
Abstract
Spatiotemporal modelling of infectious diseases such as coro-

navirus disease 2019 (COVID-19) involves using a variety of epi-
demiological metrics such as regional proportion of cases and/or
regional positivity rates. Although observing changes of these
indices over time is critical to estimate the regional disease bur-
den, the dynamical properties of these measures, as well as cross-
relationships, are usually not systematically given or explained.
Here we provide a spatiotemporal framework composed of six

commonly used and newly constructed epidemiological metrics
and conduct a case study evaluation. We introduce a refined risk
estimate that is biased neither by variation in population size nor
by the spatial heterogeneity of testing. In particular, the proposed
methodology would be useful for unbiased identification of time
periods with elevated COVID-19 risk without sensitivity to spatial
heterogeneity of neither population nor testing coverage. We offer
a case study in Poland that shows improvement over the bias of
currently used methods. Our results also provide insights regard-
ing regional prioritisation of testing and the consequences of
potential synchronisation of epidemics between regions. The
approach should apply to other infectious diseases and other geo-
graphical areas.

Introduction
Coronavirus disease 2019 (COVID-19) is caused by the novel

severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
which was first discovered in late 2019 in Wuhan Hubei Province
China (Huang et al., 2020). The main signs of infection include
respiratory symptoms, fever, cough and breathing difficulties
(WHO, 2020). Spatiotemporal analysis plays a critical role in esti-
mating the disease burden in specific regions (Franch-Pardo et al.,
2020) and has been applied in many countries, e.g., China (Huang
et al., 2020; Jia et al., 2020), Spain (Briz-Redón and Serrano-
Aroca, 2020), Italy (Bertuzzo et al., 2020; Gatto et al., 2020),
Sweden (Gémes et al., 2020), Israel (Rossman et al., 2020), Brazil
(Candido et al., 2020) and the United States (Miller et al., 2020;
Mollalo et al., 2020). It is important to note that comparisons
between regions may be challenging, which is not only because of
differences in population size but also due to health policies (e.g.,
testing regimes) that can change over time (Mollalo et al., 2020).
For example, one of the most common limitations raised when
using spatiotemporal approaches relates to the lack of incorpora-
tion of spatial heterogeneity of testing (Hohl et al., 2020; Rohleder
and Bozorgmehr, 2020; Zhang and Schwartz, 2020). This omis-
sion can be misleading to public health officials in terms of the
public health response in regions with relatively high or low test-
ing capabilities.

From among many measures applicable in the spatiotemporal
modelling of the COVID-19 disease, the following have attracted
the greatest attention: i) local (Lieberman-Cribbin et al., 2020;
Gatto et al., 2020) and global (Omori et al., 2020) cumulative
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number of cases; ii) different versions of population-based relative
risk (RR) - observed cases/expected cases (Desjardins et al., 2020;
Rohleder and Bozorgmehr, 2020); iii) testing rates - i.e. tests/pop-
ulation (Lieberman-Cribbin et al., 2020); iv) local (Lieberman-
Cribbin et al., 2020; Cordes and Castro, 2020) and global (Omori
et al., 2020) positivity rates - confirmed cases/tests; and v) popula-
tion-based positivity - confirmed cases/population (Cordes and
Castro, 2020; Zhang and Schwartz, 2020).

Although potentially useful, the above measures were not
investigated for their suitability in dynamical modelling of infec-
tious disease. In particular, to the best of our knowledge, their
dynamical properties and cross-relationships have not been sys-
tematically explained. However, knowledge of the dynamical
properties of the measures used is crucial for guiding appropriate
public health response. For example, health policy makers may
decide that an uninterrupted increase in the cumulative version of
population-based RR (Rohleder and Bozorgmehr, 2020) should
necessitate the introduction of specific non-pharmaceutical inter-
ventions (NPIs) in specific regions as mentioned by Hatchett et al.
(2007) in relation to the 1918-20 influenza pandemic Moreover,
many of the above measures are sensitive to spatial heterogeneity
of either population or testing (or both) in their identification of
elevated COVID-19 burden, leading to bias. Luxembourg is a case
in point: in July 2020, the country was declared a risk zone by
many European countries, including Slovakia, Lithuania, Finland,
Norway and Germany (RTL, 2020a). The latter country used only
the cases/inhabitants metric to render Luxembourg a risk zone
(RTL, 2020b). Since the measure used is biased by testing hetero-
geneity, countries with greater testing capabilities than others
would be susceptible to being declared a risk zone. Indeed, one
month later, the ban on Luxembourg was lifted by Germany and
the justification was that Luxembourg had adopted a large-scale
screening strategy (RTL, 2020c). However, as of the 18th of June
2021, well-known organisations such as the German Robert Koch
Institute still use ‘cases per inhabitants’ as the critical measure in
declaring a country a risk zone. Although it is argued that testing
capabilities are used in the second step of the classification, the
mathematical foundations of reducing the bias due to testing het-
erogeneity have not been explained so far (Robert Koch Institute,
2021).

Our study offers a systematic contribution regarding a variety
of spatiotemporal epidemiological measures independently used in
both comparative (Cordes and Castro, 2020; Lieberman-Cribbin et
al., 2020; Rohleder and Bozorgmehr, 2020) and non-comparative
(Omori et al., 2020) contexts. The intention was to reveal the
dynamical properties and relationships between commonly used
and newly constructed epidemiological metrics with a case study
application. The proposed methodology has the potential to
enhance the framework of infectious disease modelling and may
provide insights into how a more harmonised management of the
crisis can be achieved.

Case study motivation
On the 4th of March, 2020, the first confirmed case was regis-

tered in Poland (Raciborski et al., 2020). Four days later, more
cases were identified in the densely populated Silesian region
(Krzysztofik et al., 2020). As of the 17th of August 2020, 57,286
cases had been verified in Poland, with 18,874 cases (34.8%)
attributed to the Silesian region (Ministry of Health in Poland -
official Twitter profile). The core of the Silesian region is referred
to as the Katowice conurbation, a polycentric area consisting of 16

towns and approximately 2 million people with a population den-
sity of 1485 per km2. The largest urban centre is Katowice with
280,000 inhabitants (Runge et al., 2018). The concentration of
public health efforts in Silesia follows from its large proportion of
the population employed in industry (28.7%), compared to the
country mean of 20.6%. Of those employed in industry in the area,
16.7% are employed in mining and exploration, which is also the
largest in Poland (country mean = 4.6%) (Statistics Poland, 2020).

After the first case in Poland was identified, NPIs were intro-
duced, including cancelling mass events and closing borders,
schools and universities among other measures (Jarynowski et al.,
2020; Pinkas et al., 2020). These interventions helped flatten the
curve of total number of infected individuals and delay the peak of
the disease burden (as seen in Figure S1, Appendix). However, the
lockdown measures applied were ultimately insufficient in terms
of containing the spread of the disease in the densely populated and
relatively industrially oriented Silesian region. Because it was dif-
ficult to apply WHO’s social-distancing recommendations (2020)
in crowded mine shafts, it was hypothesised that the spread of
COVID-19 in the Silesian region was facilitated by miners who
might have acted as asymptomatic carriers. The latter individuals
play a vital role in the spread of the novel coronavirus (Bai et al.,
2020) and undocumented infectious cases can facilitate rapid dis-
semination (Li et al., 2020). Indeed, according to partial results
related to 50,053 screening tests within a group of mines conduct-
ed between the 7th of May 2020 and the 25th of June 2020 as proxy
for the whole mining population, nearly 98% of the infected mine
employees did not show any symptoms (Polish Press Agency,
2020a; Polska Grupa Górnicza, 2020). As of the 11th of August
2020, 7934 miners had tested positive for COVID-19, thereby
comprising nearly 44% of all infections in Silesia (Błoński,
2020a). Although the time period related to the screening tests in
mines resulted in a greater population-based RR for Silesia, we
still do not know: i) whether the decision on screening tests was a
result of an already deteriorating epidemiological situation (with
the time of the beginning of this deterioration unknown); and ii)
whether in other regions with relatively low testing capabilities,
the risk related to the disease existed but remained undetected.

We evaluated the proposed methodology on infection and test-
ing rates provided by the Polish Ministry of Health: between the 4th

of March and the 17th of August 2020 (infections) as well as
between the 11th of May and the 17th of August 2020 (tests). The
data were provided for 16 administrative regions of Poland (Figure
1) spanning an area of 312,696 km2. Because the official testing
rates were published on a weekly basis, we used interpolation to
estimate the testing rates for individual days. Other official reports
supplemented by reports from news sources (as of the 26th of
March 2020) were also used to perform interpolation for individual
days between the 26th of March and the 11th of May 2020.
Complete details regarding interpolation are available in the
Materials and Methods section.

Materials and methods

Data
We obtained daily data from the Ministry of Health in Poland

on COVID-19 infections in Poland from the 4th of March until the
17th of August 2020. From a technical viewpoint, the data were
stored in a data frame where the columns represent days and the
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rows administrative regions. A limitation of using these data was
that reporting inaccuracies were not always adequately described.
Although we applied 18 corrections, sometimes the calendar dates
corresponding to false positive cases or detected duplicates of con-
firmed cases were not provided. The inaccuracies and the corre-
sponding metadata including dates of errors and applied correc-
tions are summarised in Table S1 (Appendix).

The data on regional testing were available for the time period
between the 26th of March and the 17th of August 2020. The reports
from the 11th of May 2020 onward were provided by the Ministry
of Health in Poland on a weekly basis in the form of the cumulative
number of tests conducted for every region. However, it should be
noted that these cumulative data did not include the full day of
publishing but were restricted to a specific hour of the day. For
example, cumulative regional data on testing published on the 17th

of August 2020 covered the time period between the 4th of March
and the 17th of August as given at 1:00 P.M. 

We also used official fragmentary reports as well as an unoffi-
cial incomplete report for the 26th of March 2020 from a news
source as described in Table S2 (Appendix). Data on regional test-
ing were not publicly available for days preceding the 26th of
March 2020, so we excluded this period from the analysis. There
was concern about the limited reliability of test data for the Kielce
region for which about 241,000 tests were erroneously registered
(Ministry of Health in Poland, 2020). Although the correction was
applied on the 8th of August 2020 (Ministry of Health in Poland,
2020), the historical data were not officially corrected. We there-

fore subtracted the superfluous number of tests evenly throughout
the time period for this region. Population census data were
obtained from the official repository Demographic Yearbook of
Poland (Statistics Poland, 2020).

Simultaneous standardisation with respect to popula-
tion and testing

The RR notion is often used to investigate the spatial distribu-
tion of cases (Waller and Gotway, 2004; Bivand et al., 2013;
Desjardins et al., 2020) and this metric is inherently related to the
concept of indirect standardisation (Waller and Gotway, 2004). It
involves calculating the standardised incidence ratio (SIR) which
accounts for the differences in population size among regions.
Typically, the SIR value depends on the individual daily infection
rate and is calculated as the ratio between the observed number of
cases (infections) in a region and the expected number based on the
regional population. Values greater than 1 suggest an elevated risk
compared to the population average, which may indicate infection
clusters or a greater number of vulnerable groups (Desjardins et
al., 2020). To alleviate the impact of daily fluctuations and create
a framework for comparing the present state with historical refer-
ence, a cumulative estimate can be applied (Rohleder and
Bozorgmehr, 2020), which we refer to as the cumulative standard-
ised incidence ratio (CSIR). It is calculated for a specific day t as
the ratio of the confirmed number of cases since the outbreak of the
pandemic including day t to the expected cumulative number of
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Figure 1. Map of Poland and its administrative regions. Full names and capitals (in parentheses): 1 WRO – Dolnoslaskie (Wrocław), 2
BYD – Kujawsko-pomorskie (Bydgoszcz), 3 LUB – Lubelskie (Lublin), 4 GOR – Lubuskie (Gorzow Wielkopolski), 5 LOD – Lodzkie
(Lodz), 6 KRA – Malopolskie (Krakow), 7 WAR – Mazowieckie (Warszawa), 8 OPO – Opolskie (Opole), 9 RZE – Podkarpackie
(Rzeszow), 10 BIA – Podlaskie (Bialystok), 11 GDA – Pomorskie (Gdansk) , 12 KAT – Slaskie (Katowice), 13 KIE – Swietokrzyskie
(Kielce), 14 OLS – Warminsko-mazurskie (Olsztyn), 15 POZ – Wielkopolskie (Poznan), 16 SZC – Zachodniopomorskie (Szczecin).
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cases on day t. From a dynamical viewpoint, this ratio is equivalent
to the regional cumulative proportion of cases for a specific day t
and region. It may decrease or increase depending on whether the
proportion of cases for i on day t is lower or greater than the cumu-
lative proportion for i on the preceding day (t – 1). The limitation
of comparing regions using this risk estimate is that it stays unbi-
ased as long as there is spatial homogeneity regarding testing
intensity. To overcome potential bias, we first applied an analogous
procedure for the data related to regional testing, which means that
we calculated a quantity referred to as the cumulative standardised
testability ratio (CSTR), i.e. the proportion of the number of
observed tests in relation to that of the expected tests in a given
region. It is important to understand that this value can be inter-
preted as an estimate of the relative safety because the greater the
quantity the more efficiently NPIs can be applied. We then divided
the CSIR by the CSTR to get a refined estimate of the RR, which
we call the weighted cumulative standardised incidence ratio
(WCSIR). It follows that the WCSIR remains unchanged from the
CSIR only if the CSTR = 1, which means that the number of tests
is equal to the expected number of tests. Otherwise, the RR
increases or decreases depending on whether the CSTR is smaller
than or greater than 1, respectively. The WCSIR risk estimate is
therefore neither biased by differences in population size nor by
differences in the amount of testing in a specific region. In other
words, the WCSIR measure allows testing intensity to be hetero-
geneous and it captures the change in RR by honouring the follow-
ing expectations for a specific region: i) the risk measure should
decrease/increase if the regional infection ratio (regional
infected/global infected) decreases/increases and the analogous
test rate (regional tests/global tests) increases/decreases; and ii) the
risk measure should decrease/increase if the cumulative global
positivity rate (GPR) (cumulative confirmed cases/cumulative
tests) increases/decreases, while the analogous local positivity rate
(LPR) decreases/increases. 

Alternatively, but equivalently (Eq. 4 in Materials and methods
section), the WCSIR could be conceptualised as the ratio of LPR to
GPR for a given region. Therefore, WCSIR equals 1 only if
LPR=GPR, otherwise the RR increases or decreases depending on
whether the LPR is greater than or less than GPR, respectively. In
the second conceptualisation (WCSIR=LPR/GPR), the GPR acts as
a useful normalisation constant common for all regions, which
assists the separation of more risky regions in terms of the positivity
rate (WCSIR >1) from less risky ones (WCSIR <1). As such, we
anticipated our study to be a starting point for considering more
sophisticated RR estimates. For example, even if the dynamics of
the regional proportion of cases show a positive trend for a given
region, our methodology can classify this region as one with
decreasing risk if the local and global positivity rates move in oppo-
site directions, i.e. decrease and increase, respectively. The flexibil-
ity of this second conceptualisation of WCSIR also affords oppor-
tunities to overcome potential difficulties in obtaining population
data, which may be the case when a testing site cannot easily be
split into regions with known population information. Given these
two conceptualisations, the resulting value of WCSIR has two inter-
pretations: a WCSIR of 2 must be interpreted simultaneously as: i)
the CSIR is twice the CSTR; and ii) the LPR is twice the GPR.

Estimation of relative risk
To estimate the relative risk (RR) in regions of interest we used

the concept of indirect standardisation (Waller and Gotway, 2004;
Bivand et al., 2013). The general formula for estimating the RR

can be written as follows: O/E, where O and E denote the observed
and the expected number of cases respectively. Given a specific
region i to obtain Ei, it is first necessary to calculate a global rate r
= ∑iOi / ∑iPi , where ∑iPi denotes the total population. It is then
straightforward to calculate Ei as Pir, with Pi being the population
in region i. For example, if the proportion of cases in Poland is 2%,
then the expected number of cases in Silesia would be 2% of its
population, which assumes a spatially homogenous distribution of
cases (Bivand et al., 2013). We must now differentiate between
two versions of calculating the RRs in our study: i) standardisation
based on population: SIR and CSIR; and ii) weighting relative
infection ratios by relative testing ratios: WCSIR based on CSIR
and CSTR. 

For the SIR, the totals of the observed number of cases and the
expected number of cases Ei refer to the daily number of cases. If
we denote xi,t as the observed number of cases on day t, and Ei,t as
the expected number of cases on day t, we arrive at the following
formula:

                                                                                                

                                   
(1)

For the CSIR, we assume that for a specific day t, the observed
number of cases in region i is the sum of the observed number of
cases in i for days j ∈[1, t]. Similarly, to calculate the correspond-
ing global rate we assume that the observed number of cases is the
sum of all cases that were confirmed in Poland for days j ∈[1, t].
Then, the expected number of cases is the global rate multiplied by
the population size in i. The CSIR is then calculated as the propor-
tion between the observed and expected number of cases. If we

denote Oi,t–1 = as the cumulative number of cases for
region i up to day t – 1, and Ei,1:t as the expected cumulative num-
ber of cases for i on day t, then the formula for CSIR becomes:

                                                                                                 

                                   
(2)

It follows that the current value of CSIR is to a large extent
governed by the past (cumulative cases from days 1 up to t – 1) and
the contribution of the present day t weakens with time. This
explains why the curves are smooth: the present has a smaller
effect than the past. To sum up, the past contributes primarily to the
present state and its role in shaping the present increases with time.

Similarly, the information on the number of tests conducted for
each region can be employed to estimate the relative safety, not to
be confused with the safety perspective presented in Figure S10
(Appendix). The corresponding CSTR was calculated in an analo-
gous procedure to that of the CSIR. If we denote Ti,t–1 as the cumu-
lative number of tests conducted for region i up to day t – 1; yi,t as
the number of tests conducted for i on day t; and TEi,1:t as the cumu-
lative expected number of tests for i on day t; then the formula for
CSTR becomes:

                                  
(3)
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The interpolation procedure was conducted as follows. We first
used the ‘interpolate_tests’ function to estimate the cumulative
number of tests for individual days assuming a constant intercept.
For example, if the cumulative number of tests for region i were
1000 and 8000 on the 11th of May and the 18th of May, respectively,
then the intercept for every day related to this time window would

be equal to . Then, to obtain the approximate
value of CSTRs for individual

days, the ‘relrisk’ function in R was used. We note that the assump-
tion of a constant intercept may not be realistic, but we are not
ready to commit to the idea of the best interpolation method in case
of differences in temporal resolution between data on infections
and testing. To avoid edge-effects that are inherent for the interpo-
lation method, statistical approaches including best-fitting curves
could be employed. However, the main disadvantage of this statis-
tical procedure is that one cannot expect that the official data of the
cumulative number of tests will be honoured at nodes. The inter-
polation enabled the weighted estimates to be obtained through the
division of data on infections and testing. The corresponding equa-
tions of the resulting WCSIR are as follows (observed
cases/expected cases) / (observed tests/expected tests): 

                

(4)

We used a global Moran’s I coefficient, using queen adjacency
as the neighbourhood definition, to investigate the presence of spa-
tial autocorrelation (clustering) throughout the time period
(Moran, 1950). Moran’s I is a measure that evaluates the covari-
ance of a value X at an index location i with the average of the val-
ues X of its neighbours j. Moran’s I values range from –1, indicat-
ing dissimilar values cluster together, to +1, indicating similar val-
ues cluster together. A value of 0 indicates complete spatial ran-
domness.

From a methodological viewpoint, we note that the curves pre-
sented here could also be viewed as a measure of relative safety in
the form of 1/RR. This safety perspective provides a better visual-
isation of regions with the lowest RR values, which the CSIR or
WCSIR estimates struggle to distinguish (Figure S10).

Local and global positivity rates
Because the relationship between local and global dynamics of

the cumulative proportion of positive cases exerts influence on the
dynamics of WCSIR, we provide formulas for these measures as
follows:

                                                
(5)

                                                
(6)

The computational objectives corresponding to functions
included in the computer code are summarised in Table 1 (see also
Code availability section for a link to the ‘shinyApp’). We used the
following R packages: dplyr (Wickham et al., 2019), ggplot2
(Wickham, 2016), ggpubr (Kassambara, 2020), reshape2
(Wickham, 2007), tibble (Müller and Wickham, 2020), sf
(Pebesma, 2018), tmap (Tennekes, 2018), broom (David and
Hayes, 2019), plotly (Sievert, 2018) and magrittr (Milton Bache
and Wickham, 2014).

Results

Unweighted risk
The SIR analysis revealed that the RR values in the Silesian

region were largely greater than one since mid-April 2020, and on
five days in late April and early May (Figure 2A) this value was
greater than 3, all before the decision was taken to screen for
COVID-19 in mines. In the 28 days after implementation of this
testing policy, SIR values were always greater than 3, with a max-
imum value 6.92 on the 12th of May 2020, with fluctuations
between 4 and 6. However, the greater than expected number of
cases since mid-April suggests that the outbreak might have origi-
nated earlier than the decision to test the miners. Indeed, CSIR
curves showed a rising trend prior to the decision to implement the
screening in Silesia, largely after the Easter holiday (9-13 April
2020) (Figure 2B). The close to monotonously rising CSIR trajec-
tory between mid-April and mid-June 2020 denotes the progres-
sive relative deterioration of the epidemiological situation in
Silesia in this time period.

                                                                                                                                Article
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Table 1. Description of functions included in the computer code (R script).

Function                                What does it do?

cumulate_df                                     Cumulates a data frame
relrisk                                                 Calculates SIR. Can also provide input to interpolate_tests function 
relrisk_cum                                      Calculates CSIR
sum_cum                                          Calculates cumulative sum of observed cases for every day
interpolate_tests                            Calculates CSTR
weighted_risk                                  Calculates WCSIR
reorder                                              Assigns risk CSIR and WCSIR values to polygons in shapefiles
Code, data and the ‘shinyApp’ can be accessed via links given in the Code availability section. SIR, standardised incidence ratio; CSIR, cumulative SIR; WCSIR, weighted cumulative SIR.
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Weighted risk
As discussed above, the RR estimates presented in Figure 2

were biased by regional differences in testing intensity. Figure S2
(Appendix) shows that the highest testing intensity was observed
for the Warszawa region throughout the epidemic, with the lowest
positions occupied by the Opole and Rzeszów regions. According
to the WCSIR estimate (Figure 3; lowest part of Figure 4) the
Opole region was the area of least safety during the height of the
epidemic in Poland (between the 11th of April and the 18th of May
2020) occupying the second position at the end of the study period,

with a substantial distance to the third-ranked Rzeszów region.
Although a positive difference between CSIR and WCSIR for both
Silesia and Opole can be observed in Figures 3 and 4, this differ-
ence was smaller for Silesia with the corresponding curves more or
less parallel (Figure 3). The Opole region did not show this paral-
lelism, but there was instead a stronger difference between the
CSIR and WCSIR curves with a diverging pattern in mid-May: the
WCSIR increased in the 13-18 May period, with a simultaneous
decrease in CSTR; an increase in CSIR was also observed, but
only in the 15-17 May period. This means that the weighted risk
estimate may increase even if the unweighted risk decreases. 
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Figure 2. Daily time series of the (A) standardised incidence ratio (SIR) and the (B) cumulative standardised incidence ratio (CSIR) by
region in Poland; the gradient denotes the assumed decreasing intensity of screening tests with time.
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Dynamic and spatial patterns
A more comprehensive analysis of the relationships between

the cumulative measures CSTR, CSIR, WCSIR and the LPR-GPR
tandem (Figure S3 - Appendix) can be conducted by plotting daily
values of two selected measures on a Cartesian plane (Figures 5
and S4-S9 - Appendix). Summing up the results from all 16
regions, we highlighted six potentially distinct, emerging trajecto-
ries. Figure 5A shows the ideal situation when CSIR and WCSIR
decrease together throughout the period, as exemplified in the
Wrocław region. This pattern reflects that although the CSTR may
be increasing at times, the CSIR is decreasing (Figure S4A -
Appendix). This suggests that the disease burden in this region
should be very low. The Warszawa region shows the second pat-
tern with a decreasing value of CSIR associated with increasing
WCSIR and LPR values (Figure 5B and S5B - Appendix).
Interestingly, Figure S5B illustrates that the dynamics of LPR and
WCSIR are not equivalent. For example, the LPR remained con-
stant, while the WCSIR climbed almost vertically in July 2020.
This suggests that the normalisation of LPR by GPR may be help-
ful for detecting increasing disease burden earlier. The trajectory of
the Opole region represents the third pattern: while the CSIR was
approximately constant, the WCSIR rose fast (Figure 5C) confirm-
ing the divergent pattern in mid-May 2020, observed in Figure 3.
We note, however, that the LPR and WCSIR showed a decreasing
trend since June 2020 in this region (Figures 5C and S5C -
Appendix). Interestingly, the change of trajectory from decreasing

to increasing in the Opole region for the CSTR resulted in a simul-
taneous rapid decrease of WCSIR and a steeper decrease of LPR.
This suggests that the high probability of finding infected individ-
uals was due to insufficient testing intensity. Figure 5D shows the
fourth pattern with an undesirable change of the trajectory of the
relationship, as typified by the Rzeszów region since mid-June
2020. The acute angle, corresponding to the rapid change of LPR
dynamics (Figure S6D - Appendix), suggests that it might have
been caused by a particular outbreak. For Silesia (Figure 5E) we
observed the fifth pattern, i.e. a plateau after initial growth of both
CSIR and WCSIR. This may be due to a largely decreasing LPR
since June 2020, when it reached a maximum of 10.25% (Figure
S3). The fact that it took only two weeks after the adoption of
screening tests in mines to revert the WCSIR dynamics to their val-
ues early in the epidemic suggests that the strategy was successful.
The final pattern, exemplified by the Poznań region (Figures 5F
and S7-S8F- Appendix), was the change in direction of the CSTR
trajectory that started to decrease in mid-June 2020. Although the
LPR was still decreasing within one month from the change, it sub-
sequently started to increase (Figure S9F - Appendix) with undu-
lating CSIR and WCSIR values (Figures 5F and S4F - Appendix).
In this pattern, it is interesting to note that the WCSIR dynamics
also reverted to higher levels within two weeks of the change in the
CSTR dynamics, which suggests that reduced testing intensity may
ultimately result in a greater relative disease burden.

The global Moran’s I for the WCSIR estimate showed an
increasing trend since early April after initial random variations at
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Figure 3. The weighted cumulative standardised incidence ratio (WCSIR) by region in Poland. Two unweighted CSIR curves (bolded)
illustrate the impact of weighting. The gradient denotes the assumed decreasing intensity of screening tests with time.
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the beginning of the time period (Figure S11 - Appendix). It
reached a plateau at 0.30 in mid-June 2020. We hypothesise that
the monotonous rise may be due to a progressive synchronisation
of epidemics between neighbouring regions. This synchronisation
can be exemplified by similar values of WCSIR between Opole (8
OPO) and Silesia (12 KAT) regions (Figure 4). We note that the
Moran’s I can also be calculated for the biased version of RR, and
it shows smaller values with a different dynamics, which would be
potentially misleading about the epidemiological synchronisation
underlying the spatial autocorrelation patterns (Figure S11 -
Appendix). 

Discussion
The weighted approach applied in this study is particularly

useful when spatial homogeneity in testing intensity cannot be
assumed, which was the case in our example. For instance, as of
the 17th of August 2020, the Warszawa region was tested nearly 4.5
times more intensely (CSTR=1.66) than the Rzeszów region
(CSTR=0.37). Given these disproportions, inferring the epidemic
dynamics from the confirmed number of cases or metrics such as
‘cases per 100,000 inhabitants’ cannot be justified (TVN24, 2020).
We also showed the official statements to be false with regard to

the Silesia as the most tested region (CSTR never >1 as of the 17th

of August 2020 (Polish Press Agency, 2020b), the epidemiologi-
cally safest region (Polsat, 2020), or epidemiologically unexcep-
tional (both CSIR and WCSIR >1) (RMF24, 2020). 

The refined results could be utilised by authorities and health
crisis managers to introduce more integrated NPI policies for adja-
cent regions that might be epidemiologically synchronised (Balcan
et al., 2009; Dalziel et al., 2018). In our case, the similarity
between WCSIR values and the relatively high positivity rates
throughout the study period suggest that synchronisation could be
the case for the Opole and Silesia regions. In the summer of 2020,
differences in organising public gatherings remained in these
regions. For example, church authorities allowed the organisation
of city-wide processions at the Feast of Corpus Christi (on the 11th

of June, 2020) in the Opole region (Ogiolda, 2020), whereas in
Silesia mass gatherings of this kind were forbidden (Chruścińska-
Dragan, 2020). Because public gatherings played a vital role in the
spread of the 1918-1920 influenza pandemic (Cobey, 2020;
Hatchett et al., 2007), it is necessary to stress the significance of
the joint effect of testing and infection indices to prevent down-
playing the epidemiological risk in poorly tested and/or less popu-
lated regions. Using a cumulative RR estimate, we demonstrate
that systematic growth in infections already started in mid-April,
three weeks before the decision to implement screening tests in the
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Figure 4. COVID-19 epidemiological measures for the administrative regions in Poland. CSIR, cumulative standardised incidence ratio;
CSTR, cumulative standardised testability ratio; LPR, local positivity rate; GPR, global positivity rate; WCSIR, weighted cumulative
standardised incidence ratio illustrate the impact of weighting. The gradient denotes the assumed decreasing intensity of screening tests
with time.
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Silesian mines. This early peak is concerning as the lack of screen-
ing tests at the time of the potentially greater, though unknown,
mobility corresponding to Easter may have facilitated the local
spread of the disease among the mostly asymptomatic and thus
undetected carriers. We note however that the epidemiological
deterioration did not affect all mines equally and it was highly vari-
able throughout the study period: while at the end of June, 2020,
the positivity rate calculated for a group of several mines did not
exceed 4% (1862 confirmed cases/50,053 tests) (Polska Grupa
Górnicza, 2020), one month later a screening test conducted for
one mine from this group revealed about 35% population-based
positivity (156 confirmed cases/452 employees) (Błoński, 2020b).
Surprisingly, the systematic deterioration and highest positivity
rate in May for Silesia coincided with a temporal concentrated
increase in one particular mine in which the population-based pos-
itivity climbed from about 5% (as of the 14th of May 2020) to 28%
(as of the 24th of May 2020) and to 33% (as of the 29th of July
2020). 

Investigation of the spread of COVID-19 in similar conditions
has previously been carried out in the densely populated region of
Buenos Aires, Argentina with 13 million inhabitants in 41 districts
(Tagliazucchi et al., 2020). This research revealed that the spread

of the disease radiated from the central city through suburban dis-
tricts to neighbouring regions. There are however two major differ-
ences underlying the spread of the disease in Buenos Aires versus
the Silesian region. While the first difference is related to the very
specific spatial structure of the Silesian region, the second points
at the greater role of industry rather than population density in the
spread of the disease. Other studies have likewise shown that pop-
ulation density (Ramírez-Aldana et al., 2020; Zhang and Schwartz,
2020), age structure (Zhang and Schwartz, 2020) and socioeco-
nomic status (Cordes and Castro, 2020; Mollalo et al., 2020;
Ramírez and Lee, 2020) among other variables affect COVID-19
transmission patterns strongly, while our study adds information
regarding how an area’s relative dominance in an economic sector
can play a role in the transmission. However, we underline that the
mining industry should only be regarded as a proxy of the infec-
tious potential of large industrial plants. Indeed, similar events
were registered in other regions (e.g., in the Poznań region in a
meat-processing company in early August, 2020 (313 confirmed
cases/800 employees) (Orlikowski, 2020). Given that large compa-
nies may attract employees from more distant localities, they have
the potential to synchronise the epidemics at the sub-regional level,
given that individuals may acquire the infection at work but still be
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Figure 5. Relationship between the cumulative standardised incidence ratio (CSIR) and the weighted cumulative standardised incidence
ratio (WCSIR) curves for individual regions. A) Wrocław region - both CSIR and WCSIR values are decreasing; B) Warszawa Region -
CSIR is decreasing and WCSIR is increasing; C) Opole Region - divergent pattern of CSIR and WCSIR; D) Rzeszów Region both CSIR
and WCSIR are increasing; E) Katowice (Silesia) Region - initial proportional growth of CSIR and WCSIR followed by plateau; F)
Poznań Region a change in trajectory followed by a zigzag pattern between CSIR and WCSIR.
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counted in their home region (Balcan et al., 2009). For example, if
a company is located in region A but close to the boundary with
region B, then two persons working in this company but living in
sub-regions a and b (a in A and b in B) may lead to synchronisation
of epidemics between a and b (thus A and B). Therefore, particular
attention should be paid to the fact that synchronisation may occur
in administrative regions with different testing capabilities. Also,
because testing capabilities have so far been limited, the results
obtained after weighting could be used to consider regional priori-
tisation in the availability of tests. For example, from Table 2 it
could be inferred that the following regions are in particular need
for increased testing intensity: Opole (8 OPO: +170.53%) and
Rzeszów (9 RZE: +171.41%). Therefore, we support calls for a
radical increase in the identification of positive cases and accom-
panying isolation, and we encourage increased awareness and
behavioural changes of COVID-19 to help reduce its spread
(Bergquist and Rinaldi, 2020; Chinazzi et al., 2020; Li et al.,
2020).

Limitations
The main limitation of this study follows from the incomplete-

ness of official data related to testing that are publicly available
only since the 11th of May 2020 (details in Materials and methods
section). For the time period between the 26th of March and the 11th

of May, the results of weighting approaches and positivity rates are
estimated with greater uncertainty, and we urge more caution in
interpreting estimates at the beginning of the time period. The con-
firmed, yet unexplained, underreporting for Silesia resulting in an
approximate 8% underestimate of cases (as of the 9th of July, 2020)
as well as the limited reliability of test data for Kielce region
(Medonet, 2020), pose additional interpretation difficulties
(Watoła, 2020). An additional limitation is that there may be other
unknown differences in test regimes influencing the results. For
example, poorly investigated regions may decide that only very

suspicious cases will be tested, which would result in relatively
high positivity rates (Omori et al., 2020). We also did not include
information on recovered individuals, i.e. those with two consecu-
tive negative tests (Niżankowski et al., 2020), which underesti-
mates the positivity rates for the time period in which the number
of recovered patients increases. It should also be stressed that the
theorem regarding the dynamics of WCSIR implies that a causal
relationship between a decrease of WCSIR and either of the alter-
natives cannot be established. Another issue is that for every cumu-
lative measure (CSTR, CSIR, LPR, GPR, and WCSIR), the accu-
mulation interval for day t is from day 1 to day t. One disadvantage
in using such an accumulation interval is that the role of the past in
shaping the present increases with time (see Materials and meth-
ods section for explanation). Thus, the curves do not necessarily
reflect the current epidemiological situation. However, the main
advantage is that it allows for evaluation of whether the present
epidemiological state is better or worse compared to the whole past
situation (see Theorem 1 with an example for CSIR in Appendix).

Conclusions
This study proposed a new risk index for assessing COVID-19

burden. Since many biased measures are still used to assess the
COVID-19 risk (e.g., Robert Koch Institute, 2021), public health
guidance is susceptible to erosion of trustworthiness when risk rec-
ommendations revert based on inadequate measures (e.g., as
described for Luxembourg). We explain the mathematical founda-
tions of reducing the bias by combining four risk metrics into one.
The theoretical and empirical considerations resulted in the follow-
ing conclusions:
i) The proposed risk measure (WCSIR) is relative in nature, and

it can be conceptualised either as weighting relative infection
risk by relative intensity of testing or as normalising local pos-
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Table 2. Estimates of the relative risk as of the 17th of August 2020, using unweighted and weighted approaches, relative change and
corresponding positions.

Region                     CSIR                       Rank 1                Relative change (%)                    WCSIR                                      Rank 2

1 WRO                               0.85                                     7                                             –6.70                                                0.79                                                            9
2 BYD                                0.33                                    15                                          +11.60                                               0.37                                                          16
3 LUB                                0.40                                    12                                          +31.76                                               0.53                                                          12
4 GOR                               0.39                                    13                                         +112.31                                             0.83                                                            8
5 LOD                                1.27                                     2                                             –2.03                                                1.24                                                            4
6 KRA                                1.09                                     3                                             –0.73                                                1.09                                                            5
7 WAR                                0.99                                     4                                            –39.66                                               0.60                                                          11
8 OPO                               0.98                                     5                                          +170.53                                             2.66                                                            2
9 RZE                                0.59                                    10                                         +171.41                                             1.61                                                            3
10 BIA                                0.65                                     8                                           +19.97                                               0.78                                                          10
11 GDA                              0.47                                    11                                           –15.24                                               0.40                                                          15
12 KAT                               2.80                                     1                                            +3.10                                                2.89                                                            1
13 KIE                               0.64                                     9                                           +33.05                                               0.85                                                            7
14 OLS                              0.30                                    16                                          +43.36                                               0.42                                                          14
15 POZ                              0.91                                     6                                             –5.82                                                0.86                                                            6
16 SZC                               0.39                                    14                                          +13.04                                               0.44                                                          13
CSIR, cumulative standardised incidence ratio; WCSIR, weighted cumulative standardised incidence ratio.
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itivity by global positivity.
ii) The relative nature of the proposed risk measure provides auto-

matic separation of more risky regions from less risky ones
(boundary value=1). If NPIs should be introduced, there is no
need of establishing ad-hoc thresholds necessary for local
measures (e.g. exceeding 200 new infections per 100,000
inhabitants (Robert Koch Institute, 2021) or exceeding 10%
positivity rate.

iii) Knowledge about dynamical properties of specific risk mea-
sures (i.e. why they increase or decrease) along with the anal-
ysis of the relationships between different measures is helpful
to hypothesise about the epidemiological significance of the
observed trends.

iv) In this study, the proposed methodology was investigated for
administrative and contiguous regions of Poland. However, it
can easily be used for non-contiguous regions or countries pro-
vided that the data for the population, infection, and testing are
available.
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