increases
abruptly between February and June, then decreases again between
June and August followed by a steady decrease between August
and September. From there, it decreases sharply between
September and December. The chances of observing adults
increases steadily between January and February, then increases

                   Article

Figure 5. Choropleth maps showing the space-covariate effects on adults.

Figure 3. Choropleth maps showing the space-covariate effects on larvae.

Figure 4. Choropleth maps showing the space-covariate effects on nymphs.

Figure 6. Non-linear effects of month variable on larvae, nymphs and adults 2009-2018.
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abruptly from February to May, steadily between May and June
and decreases sharply between June to September. The probability
then starts to increase steadily from September to December. 

Space-time effects

Larvae
Figure 7 shows the mapped estimated residual spatial effects on

the abundance of larvae counts between 2009 and 2018. The residual
spatial effects that represent unobserved spatial factors either not
measured in the surveys or abducting the effects of cultural patterns
are evident. High effects were observed in Portsmouth, Chesapeake
and Hampton counties in 2009/2010 while the other counties
showed low residual spatial effects. Three counties showed
decreased residual spatial effects in the period 2011/2012 and these
effects were evident in Norfolk and Northampton counties. In the
period 2013/2014 the effects were evident in Hampton, Portsmouth,
Chesapeake and York counties. The effects were high in

Chesapeake, Norfolk and York counties 2015/2016, while they were
very low in Portsmouth County. During 2017/2018 all counties,
except for Isle of Wight and Portsmouth counties, showed high
effects on the abundance of larvae. 

Nymphs
The effects on the nymph abundance decreased over the whole

study period, particularly in York County (Figure 8).

Adults
Residual spatial effects on the distribution of abundance of

adult ticks increased between 2009 and 2016 in York County, while
all other counties showed a decrease of spatial residual effects
throughout the study period 2019 to 2018. In York, a decrease in
residual spatial effects was only observed after 2015/2016 study
period. Higher residual spatial effects were evident in Norfolk
County during the periods 2009/2010, 2011/2012 and 2013/2014,
respectively (Figure 9).

                                                                                                                                Article
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Figure 7. Choropleth maps showing residual spatial effect of larvae tick abundance 2009-2018.

Figure 8. Choropleth maps showing residual spatial effect of nymph tick abundance 2009-2018.

Figure 9. Choropleth maps showing residual spatial effect of adult tick abundance 2009-2018.
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Temporal effects
For larvae, there was a steady decreased in the mean count

between periods 1 and 5, then a steady increase from period 4. The
graph indicates that larvae abundance declined between 2009 and
2016, after which there was a steady increase in the abundance lar-
vae ticks. The graph indicates that nymph abundance increased
between periods 2009 and 2012 then declined between 2012 and
2016, after which there was a steady increase in the abundance of
nymph ticks. For adults, the abundance was constant from 2009
through 2012, after which a gradual decline was observed from
2012 until 2018 (Figure 10). 

Discussion
This study applied the Poisson and NB count data models to

tick count data with the aim to explore the influence of environ-
mental and temporal predictors on the distribution of tick counts in
Virginia, U.S. We relaxed the assumption that the relationship
between the predictors and the response variables in a regression
model are constant across the study region and over time. This
assumption is unrealistic for spatial processes as factors such as
sampling variation and different relationships across regions, for
example, attitudes, preferences, culture and others, contribute to
different responses to the same stimuli as one moves across regions
and over time. A frequent approach to spatial modelling dates back
to the work by Besag et al. (1991) which was extended by
Bernardinelli et al. (1995) to include a linear term for space-time
interaction. Many studies have relaxed this assumption, e.g.,
Assunçao et al. (1999) introduced a Bayesian space-varying
parameter model to examine micro-region factor productivity and
the degree of factor substitution in the Brazilian agriculture;
Gamerman et al. (2003) developed a flexible modelling approach
for space-varying regression models; and Okango et al. (2015)
modelled the HIV and HSV-2 viruses using spatially varying coef-
ficient models. The Bayesian spatio-temporal process model was
used to allow covariates to vary spatially and over time. We spec-
ified the CAR prior for the structured random effects; autoregres-
sive of order one (AR1) prior for the temporal random effects; and
normal iid priors for the unstructured random effects. Non-linear
effects of the month variable on tick counts were also evident. As
a result, an assumption of linear relationship would have led to

misleading results and consequently to wrong interpretations.
The exploratory data analysis showed that more larvae counts

were observed compared with nymphs and adult tick counts. We
found that the effects of covariates on tick counts varied spatially
across counties and over time. Spatio-temporal models were pow-
erful, in a sense that they were capable of revealing county specific
effects of each covariate, county space-time effects and the effects
of change in time on the distribution of life-stages of lone star
ticks. We were able to show that tick abundance has been increas-
ing over the study time in Virginia, which confirms the previous
results by Lantos et al. (2015) that observed the significant expan-
sion of Lyme disease distribution in Virginia between 2000 and
2014, particularly southward into the Virginia mountain ranges.

It is clear that change in temperature affect tick numbers, such
that they decrease in winter (Linske et al., 2020). We confirmed
this unsurprising fact and noted also that larvae count remained
low up to May. Non-linear effects of the month showed that
nymphs and adults were observed in spring and summer, meaning
that the distribution of larvae would be expected to increase later
that summer and thus adults the following spring. This happens in
locations early summer thus determining the distribution of larvae
and adults in late summer and spring the following year, respec-
tively (Stein et al., 2008). 

Our study also revealed that the effects of habitat type were
high in Chesapeake County. This could be because of the abundant
white-tailed deer population found in forests, farms, parks and
backyards throughout the Chesapeake Bay Watershed. The lone
star tick is said to be very aggressive and specific when looking for
hosts (Goddard and Varela-Stokes, 2009), but they are unspecific
during each life-stage, as this species is found on humans, domes-
ticated animals, ground-dwelling birds as well as on small and
large wild animals (Sonenshine and Stout, 1971; Kollars, 1993).
The white-tailed deer feeds on fruits and vegetation that are avail-
able to them each season, which makes it simple for ticks to attach
and feed from these animals. During warm seasons (summer and
spring), these animals feed on green plants, during fall they feed on
nuts, acorns and crops and in winter they feed on woody vegeta-
tion, such as bark, twigs and buds of hardwood and pine trees,
where indeed ticks are found (Willis et al., 2012).

Limitations 
The failure to account for excess zeros in the discrete distribu-
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Figure 10. The temporal year random effect for the cumulative best fitting model. Black line = the estimated posterior mean; blue and
red lines = the upper and lower 95% credible interval.
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tions was a problem. The study focused only on the univariate
independent models rather than joint multivariate modelling of
counts. In the future, zero-inflated models should be developed
and applied to the data. Covariate-time-space interaction effects
could also be incorporated. This interaction is able to show the
effects of predictors of tick life-stage counts in space and over
time. Due to limited data, the study only looked at three environ-
mental and two time predictor variables.

Conclusions
Tick counts are influenced by environmental factors and sea-

sonal changes. There is no dominant weekly influence or observ-
able change in the number of ticks due to the changing weeks. We
conclude that tick numbers depend on the type of habitat where
they are closer to their hosts and the time when their hosts are more
likely to be targeted. Grassy and wooded places are the most liked
by ticks as hosts feed and live in such places. Larvae counts are to
be expected during summer between June and August, while
nymphs are found in abundance between February and May, while
adult counts appear mainly between February and May. 
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