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Abstract

Dengue is a major mosquito-borne disease in many tropical
and sub-tropical countries worldwide, with entomological surveil-
lance and control activities as the key management approaches.
This study aimed to explore the spatial dispersal of the vector
Aedes albopictus, captured by the modified sticky ovitrap (MSO)
in residential areas with low-rise buildings in Selangor, Malaysia.
Distribution maps were created and shown as temporally distin-
guished classes based on hotspot analysis by Getis-Ord; spatial
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autocorrelation assessed by semivariograms using the exponential
Kernel function; and universal Kriging showing areas with esti-
mated high and low vector densities. Distribution, hotspot and
interpolated maps were analysed based on the total number of
mosquitoes by month and week. All maps in the present study
were generated and visualised in ArcMap. Spatial autocorrelation
of Ae. albopictus based on the monthly occurrence of Ae. albopic-
tus was found in March, April, October, November and December
2018, and when based on the weekly numbers, in weeks 1, 2, 3, 5,
7,12, 14,25,26,27,31, 33,42, 49 and 52. Semivariograms, based
on the monthly and weekly numbers of Ae. albopictus, indicated
spatial autocorrelation of the species extending between 50 and 70
m. The mosquito density maps reported in this study may provide
beneficial information to facilitate implementation of more effi-
cient entomological control activities.

Introduction

Dengue remains endemic in Malaysia. Entomological surveil-
lance and control activities play vital roles in the management of
dengue disease in the country. Aedes aegypti has been acknowl-
edged as the primary vector for dengue worldwide, including in
Malaysia, due to its anthropophilic and endophagic behaviour
(Johari et al., 2019). However, the role of Ae. albopictus as a sec-
ondary vector should not be dismissed as the species has started to
adapt and adjust to urban environments where there are low pop-
ulations of 4e. aegypti (Bagny Beilhe et al., 2012). However, Ae.
albopictus can replace Ae. aegypti and could serve as a competent
transmitter of the dengue virus (Rozilawati et al., 2015).

Without vaccines or specific treatments to cure dengue (Flipse
and Smit, 2015), knowledge of the spatial dispersal and abun-
dance of its vectors is essential (Kamal et al., 2018). In the latest
decade, the spatial dispersal of the dengue vectors has become
more accessible by integrated surveillance and control actions
based on geographical information systems (GIS) and geostatisti-
cal approaches that can capture and analyse spatial and geographic
data (Duncombe et al., 2013). The GIS user can create interactive
queries, store and edit spatial and non-spatial data, analyse spatial
outputs as well as present the results as maps (Wieczorek and
Delmerico, 2009). GIS has been used as an epidemiological tool
to determine the distribution patterns of Aedes mosquitoes and tar-
geted areas for control purposes via the visualisation of the spread
and abundance of vector breeding sites as practiced in dengue-
endemic developing countries, including Thailand (Sithiprasasna
et al., 2004; Tsuda et al., 2006), Mexico (Moreno-Sanchez et al.,
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2006; Lozano-Fuentes et al., 2008) and the Republic of Nicaragua
(Chang et al., 2009). In addition, GIS is commonly used to predict
high-risk dengue transmission zones by estimating the abundance
of infected Aedes mosquitoes in high dengue-incidence areas, such
as Argentina (Carbajo et al., 2001), Bangladesh (Ali et al., 2003),
Peru (Getis ef al., 2003) and Thailand (Chansang and Kittayapong,
2007). GIS has also served as a constructive and valuable platform
for public health authorities to initiate efficient dengue surveil-
lance and preventative measures by analysing the spatial and tem-
poral patterns of dengue cases, e.g., as practiced in Australia (Hu
et al., 2012) and China (Li et al., 2012).

In Malaysia, GIS technology has been applied in local studies
to explore the distribution pattern of vector-borne diseases includ-
ing dengue (Ling ef al., 2014; Hazrin et al., 2016; Majid et al.,
2019; Murphy et al., 2020), chikungunya (Azami ef al., 2013) and
malaria (Ahmad et al., 2011; Alias et al., 2014; Pahrol et al., 2018).
Several local studies have visualised the spatial distribution of
dengue cases by the use of GIS combined with spatial statistics (Er
et al., 2010; Aziz et al., 2012; Ahmad et al., 2015; Masnita et al.,
2016; Majid et al., 2019). Furthermore, the application of GIS
allows the development of spatial modelling that can predict the
risk of this infection based on environmental, epidemiological and
entomological factors (Aziz, 2011; Hassan et al., 2012; Nazri et
al., 2013; Ahmad et al., 2018). GIS paired with spatial statistical
analysis is also important for monitoring the spatial distribution of
dengue vectors and their potential breeding habitats by generating
mosquito density maps (Aziz et al., 2014; Norzawati et al. 2015).
Although several studies have done such research, they only
focused on cases and larvae index as primary data. To the best of
our knowledge, no studies to date have utilised GIS tools to study
the distribution of adult 4edes mosquitoes in Malaysia. Therefore,
this study aimed to explore the spatial dispersal of captured Ae.
albopictus mosquitoes through the application of a geospatial
approach and a modified sticky ovitrap (MSO), a newly developed
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device designed to capture adult female Ae. aegypti and Ae.
albopictus mosquitoes (described below). Since this approach
would be capable of identifying potential high- and low-risk
dengue transmission zones, the study was planned for a residential
area characterized by low-rise buildings to map and explore the
distribution, hotspot occurrence and interpolated density of adult
Ae. albopictus mosquitoes. In certain circumstances, particularly
when the resources are limited, outcomes of the current study
could facilitate the design and development of effective, targeted
vector control strategies. The gravid oviposition sticky (GOS) trap
(Lau et al., 2017; Liew et al., 2019), the light trap recommended
by the U.S. Centers for Disease Control and Prevention (CDC)
(Rohani et al., 2016) and landing catches by humans (Vythilingam
et al., 2014; Rohani et al., 2016) are commonly used for the
surveillance of adult mosquitoes in this country regardless of
mosquito species. However, information regarding their use for the
control and prevention programmes is still lacking in Malaysia.
This study integrated the use of spatial and geostatistical analysis
tools with a recently developed mosquito trapping device, namely
the MSO that targets adult Ae. aegypti and Ae. albopictus
mosquitoes. To the best of our knowledge, this is the first study in
Malaysia to use GIS to identify hotspots and estimate Aedes den-
sity (high and low vector density areas) based on the number of
adult mosquitoes collected.

Materials and methods

Study area

The surveys took place in Petaling Jaya (101°38°40”E,
3°05’50”N), a township city located in Petaling District, Selangor,
Malaysia (Figure 1). Under the jurisdiction of Petaling Jaya City

Figure 1. Location of the modified sticky ovitrap (MSO) at all eleven study locations in the residential areas in Petaling Jaya, Selangor,

Malaysia.
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Council (MBPJ), the 97.2 km? large city has a population of half a
million people. Petaling Jaya is one of the wettest cities in the
country, as the city receives an average of more than 3300 mm of
rainfall annually. There is no dry season, but June and July are con-
sidered the driest months (Department of Statistic, 2019).

= .Cpress

Mosquito trapping

MSO, a device designed to capture adult female de. aegypti
and Ae. albopictus mosquitoes, is practical for either long-term or
short-term entomological surveillance. Importantly, it is user-
friendly, relatively cost-effective, does not require electricity or
any specific instruction and exerts minimal negative environmen-
tal impact. Briefly, the trap consists of two plastic containers; the
larger sprayed black and the smaller transparent and with a bottom
net. The larger one has a height of 9 cm and a diameter of 8 cm,
while the corresponding measures of the smaller are 6.5 and 5.5
cm. The latter is lined with sticky paper coated with non-toxic
sticky insect glue and placed inside the larger container. Each trap
was baited with 100 mL of hay infusion water.

Trap distribution, mosquito collection and surveillance
management

From March 2018 to February 2019 (52 weeks), 273 MSOs
were distributed over the study area covering 11 collection sites,
namely Site A (39 traps), B (30 traps), C (24 traps), D (32 traps), E
(24 traps), F (29 traps), G (17 traps), H (26 traps), I (17 traps), J
(20 traps) and Site K (15 traps). The general and environmental
characteristics of each collection site are illustrated in Table 1. Of
the 273 MSOs, 250 were placed outside resident houses (on the
porch), 16 at the common playground, 5 at the guard-house and 2
at the community hall. The locations for MSOs instalment were
selected using a spatial grid sampling design suitable for geospatial
analysis purposes and based on few criteria that included permis-
sion by homeowners and the safety of the fieldwork assistants.

A boundary system representing 200-m buffers for each site
was created for each trap location according to the average disper-
sal range of Ae. albopictus in human environmental settings as
reported in previous studies (Honorio ef al., 2003; Liew and Curtis,

2004; Maciel-de-Freitas ef al., 2006). Meanwhile, Thiessen poly-
gons (Brassel and Reif, 1979) were constructed to produce one
polygon for each trap location by drawing perpendicular lines
through their midpoints. Smaller Thiessen polygons thus appeared
in areas where traps and buffer zones were closer together and
larger ones in areas where they were farther apart. Collection of
adult female 4edes mosquitoes was conducted weekly. During this
fieldwork, all MSOs were collected and replaced with new units
and subsequently transported back to the Vector Ecology
Laboratory, Faculty of Medicine, University of Malaya, Kuala
Lumpur for further processing and identification. Adult Aedes
mosquitoes were extracted from the sticky paper that lined the
inside of the smaller container. Gender and species identification
of each extracted mosquito was done using a stereo microscope
(Olympus BX41, Center Valley, PA, USA). The Ae. aegypti and
Ae. albopictus adults were morphologically distinguished based on
the white-scale pattern observed at the dorsal part of the thorax
(Harwood & James, 1979). Since Ae. albopictus was the predomi-
nant species captured throughout the sampling period, further anal-
ysis focused on this species. de. aegypti specimens were excluded
in the analysis due to the small sample number of adults captured
(N=4).

The weekly numbers of captured Ae. albopictus were recorded
at all trap locations (N=273) and georeferenced using hand-held
global positioning system (GPS) devices (GPSMAP®, Garmin
Ltd, Schaffthausen, Switzerland) and all data transferred into a
Microsoft Excel sheet (Microsoft, Redmond, WA, USA). Using
the World Geodetic System (WGS 1984) as its reference coordi-
nate system, with x-longitudes (east-west) and y-latitudes (north-
south). the GPS system allows geographic positions to be
expressed anywhere on the globe. Prior to construction of distribu-
tion, hotspot and interpolated density maps, all databases (i.e. data
attributes) were established and processed in ArcGIS version
10.4.1 (ESRI, West Redlands, CA, USA). The attributes, including
total, monthly and weekly numbers of all de. albopictus captured
by each trap, were recorded in the database for further analysis.
Figure 2 summarises the conceptual framework of this study.

Table 1. General and environmental characteristics of each collection site.

A Double story terraced houses, bungalows, playground, shops and community hall ~ Moderate vegetation, trees and shrubs, clean environment but clos
to construction sites

B Double story terraced houses, bungalows, shops and playground High vegetation, trees and shrubs, clean environment but close
to construction sites

C Double story terraced houses, school and playground Moderate vegetation, trees and shrubs, clean environment but

Double story terraced houses, playground and school

close to construction sites
High vegetation, trees and shrubs, clean environment

E Double story terraced houses, bungalows and playground Moderate vegetation, trees and shrubs, clean environment

F Double story terraced houses, playground and shops Low vegetations area of trees and shrubs, with a clean
environment close to construction sites.

G Double story terraced houses, community hall, playground and shops Low vegetation, trees and shrubs, clean environment

H Double story terraced houses, playground and shops High vegetation, trees and shrubs, unclean environment

| Double story terraced houses, bungalows, school and playground Moderate vegetation, trees and shrubs, clean environment but close
to construction sites

J Double story terraced houses, playground and shops High vegetation, trees and shrubs, clean environment but close

to construction sites
K Double story terraced houses, playground and shops Moderate vegetation, trees and shrubs, clean environment

OPEN 8ACCESS
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Development of distribution maps

Distribution maps were created based on the total, monthly and
weekly numbers of Ae. albopictus captured. For the total count,
five classes with different colours were generated to differentiate
between absence (0) of mosquitoes captured and low (1-25), medi-
um (26-50), high (51-75) and very high (76-143) numbers. For the
monthly and weekly capture maps, three classes with established,
with white colour representing absence (0), blue medium (1-5) and
red a high number (>5) of mosquitoes captured.

Hotspot analysis

Hotspot analysis was performed to identify the location of
hotspots and cold spots by aggregating points of occurrence into
the polygons created. In this study, detection of significant
hotspots (traps) was performed using the General G function
(Getis-Ord) in the mapping cluster option in ArcMap. The data
consisted of the total, monthly, and weekly numbers of Ae.
albopictus captured. This analysis was done to identify statistically
significant spatial clusters of high values (hotspot) and low values
(coldspot) within the context of neighbouring features in the
dataset. To be termed a significant hotspot, a feature with high
value must be surrounded by other features with equally high val-
ues (Ord and Getis, 1995).

Inverse Distance, defined as a neighbouring feature with a sig-
nificant influence on the computations for a particular target com-
pared to faraway features (Ord and Getis, 1995), was selected to
conceptualise the spatial relationship. Additionally, Euclidean dis-
tance, defined as the shortest (i.e. straight-line) distance between
two points, was selected for the distance method. The Z-score and
P-value (probability) for each feature in the dataset determine the
statistical significance. A high Z-score with a low P-value for a fea-
ture indicates a significant hotspot, while a low, negative Z-score
with a low P-value indicates a significant coldspot. A Z-score close
to 0 indicates random dispersion, while the higher (or lower) the Z-
score is, the more intense the clustering (Ord and Getis, 1995).
Only features of the dataset with a 99% confidence level (CL) (P-
value <0.01) were selected and labelled according to the number of
traps deployed in the respective sampling sites.

é ~Jazcpress

Spatial autocorrelation and interpolation

Spatial autocorrelation was assessed by generating semivari-
ograms using the exponential Kernel function with the geostatisti-
cal wizard in ArcMap. The semivariograms were created based on
the Ae. albopictus population obtained at each trap and the total,
monthly and weekly mosquito numbers.

Spatial interpolation methods are useful when the variable of
interest such as mosquito density is spatially continuous but only
can be measured at selected sites, such as a trap (Lam, 2013).
Kriging, a robust spatial interpolation technique (Oliver and
Webster, 1990) makes predictions derived from values measured
(i.e. Ae. albopictus density in the MSOs) and distance to the pre-
dicted locations, while the spatial autocorrelation can be modelled
based on of semivariogram covariance parameters (Pfeiffer et al.,
2008). Since it accommodates mean trends (i.e. large variation in
the mean values in different geographical areas), universal kriging
(Zimmerman et al., 1999) was selected to estimate the number of

Table 2. Summary of the monthly Ae. albopictus capture records.

1 (March 2018) 19 131 123
2 (April 2018) 26 123 124
3 (May 2018) 45 118 110
4 (June 2018) 33 122 118
5 (July 2018) 21 125 127
6 (August 2018) 13 125 135
7 (September 2018) 9 82 182
8 (October 2018) 19 87 167
9 (November 2018) 20 80 173
10 (December 2018) 21 36 166
11 (January 2019) 8 68 197
12 (February 2019) 4 60 209
Total 238 1207 1831

Figure 2. Conceptual framework of the GIS methodology.
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mosquitoes at unsampled locations throughout the sampling sites
considering the number of mosquitoes in nearby trap locations.
The total, monthly and weekly numbers of captured Ae.
albopictus mosquitoes were counted and interpolated with respect
to the 200-m radius buffers at each site. The interpolated areas dis-
tinguished between high-vector density areas of Ae. albopictus
(red areas in the figures) and low-vector density ones (blue areas).
All interpolated maps were generated and visualised in ArcMap.

Results

Ae. albopictus distribution maps

Overall, only 4 traps recorded a very high number of captured
Ae. albopictus mosquitoes followed by 15, 43 and 200 traps with
high, medium and low numbers, respectively. Only 11 traps did not
record any mosquitoes at all (Figure 3). The monthly results with
high numbers of mosquitoes captured were the following: 45 traps
in May 2018, 33 in June 2018, 26 in April 2018, 21 in July and
December 2018, while the least number of traps (N=4) with high
Ae. albopictus numbers was recorded in February 2019. These
results are summarised in Table 2 with the figures presented in
Annex 1.

The weekly records showed that week 14 had the highest num-
ber of traps capturing high numbers of Ae. albopictus (N=16), fol-
lowed by week 11 (N=6), week 12 and week 38 (each N=5) and
week 3, week 10 and week 13 with 4 traps each. For more than a
third of the year (19 weeks), only low numbers of Ae. albopictus
were captured. The tabulated and figurative details of this weekly
analysis are presented in Annex II.

Ae. albopictus hotspots

Seven Ae. albopictus hotspots, 3 in site H, 2 in site G and 1
each in sites B and D, were identified between March 2018 and
February 2019 with none identified in the other sites during this
time (Figure 4A). Site H recorded the highest number of hotspots
(N=39) followed by 19 in site D and 11 in site G, while both sites
E and J recorded the lowest number with 3 each. Overall, however,

110 hotspots were recorded over the year under study as shown in
Figure 4B. June 2018 showed the highest number (N=14), fol-
lowed by 11 in December 2018, 10 in May 2018 and 9 in July
2018, August 2018, September 2018 and January 2019, while
November 2018 recorded the lowest number of hotspots (N=7).
Table 3 summarizes these results.

A0 0.150.3

0.6 09

Figure 3. Distribution map Ae. albopictus presence in Petaling
Jaya, Selangor based on the contents of 273 modified sticky ovi-
traps (MSOs) distributed over the study area.

Table 3. Summary of the monthly Ae. albopictus hotspots among the eleven study sites

1 (Mar-18) 0 1 0 3 0 0 1 1 0 2 0 8
2 (Apr-18) 0 1 0 1 1 1 2 2 0 0 0 8
3 (May-18) 2 2 0 1 1 0 1 1 1 1 0 10
4 (June-18) 0 3 1 2 1 1 2 2 1 0 1 14
5 (July-18) 1 0 0 1 0 0 1 3 1 0 2 g
6 (Aug-18) 0 1 0 3 0 1 0 3 1 0 0 9
7 (Sep-18) 0 0 0 1 0 0 0 7 0 0 1 g
8 (Oct-18) 0 0 1 1 0 0 1 5 0 0 0 8
9 (Nov-18) 1 0 1 2 0 1 0 2 0 0 0 7
10 (Dec-18) 0 0 3 2 0 0 2 3 0 0 1 11
11 (Jan-19) 0 0 1 1 0 0 1 5 0 0 1 g
12 (Feb-18) 0 0 1 1 0 0 0 5 0 0 1 8
Total 4 8 8 19 3 4 11 39 4 3 7 110

OPEN 8ACCESS
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Figure 4. A) Ae. albopictus hotspot map based on the contents of 273 modified sticky ovitrap (MSO) sites; B) the monthly Ae. albopic-
tus hotspot distribution from March 2018 to February 2019.
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Based on the weekly records, 487 Ae. albopictus hotspots were
recorded over the year investigated. Week 52 recorded the highest
number of hotspots with 20, followed by 16 in week 43, 15 in week
41 and 14 in both weeks 5 and 14, with the lowest number (N=4)
recorded in weeks 8 and 50. Site H recorded the highest number of
hotspots (N=104) followed by 93 in site D, 62 in site G and 51 in
site B, while site F recorded the lowest (N=11). The detailed
results are presented in Annex III.

cpress

Spatial autocorrelation

In general, there seemed to be no spatial autocorrelation based
on the total number of Ae. albopictus mosquitoes during the study
year from March 2018 to February 2019 (Figure 5A). However,
when the data were classified into time periods (Figure 5B), the
first, second, eighth, ninth and tenth study months stand out. These
semivariograms indicated that the number of mosquitoes at any
given MSO location was autocorrelated with that of other MSOs
within a radius of 50 to 70 m. In relation to the weekly number of
Ae. albopictus captured, spatial autocorrelation was reported for 15
different weeks. Semivariograms generated for these weeks
showed a spatial autocorrelation similar to the 50 to 70 m seen in
the monthly data. The details are presented in Annex IV.

Vector density by spatial interpolation

The overall results for the study year showed low Ae. albopic-
tus densities (Figure 6). However, the densities were high in site G
(northern, north-western and western areas) and site H (northern,
central, southern, south-western and south-eastern areas) and at
some degree also in site D (in the centre of the study area). With
respect to the monthly results, May 2018 recorded the highest
number of sites with high vector density areas (N=9) followed by
8 in both August 2018 and February 2019 and 7 in March 2018 and
June 2018, while October 2018 recorded the lowest number (N=3).
Site H had high vector density areas in all months, while low vec-
tor density areas in all sites were found in April 2018, May 2018,
June 2018, August 2018, September 2018, November 2018 and
January 2019. These results are summarised in Table 4 with the
figures presented in Annex V. At the weekly level, week 30 record-
ed the highest number of sites with high vector density areas

(N=10). Site H showed high vector density areas for all weeks
except weeks 23 and 52, while low vector densities in all sites were
recorded for 34 out of the 52 weeks. The tabulated, weekly analy-
sis details are presented in the Annex VI.

Discussion

The identification of hotspot areas is an important step in opti-
mizing resources for the surveillance of the vector. Intervention
activities such as larval/pupal inspection and elimination of poten-
tial breeding habitats can be done regularly, which may provide
better results in reducing mosquito populations rather than through
the traditional approach of control strategies for the whole area
(Pessanha et al., 2012). For example, identification of the strongest
and most consistent Ae. albopictus hotspot among many others
would facilitate the decision by the health authorities on which site
to focus interventions rather than covering a large area, thereby
avoiding shortfall in supplies and staff. Previous studies have high-
lighted the importance of hotspot analysis especially in the assess-
ment of dengue incidence by mapping the patterns, e.g., hotspot
analysis has been used in Brazil to identify spatial clusters associ-
ated with a high risk of dengue and high numbers of Ae. aegypti
eggs (Pessanha et al., 2012). In a local study conducted by Aziz et
al (2014), this approach was utilised to visualise the density of
mosquitoes and hotspots based on the highest Breteau Index, there-
by providing beneficial information to the local health authorities
for reducing and eradicating the mosquito distribution in high-rise
apartment buildings (Focks, 2003). In a neighbouring country,
such as Thailand, hotspot detection has also been applied to iden-
tify hotspots based on the number of dengue cases associated with
high morbidity rates (Jeefoo et al., 2011).

While Duncombe et al. (2013) reported radii up to 100 m of spa-
tial autocorrelation for Ae. aegypti and Ae. albopictus mosquitoes
caught by traditional sticky ovitraps, we found shorter distances
(approximately 50 to 70 m) based on 5 monthly observations or 15
weekly ones. This information is potentially useful for vector
surveillance because it confirmed that the MSOs should be deployed

Table 4. The tabulated, monthly variation of Ae. albopictus density among the eleven sites.

1 (Mar-18) X v X v v X v Vv Vv Vv X v X v v v Vv X Vv Vv V¥V V
2 (Apr-18) X X X v v X Vv v X X X vV VvV VY VvV Vv VvV VvV VvV Vv V¥
3 (May-18) v v X v v Vv Vv v Vv Vv X vV Vv v Vv v Vv Vv Vv Vv VvV ¥
4 (June-18) v Vv X X Vv X Vv Vv v v X vV VvV Y VvV VvV VvV VvV VvV Vv V¥
5 (July-18) v X X Vv v X X Vv Vv X V v v v X Vv Vv Vv X VvV Vv V
6 (Aug-18) X v v ¥ X Vv X Vv Vv Vv V vV VvV Y VvV VvV VvV VvV VvV Vv V¥
7 (Sep-18) ¥ v X X X X X Vv X v v vV Vv Vv Vv Y Vv Vv ¥V Vv ¥V ¥
8 (Oct-18) X X v X X X v v X X X v v v X Vv Vv Vv X Vv Vv V
9 (Nov-18) X X v v X X v v X X X vV Vv v Vv Y VvV Vv Vv Vv ¥V ¥
10 (Dec-18) X X v v v X Vv v X X X vV VvV ¥ X Vv Vv VvV Vv Vv Vv
11 (Jan-19) X v v v X X Vv Vv X Vv ¥ vV Vv Vv Vv v Vv Vv Vv Vv Vv ¥
12 (Feb-19) X v v v v X Vv Vv X v V X X X X X X X X X X X

V= Yes and X = No with respect to vector density.
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at least 50 m apart to provide comprehensive surveillance coverage.

Interpolated vector density maps showed high densities of 4e.
albopictus mosquitoes were predominant in site H from the first
until the twelfth month, but such areas were also reported in other
sites throughout the surveillance period. The spatial differences of
high and low Ae. albopictus densities seen in 11 sites could be
influenced by geographical characteristics such as vegetation, gen-
eral sanitation and degree of cleanliness of each household, as well
as the oviposition behaviour of the mosquito species as shown by
Duncombe et al. (2013). As mentioned previously, interpolated
mosquito maps showing high densities of Ae. albopictus
mosquitoes in certain sites can be used to advocate for better
resources and improve targeting of prevention activities.
Prevention and control programmes at the household level can be
conducted by public health workers with the involvement of the
community especially the household residents (Arunachalam et
al., 2010). Since the interpolated maps generated by universal krig-
ing can also be used to identify areas with low densities of Ae.
albopictus, valuable resources may be released from these sites
and utilised in areas with high densities of the species. In addition,
universal kriging is widely used by international researchers in
spatial statistical studies of other mosquito species, e.g., it has been
used to estimate the numbers of Ochlerotatus vigilax,
Coquillettidia linealis, Oc. notoscriptus and Cx. annulirostris at
unsampled locations caught using the CDC light traps in Australia

Site boundaries

Figure 6. Interpolated maps demonstrating high and low vector
densities of Ae. albopictus mosquitoes from March 2018 to
February 2019.
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(Ryan et al., 2004). Since those traps were placed in larger study
sites, i.e. with distances of 0-1.5 km, 1.5-3 km, 3-4.5 km and 4.5-
6 km, determination of spatial autocorrelation was best for only
one species (Oc. vigilax) and the distance was 0-1.5 km. In fact,
Oc. vigilax is commonly recognized as the vector for the Ross
River (RR) and the Barmah Forest (BF) viruses in Australia
(Russell and Dwyer, 2000).

Although geostatistical tools in combating vector borne diseases
such as dengue are currently underutilised in Malaysia, the findings
of this study suggest that the development of a spatial decision sup-
port system (SDSS) should be considered by relevant authorities for
the prevention and control programs for most common mosquito-
borne diseases such as dengue, malaria, chikungunya and other
arbovirus diseases. SDDS has been previously established in the U.
S. (Eisen and Eisen, 2011) and Vanuatu Island (Kelly et al., 2012).
Vazquez Prokopec et al. (2010) reported that SDSS could improve
the speed, accuracy, and efficiency of indoor residual spraying by
controlling and limiting the transmission of dengue virus in
Australia. In addition, Kelly ef al. (2011) described a GIS-based
SDSS that could empower and support focal indoor residual spray-
ing (IRS) operations as part of a scaled-up campaign to progressive-
ly eliminate malaria in Vanuatu Island and Solomon Island.

Conclusions

This study demonstrated the utilisation of GIS and geostatisti-
cal methods in determining the spatial dispersal of the dengue vec-
tor Ae. albopictus mosquitoes captured by MSOs, a newly devel-
oped mosquito trapping device, in residential areas with low-rise
buildings. The results of the study could assist health authorities in
enhancing their current approach of vector control programmes by
performing more targeted residual spraying of Ae. albopictus rest-
ing sites, especially in high-density areas of the species and where
hotspots have been found. In addition, house-to-house inspection
and larviciding activities can be done regularly by health personnel
with community participation, especially where residents know
that they live in Ae. albopictus high-density areas with high num-
bers of hotspots. Furthermore, training residents or volunteer
workers with respect to technical skills and capability to supervise
the prevention and control activities in the absence of health per-
sonnel should be a useful adjunct.

References

Abilio AP, Abudasse G, Kampango A, Candrinho B, Sitoi S,
Luciano J, Tembisse D, Sibindy S, de Almeida A, Garcia GA,
David MR, Maciel-de-Freitas R, Gudo ES, 2018. Distribution
and breeding sites of Aedes aegypti and Aedes albopictus in 32
urban/peri-urban districts of Mozambique: implication for
assessing the risk of arbovirus outbreaks. PLoS Negl Trop Dis
12:¢0006692.

Ahmad DM, Azman A, Hafizan J, Kamaruzzaman Y, Ismail ZA,
Nur HS, Mohamed AA, Romizan O, Mohd Khairul AK,
Muhammad BG, 2015. Geographical Information System
(GIS) for relationship between dengue disease and climatic
factors at Cheras, Malaysia. Malaysian J Anal Sci 19:1318-26.

Ahmad R, Ali WN, Nor ZM, Ismail Z, Hadi AA, Ibrahim MN, Lim
LH, 2011. Mapping of mosquito breeding sites in malaria

[Geospatial Health 2022; 17:1025]



endemic areas in Pos Lenjang, Kuala Lipis, Pahang, Malaysia.
Malar J 10:361.

Ali M, Wagatsuma Y, Emch M, Breiman RF, 2003. Use of a geo-
graphic information system for defining spatial risk for dengue
transmission in Bangladesh: role for Aedes albopictus in an
urban outbreak. Am J Trop Med Hyg 69:634-40.

Alias H, Surin J, Mahmud R, Shafie A, Mohd Zin J, Mohamad Nor
M, Ibrahim AS, Rundi, C, 2014. Spatial distribution of malaria
in Peninsular Malaysia from 2000 to 2009. Parasit Vectors
7:186.

Arunachalam N, Tana S, Espino F, Kittayapong P, Abeyewickreme
W, Wai KT, Tyagi BK, Kroeger A, Sommerfeld J, Petzold M,
2010. Eco-bio-social determinants of dengue vector breeding:
a multicountry study in urban and periurban Asia. Bull World
Health Organ 88:173-184.

Azami NA, Salleh SA, Shah SA, Neoh HM, Othman Z, Zakaria
SZ, Jamal R, 2013. Emergence of chikungunya seropositivity
in healthy Malaysian adults residing in outbreak-free locations:
chikungunya seroprevalence results from the Malaysian
Cohort. BMC Infect Dis 13:67.

Aziz S, 2011. Evaluation of the spatial risk factors for high inci-
dence of dengue fever and dengue hemorrhagic fever using
GIS application. Sains Malays 40:937-43.

Aziz S, Aidil RM, Nisfariza MN, Ngui R, Lim YA, Yusoff WS,
Ruslan R, 2014. Spatial density of Aedes distribution in urban
areas: a case study of Breteau index in Kuala Lumpur,
Malaysia. J Vector Borne Dis 51:91-6.

Aziz S, Ngui R, Lim YA, Sholehah I, Nur Farhana J, Azizan AS,
Wan Yusoff, WS, 2012. Spatial pattern of 2009 dengue distri-
bution in Kuala Lumpur using GIS application. Trop Biomed
29:113-20.

Bagny Beilhe L, Arnoux S, Delatte H, Lajoie G, Fontenille D,
2012. Spread of invasive Aedes albopictus and decline of resi-
dent Aedes aegypti in urban areas of Mayotte 2007-2010. Biol
Invasions 14:1623-33.

Brassel KE, Reif D, 1979. A procedure to generate Thiessen
Polygons. Geogr Anal 11:289-303.

Bonizzoni M, Gasperi G, Chen X, James AA, 2013. The invasive
mosquito species Aedes albopictus: current knowledge and
future perspectives. Trends Parasitol 29:460-8.

Carbajo AE, Schweigmann N, Curto SI, de Garin A, Bejaran R,
2001. Dengue transmission risk maps of Argentina. Trop Med
Int Health 6:170-83.

Chang AY, Parrales ME, Jimenez J, Sobieszczyk ME, Hammer
SM, Copenhaver DJ, Kulkarni RP, 2009. Combining Google
Earth and GIS mapping technologies in a dengue surveillance
system for developing countries. Int J Health Geogr 8:49.

Chansang C, Kittayapong P, 2007. Application of mosquito sam-
pling count and geospatial methods to improve dengue vector
surveillance. Am J Trop Med Hyg 77:897-902.

Cressie NA, 1991. The origins of kriging. Math Geol 22:239-52.

Duncombe J, Espino F, Marollano K, Velazco A, Ritchie SA, Hu
WB, Weinstein P, Clements AC, 2013. Characterising the spa-
tial dynamics of sympatric Aedes aegypti and Aedes albopictus
populations in the Philippines. Geospat Health 8:255-65.

Eisen L, Eisen RJ, 2011. Using geographic information systems
and decision support systems for the prediction, prevention,
and control of vector-borne diseases. Annu Rev Entomol
56:41-61.

Er AC, Rosli MH, Asmahani A, Mohamad Naim MR,
Harsuzilawati M, 2010. Spatial mapping of dengue incidence:

[Geospatial Health 2022; 17:1025]

a case study in Hulu Langat district, Selangor, Malaysia. Int J
Human Soc Sci 5:410-4.

Flipse J, Smit JM, 2015. The complexity of a dengue vaccine: a
review of the human antibody response. PLoS Negl Trop Dis
9:¢0003749.

Focks DA, 2003. A review of entomological sampling methods
and indicators for dengue vectors. World Health Organization,
Geneva.

Getis A, Morrison AC, Gray K, Scott TW, 2003. Characteristics of
the spatial pattern of the dengue vector, Aedes aegypti, in
Iquitos, Peru. Am J Trop Med Hyg 69:494-505.

Hassan H, Shohaimi S, Hashim NR, 2012. Risk mapping of
dengue in Selangor and Kuala Lumpur, Malaysia. Geospat
Health 7:21-25.

Hazrin M, Hiong HG, Jai N, Yeop N, Hatta M, Paiwai F, Joanita S,
Othman W, 2016. Spatial distribution of dengue incidence: a
case study in Putrajaya. J Geogr Inf Syst 8:89-97.

Heinisch M, Diaz-Quijano FA, Chiaravalloti-Neto F, Menezes
Pancetti FG, Rocha Coelho R, Dos Santos Andrade P, Urbinatti
PR, de Almeida R, Lima-Camara TN, 2019. Seasonal and spa-
tial distribution of Aedes aegypti and Aedes albopictus in a
municipal urban park in Sao Paulo, SP, Brazil. Acta Trop
189:104-13.

Honorio NA, Silva W, Leite PJ, Goncalves JM, Lounibos LP,
Lourengo-de-Oliveira R, 2003. Dispersal of Aedes aegypti and
Aedes albopictus (Diptera: Culicidae) in an urban endemic
dengue area in the state of Rio de Janeiro, Brazil. Mem Inst
Oswaldo Cruz 98:191-8.

Hu W, Clements A, Williams G, Tong S, Mengersen K, 2012.
Spatial patterns and socioecological drivers of dengue fever
transmission in Queensland, Australia. Environ Health
Perspect 120:260-6.

Jeefoo P, Tripathi NK, Souris M, 2011. Spatio-temporal diffusion
pattern and hotspot detection of dengue in Chachoengsao
province, Thailand. Int J Environ Res Public Health 8:51-74.

Johari NA, Voon K, Toh SY, Sulaiman LH, Yap I, Lim P, 2019.
Sylvatic dengue virus type 4 in Aedes aegypti and Aedes
albopictus mosquitoes in an urban setting in Peninsular
Malaysia. PLoS Negl Trop Dis 13:¢0007889.

Kamal M, Kenawy MA, Rady MH, Khaled AS, Samy AM, 2018.
Mapping the global potential distributions of two arboviral
vectors Aedes aegypti and Ae. albopictus under changing cli-
mate. PLoS One 13:¢0210122.

Kelly GC, Seng CM, Donald W, Taleo G, Nausien J, Batarii W,
lata H, Tanner M, Vestergaard LS, Clements AC, 2011. A spa-
tial decision support system for guiding focal indoor residual
interventions in a malaria elimination zone. Geospat Health
6:21-31.

Kelly GC, Tanner M, Vallely A, Clements A, 2012. Malaria elimi-
nation: moving forward with spatial decision support systems.
Trends Parasitol 28:297-304.

Lam NSN, 1983. Spatial interpolation methods: a review. Am
Cartogr 10:129-50.

Li Z, Yin W, Clements A, Williams G, Lai S, Zhou H, Zhao D, Guo
Y, Zhang Y, Wang J, Hu W, Yang W, 2012. Spatiotemporal
analysis of indigenous and imported dengue fever cases in
Guangdong province, China. BMC Infect Dis 12:132.

Liew C, Curtis CF, 2004. Horizontal and vertical dispersal of
dengue vector mosquitoes, Aedes aegypti and Aedes albopic-
tus, in Singapore. Med Vet Entomol 18:351-60.

Ling CY, Gruebner O, Kramer A, Lakes T, 2014. Spatio-temporal

OPEN aACCESS

cpress



patterns of dengue in Malaysia: combining address and sub-
district level. Geospat Health 9:131-40.

Lozano-Fuentes S, Elizondo-Quiroga D, Farfan-Ale JA, Lorofio-
Pino MA, Garcia-Rejon J, Gomez-Carro S, Lira-Zumbardo V,
Najera-Vazquez R, Fernandez-Salas I, Calderon-Martinez J,
Dominguez-Galera M, Mis-Avila P, Morris N, Coleman M,
Moore CG, Beaty BJ, Eisen L, 2008. Use of Google Earth to
strengthen public health capacity and facilitate management of
vector-borne diseases in resource-poor environments. Bull
World Health Organ 86:718-25.

Maciel-de-Freitas R, Neto RB, Goncalves JM, Codeco CT,
Lourengo-de-Oliveira R, 2006. Movement of dengue vectors
between the human modified environment and an urban forest
in Rio de Janeiro. ] Med Entomol 43:1112-20.

Majid NA, Nazi NM, Mohamed AF, 2019. Distribution and spatial
pattern analysis on dengue cases in Seremban district, Negeri
Sembilan, Malaysia. Sustainability 11:1-4.

Masnita MY, Nazri CD, Ariza Z, 2016. Spatial pattern distribution
of dengue fever in sub-urban area using GIS tools. Serangga
21:127-48.

Moreno-Sanchez R, Hayden M, Janes C, Anderson G, 2006. A
web-based multimedia spatial information system to document
Aedes aegypti breeding sites and dengue fever risk along the
US-Mexico border. Health Place 12:715-27.

Murphy A, Rajahram GS, Jilip J, Maluda M, William T, Hu W,
Reid S, Devine GJ, Frentiu FD, 2020. Incidence and epidemi-
ological features of dengue in Sabah, Malaysia. PLoS Negl
Trop Dis 14:e0007504.

Nazri CD, Ahmad AH, Ishak AR, Ismail R, 2013. Assessing the
risk of dengue fever based on the epidemiological, environ-
mental and entomological variables. Procedia Soc Behav Sci
105:183-94.

Norzawati Y, Mohd Maher I, Chong JH, Husna Mabhirah S, Nur
Adawiyah A, Ang BY, 2015. Spatial distribution of dengue
vectors in Malaysia. Med J Malaysia 70:54.

Oliver MA, Webster R, 1990. Kriging: a method of interpolation
for geographical information systems. Int J Geogr Inf Syst
4:313-32.

Ord JK, Getis A, 1995. Local spatial autocorrelation statistics: dis-
tributional issues and an application. Geogr Anal 27:286-306.

Pahrol MA, Noraishah MS, Nasir RA, 2018. Spatial distribution of
malaria incidence in Sabah from 2012 to 2016. Geoinfor
Geostat 6:3.

Pessanha JE, Caiaffa WT, Almeida MC, Brandao ST, Proietti FA,
2012. Diffusion pattern and hotspot detection of dengue in
Belo Horizonte, Minas Gerais, Brazil. J Trop Med
2012:760951.

Pfeiffer DU, Robinson TP, Stevenson M, Stevens KB, Rogers DJ,

pagepress

OPEN 8ACCE55

Clements AC, 2008. Spatial analysis in epidemiology. Oxford:
Oxford University Press.

Richards SL, Apperson CS, Ghosh SK, Cheshire HM, Zeichner
BC, 2006. Spatial analysis of Aedes albopictus (Diptera:
Culicidae) oviposition in suburban neighborhoods of a
Piedmont community in North Carolina. J Med Entomol
43:976-89.

Rohani A, Azahary A, Zurainee M, Wan Najdah W, Zamree 1,
Hanif M, Ariffin M, Zuhaizam H, Suzilah I, Lee H, 2016.
Comparative human landing catch and cdc light trap in
mosquito sampling in Knowlesi malaria endemic areas in
Peninsula Malaysia. Adv Entomol 4:1-10.

Rozilawati H, Tanaselvi K, Nazni WA, Mohd Masri S, Zairi J,
Adanan CR, Lee HL, 2015. Surveillance of Aedes albopictus
Skuse breeding preference in selected dengue outbreak locali-
ties, peninsular Malaysia. Trop Biomed 32:49-64.

Russell RC, Dwyer DE, 2000. Arboviruses associated with human
disease in Australia. Microbes Infect 2:1693-704.

Ryan PA, Lyons SA, Alsemgeest D, Thomas P, Kay BH, 2004.
Spatial statistical analysis of adult mosquito (Diptera:
Culicidae) counts: an example using light trap data, in Redland
Shire, Southeastern Queensland, Australia. J Med Entomol
41:1143-56.

Sithiprasasna R, Patpoparn S, Attatippaholkun W, Suvannadabba
S, Srisuphanunt M, 2004. The geographic information system
as an epidemiological tool in the surveillance of dengue virus-
infected Aedes mosquitos. Southeast Asian J Trop Med Public
Health 35:918-26.

Tsuda Y, Suwonkerd W, Chawprom S, Prajakwong S, Takagi M,
2006. Different spatial distribution of Aedes aegypti and Aedes
albopictus along an urban-rural gradient and the relating envi-
ronmental factors examined in three villages in northern
Thailand. ] Am Mosq Control Assoc 22:222-8.

Vazquez-Prokopec GM, Kitron U, Montgomery B, Horne P,
Ritchie SA, 2010. Quantifying the spatial dimension of dengue
virus epidemic spread within a tropical urban environment.
PLoS Negl Trop Dis 4:€920.

Vythilingam I, Lim YA, Venugopalan B, Ngui R, Leong CS, Wong
ML, Khaw L, Goh X, Yap N, Sulaiman WY, Jeffery J, Zawiah
AG, Nor Aszlina I, Sharma RS, Yee Ling L, Mahmud R, 2014.
Plasmodium knowlesi malaria an emerging public health prob-
lem in Hulu Selangor, Selangor, Malaysia (2009-2013): epi-
demiologic and entomologic analysis. Parasit Vectors 7:436.

Wieczorek, WF, Delmerico AM, 2009. Geographic information
systems. Comput Stat 1:167-86.

Zimmerman D, Pavlik C, Ruggles A, Armstrong MP, 1999. An
experimental comparison of ordinary and universal kriging and
inverse distance weighting. Math Geol 31:375-90.

[Geospatial Health 2022; 17:1025]





