
Abstract
A spatio-temporal analysis of the first wave of the coronavirus

(COVID-19) pandemic in Mexico (April to September 2020) was
performed by state. Descriptive analyses through diagrams, map-
ping, animations and time series representations were carried out.
Greater risks were observed at certain times in specific regions.
Various trends and clusters were observed and analysed by fitting
linear mixed models and time series clustering. The association of
co-morbidities and other variables were studied by fitting a spatial
panel data linear model (SPLM). On average, the greatest risks

were observed in Baja California Norte, Chiapas and Sonora,
while some other densely populated states, e.g., Mexico City, had
lower values. The trends varied by state and a four-order polyno-
mial, including fixed and random effects, was necessary to model
them. The most common risk development was observed in states
belonging to two clusters and consisted of an initial increase fol-
lowed by a decrease. Some states presented cluster configurations
with a retarded risk increase before the decrease, while the risk
increased throughout the time of study in others. A cyclic
behaviour with a second increasing trend was also observed in
some states. The SPLM approach revealed a positive significant
association with respect to case fatality risk between certain
groups, such as males and individuals aged 50 years and more, and
the prevalence of chronic kidney disease, cardiovascular disease,
asthma and hypertension. The analysis may provide valuable
insight into COVID-19 dynamics applicable in future outbreaks,
as well as identify determinants signifying certain trends at the
state level. The combination of spatial and temporal information
may provide a better understanding of the fatalities due to
COVID-19.

Introduction
Coronavirus disease 2019 (COVID-19), which is caused by

the severe acute respiratory syndrome coronavirus type 2 (SARS-
CoV-2 virus in Wuhan, China, was first reported to the World
Health Organization (WHO) by the Chinese Government on
December 31st, 2019 (WHOa, 2020) and on 11 March 2020, WHO
declared the disease a pandemic (WHOb, 2020). On that date, the
number of cases of COVID-19 outside China had increased 13-
fold and the number of affected countries tripled; there were more
than 118,000 cases in 114 countries and 4291 people lost their
lives, with more than 90% of all cases in just four countries
(WHOb, 2020). Two of these, China and the Republic of Korea,
had already significantly declining epidemics at this time, whereas
81 countries had not reported any cases and 57 countries had
reported 10 or less (WHOb, 2020). On 19 October 2020, more
than 40.6 million cases of the disease had been reported in 220
countries and territories in the world, with the United States, India,
Brazil, Russia, and France having reported the highest number of
infected and more than 1.1 million deaths (WHOc, 2020). The
United States, Brazil, India, Mexico, and the United Kingdom had
the highest number of fatalities (WHOc, 2020).

According to the Pan American Health Organization (PAHO),
advanced age, obesity (BMI ≥40) and smoking as well as under-
lying health conditions, such as cardiovascular disease, chronic
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kidney disease, chronic respiratory disease, chronic liver disease,
diabetes, cancer, HIV/AIDS, active tuberculosis, chronic neuro-
logical disorders, sickle cell anaemia, hypertension have been
found to be associated with fatality risk (PAHO, 2020). In Mexico,
the first reported case of COVID-19 was detected on 28 February
2020 and by 30 April, the number of patients had exponentially
increased, reaching a total of 17,799 confirmed cases and 1732
deceased; as of 26 June 2021, Mexico had confirmed 2,503,408
cases and 232,521 deaths due to COVID-19 (INFOBAE, 2021).
Moreover, the National Institute of Statistics (INEGI) reported in
2021 that, from January to August 2020, COVID-19 was the sec-
ond most common cause of death in Mexico. The country also has
a large population with diseases associated with increased
COVID-19 fatality risk and ranks as one of the countries with the
greatest number of obese people in the world according to the lat-
est National Health and Nutrition Survey (ENSANUT) (Barquera
et al., 2020).

Spatial analysis describes geographic variations for diseases
with respect to demographic, environmental, behavioural, socioe-
conomic, genetic, and infectious risk factors, and they have proven
useful to the study of the spread of infectious diseases (Elliott and
Wartenberg, 2004). In this sense, they could help us highlight areas
and communities which could be hotspots or coldspots, pinpoint
cases, measure risks and map transmission in a cost-saving way,
thus improving the targeting of limited resources (Tatem, 2018).
Several examples of spatial analysis have demonstrated its utility
for providing mathematical models, e.g., for the study of the
behaviour of gases to understand the COVID-19 propagation in
Mexico City (Salcido, 2021. Several studies in France (Levratto et
al., 2020) and Italy (Bourdin et al., 2021) have indicated that the
demographic composition (Sannigrahi et al., 2020), e.g., popula-
tion density, influences the rate of fatalities due to COVID-19.
Additionally, a recent publication of data from twelve European
countries shows that the number of medical practitioners, hospital
beds and the level of social trust are correlated with low COVID-
19 death rates (Amdaoud et al., 2021). Moreover, a spatial analysis
performed in the USA demonstrate that COVID-19 could move
from less vulnerable counties to more vulnerable ones and back
again over time (Neelon et al., 2021). Even so, it has been demon-
strated that demographics explain the spatial heterogeneity in
COVID-19 testing and infection rates in New York City neigh-
bourhoods (Schmitt-Grohé et al., 2020). In a recent published
study by Argoty-Pantoja et al. (2021) the authors found that
COVID-19 adversely affects indigenous populations, particularly
patients who received initial outpatient care.

We aimed here to perform a spatial epidemiological study of
case-fatality risks due to the COVID-19 in Mexico from April to
September 2020 based on spatio-temporal analyses concerning
risk by state in Mexico, including descriptive analyses through
mapping and time series representations. Additionally, we aimed to
analyse trends through time by state by using linear mixed models
and time series clustering. Finally, the association of the main co-
morbidities with the COVID-19 death risks were studied by fitting
a spatial panel linear model (SPLM), a variant of a panel data
regression including spatial effects.

Materials and methods

Data sources
We used open-source data of suspected COVID-19 cases col-

lected by the General Directorate of Epidemiology (DGE) of the
Ministry of Health, Mexico [Dirección General de Vigilancia
Epidemiológica, Secretaría de Salud (Ministry of Health, 2020)].
The dataset was updated by 30 September 2020 and divided into
one weekly and another monthly dataset. The starting date for the
databases was 1 April 2020, the date at which all states had at least
one death, which was used for most analyses, except for the SPLM
that referred to 15 April 2020 since that was the first date when
there were positive cases in each combination of time and state.
Weekly deaths were obtained since 1 January 2020 to generate an
animation (see Supplement). We used the date when the patient
entered the respective hospital unit and, in case of death, the date
when the patient died. 

For the assembly of the weekly and monthly datasets, we con-
sidered the following: only the cases with positive test results for
SARS-CoV-2 were selected and the data were grouped by state and
date, weekly and monthly, respectively. For each level of grouping,
we obtained the number of positive cases, number of deaths, num-
ber of men, number of people by age group (groups configurated
for every 10 years but, as discussed below, we finally used the ≥50
years age group), and the number of pregnant women. In addition,
the number of patients in the DGE dataset with a positive diagnosis
for each of the following co-morbidities were counted: asthma,
cardiovascular disease, chronic kidney disease, diabetes, chronic
obstructive pulmonary disease (COPD), hypertension, immuno-
suppression, pneumonia and obesity. As response variable, we
used the case fatality risk, calculated as the number of deaths over
the number of positive cases grouped by entity and date. The
remaining variables were used as explanatory in the SPLM.

Analyses

Descriptive space-time analyses
We obtained the weekly and monthly case-fatality risk associ-

ated for each time and state. The monthly risk was counted from
April 2020, and the weekly one from January 2020 and also from
April 2020. Maps corresponding to these risk data were obtained.
Additionally, we obtained a space-time plot (Hovmöller diagram),
which represents the weekly risk by a colour gradient for each
combination of state and time. An animation (gif) associated with
maps corresponding to the weekly risk since January was obtained,
and the time series associated with the weekly risk by state from
April 2020 were plotted. R packages spacetime and magick were
used for mapping and gif analysis.

Analyses of the trends structure by state
To determine trends for each state, linear mixed models

(LMM) (Verbeke and Molenberghs, 2000) were fitted for the
weekly data from 15 April 2020; thus, associating random effects
with each state. First, we fitted a LMM including constant and lin-
ear terms, both for fixed and random effects. A map of linear trends
by state was obtained since all random and fixed effects were sig-
nificant according to a likelihood ratio test (LRT), allowing com-
parison with a model without random effects and t-tests, respec-
tively. For a better understanding of the type of trend, polynomic
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trends were added. From the linear trend model, random effects
corresponding to polynomials of different degree were sequential-
ly added. For instance, a second-order random effect was added to
the linear model, which was significant according to an LRT and
thus added to the model. This new model was compared with one
adding a third-order random effect and so on until a random effect
associated with a certain order showed up as not significant.
According to this process, a four-order polynomial was used,
including each term as random and fixed that was all significant
according to an LRT (comparing with a model without random
effects) and t-test, respectively. The original and predicted time
series by state were plotted. R package nlme, sp, ggplot2, and lat-
tice were used to the trends structure by state analysis.

Spatial panel linear models
The SPLM were fitted as described by Pebesma (2012), Millo

and Piras (2012) and Wikle et al. (2019). A spatial weights matrix
is required for this process; thus, we first obtained a squared matrix
with of dimension of 32 (the number of states in Mexico) corre-
sponding to Queen contiguity with all entries equal to zero or one;
the latter indicating that two states are neighbours. Weights are cal-
culated by integrating this matrix in a row-standardized form.
SPLM variants can be fitted according to the presence or not of dif-
ferent terms: a space lagged effect associated with the response; a
space lagged effect associated with the error term; and the presence
or not of random or fixed effects suitable for panel data analyses.
The risk values were used as response variables and the remaining
variables as explanatory. Each observation corresponded to a time-
state combination. All explanatory variables were used as percent-
ages with respect to the number of infected people. Age was first
obtained according to 10-year age groups but was finally used as
the percentage of individuals aged ≥50 years, since this aggregated
age group was more associated with the risk levels, and all the age-
groups forming it were positively associated. 

The response variable was transformed into different scales,
but we finally used a logit transformation since the normality
assumption was better satisfied at this scale. We added a small con-
stant (summing around 0.5 deaths by observation), chosen for each
model as the value that improved the normality assumption, since
in the logit transformation logarithms are used and there are zero
values in some observations. The association between explanatory
variables, and between them, with the response was analysed by
using Pearson, Spearman and Kendall correlations. We fitted uni-
variate models to determine which variables were significantly
associated with risk, eliminating from the multivariable model
those that were not significant. We analysed the linearity assump-
tion of each input with the response by obtaining scatter plots
including a curve derived through locally estimated scatterplot
smoothing (LOESS). Since we observed that few important out-
liers in some variables were present, we replaced them for more
appropriate values. The SPLM with the variables obtained after
this process was fitted and model assumptions assessed. We deter-
mined whether the space-lagged effect and random effect were sig-
nificant, jointly and conditionally by using the LM-H one-sided
joint test and conditional LM tests (Baltagi et al., 2003, 2007), and
whether random or fixed effects were preferable by using a
Hausman test (Hausman, 1978; Mutl and Pfaffermayr, 2011) for
spatial models. R packages splm, spdp, rgdal, ggplot2, and cor-
rplot were used for the SPLM analyses. 

Time series clustering 
Time series clustering, a method used to create groups or clus-

ters of dynamic data, as described by Sardá-Espinosa (2017, 2019)
was used. The members of the same cluster are similar to each
other, but dissimilar from objects in a different cluster. In this kind
of analysis, the measure of similarity or distance, the function of
prototype or centroid extraction (a time series derived from the
data representative of a cluster), the clustering algorithm and the
cluster evaluation should be considered. The most common clus-
tering procedures are hierarchical and partitional. The clustering of
time-series proposed by Aghabozorgi et al. (2015) may be shape-
based, feature-based or model-based. For the former (shape-
based), it is common to utilize dynamic time warping (DTW) dis-
tance as dissimilarity measure. In this paper, we used a partitional
clustering, a DTW distance, a k-medoids method (partition around
medoids or PAM), which means that a time series in the data set is
used as a representative of a cluster and average linkage. All the
time series were standardized. To evaluate the clusters, we variated
the number of clusters (3 to 9) and compared them using the sil-
houette as an internal evaluation measure. R package dtwclust was
used to cluster the data.

Results

Results of descriptive space-time analyses
The gif presented on the website corresponds to the evolution

through time of case-fatality risks in Mexico by state and by week
from 1 January to 30 September 2020. During the early spread of
COVID-19 in Mexico, high case fatality risk levels were present in
the north-western states (mainly Baja California and Chihuahua)
and in the centre states (Mexico, Morelos, Hidalgo and Guerrero).
Moreover, on average, the highest mortality rates were observed in
July, followed by June and August, with higher case fatality risks
observed mainly in Baja California Norte (bordering the United
States), Chiapas (bordering Guatemala) and Sinaloa followed by
Campeche, Hidalgo, Mexico and Morelos (the last three in the cen-
tre around Mexico City) and other states showing lower risk, such
as Baja California Sur, Tamaulipas and Yucatán. 

Based on the Hovmöller diagram (Figure 1A) and the trends by
state and time (Figure 1B), we observed that there were states with
a greater case fatality risk at the beginning that then decreased, as
in Durango and Tabasco; other states in which the peak came ear-
lier; and a few states, such as Chiapas, where this peak was reached
much later. The monthly case fatality risks by state are presented
in Figure 1C.

Results of analyses of trends structure by state
Considering the case fatality risk as the response variable and

time as the explanatory variable, the fixed effects for both constant
and linear terms were significant (t=29.912, P<0.001; and t=–
3.420, P<0.001, respectively). The corresponding random effects
were jointly significant when compared with the model including
only the fixed effects (LR=295.056, P<0.001). A map correspond-
ing to this linear trend (including both fixed and random effects) is
shown in Figure 2A. As the states had different case fatality risk
trends, we could group them by the trend levels as follows:
Aguascalientes had the highest (in yellow, around 0.0035) fol-
lowed by Chiapas, Jalisco, San Luis Potosí and Tamaulipas (in
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Figure 1. Representations of COVID-19 case-fatality risks in Mexico by state from 1 April to 30 September 2020. Space time
(Hovmöller) plot representing weekly risks in a space-time cross section (a colour gradient is presented in which purple represents less
risk and blue greater risk) (A), Weekly time series (trends) associated with each state (B) and the monthly risk (C).
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orange, around 0.0015) and Campeche and Nayarit (in salmon,
around 0.001); others states were around zero, for instance
Coahuila de Zaragoza, Nuevo León and Querétaro (pink, around
0.0005), Sonora (magenta, around 0.0) and Baja California Sur,
Tlaxcala, Veracruz de Ignacio de la Llave, Yucatán and Zacatecas
(purple, around –0.0005). Finally, other states had the lowest neg-
ative trend levels, for instance, Baja California Norte, Colima,
Guanajuato, Michoacán de Ocampo, Oaxaca, Sinaloa and Mexico
(blue violet, around –0.0015), followed by Hidalgo, Mexico City
and Quintana Roo (blue, around –0.002), Chihuahua and Durango
(dark blue, around –0.0025) and Puebla (navy, around –0.0035)
and finally Guerrero, Morelos and Tabasco (dark navy, around –
0.0045).

We added some polynomial trends as random factors to the
models including only linear effects. The quadratic trend was sig-
nificant (LR=57.908, P<0.001) and thus added to the model. In the
new model, the cubic trend was significant (LR=72.855, P<0.001)
and thus added, resulting in another model in which the four-order

trend was also significant (LR=16.044, P=0.007) and thus also
added to the model. However, considering the last model, a five-
order trend was not significant (LR=7.517, P=0.2756), thus, the
model corresponded to a four-order polynomial. The correspond-
ing fixed effects were all included and significant (t tests with
P<0.001 for each fixed effect); in this, our final model, all random
effects were jointly significant (LR=413.095, P>0.001). 

The original and predicted time series by state are plotted in
Figure 2B. The graphs show the estimated values, i.e. the marginal
mean profiles, obtained from the LMM, in which a four-order
polynomial with intercept, including both fixed and random effects
by state, was fitted. We observed four different trend patterns.
Thus, i) Aguascalientes, Jalisco and San Luis Potosí had trends that
increased on average; ii) Baja California Norte, Chiapas,
Chihuahua, Coahuila de Zaragoza, Morelos and Nuevo León
showed a mixed patterns where the trends first increased, then
decreased and, at the end of the study, increased again; iii) Baja
California Sur, Campeche, Colima, Durango, Guanajuato,
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Figure 2. Representations of trends estimated through linear mixed models (LMM): A) Map of the linear trend by state obtained using
an LMM with fixed and random effects for constant and linear terms; and B) Observed and predicted case fatality risks obtained from
a LMM with fixed and random effects corresponding to a four-order polynomial. 

Table 1. Univariate and multivariate spatial panel linear model results of fatality risk analysis.

Variable                                                           Univariate SPLM                                                                  Multivariate SPLM
                                                   Estimate             Std. error           P-value                               Estimate         Std. error               P-value

Intercept*                                                       -                                    -                                -                                                  –4.94804                  0.16184                         <0.0001
Men (%)                                                     0.01605                        0.00320                    <0.0001                                            0.01762                   0.00257                         <0.0001
Age group ≥50 years (%)                       0.04286                        0.00206                    <0.0001                                            0.03909                   0.00276                         <0.0001
Asthma                                                       0.03728                        0.00798                    <0.0001                                            0.02904                   0.00966                         0.00265
Cardiovascular diseases                        0.02913                        0.00803                     0.0003                                              0.03105                   0.01006                         0.00203
Chronic kidney failure                            0.09289                        0.00987                    <0.0001                                            0.06413                   0.00965                         <0.0001
Diabetes                                                     0.03765                        0.00313                    <0.0001                                           –0.00113                  0.00401                         0.77688
COPD**                                                     0.05130                        0.01135                    <0.0001                                            0.00552                   0.01033                         0.59302
Hypertension                                            0.03701                        0.00311                    <0.0001                                            0.00822                   0.00382                         0.03135
Immunosuppression                              0.03688                        0.01480                     0.0127                                              0.00509                   0.01375                         0.71084
Pneumonia***                                          0.04296                        0.00155                    <0.0001                                                  -                               -                                     -
Obesity                                                       0.01974                        0.00314                    <0.0001                                           –0.00238                  0.00314                         0.44835
*Estimated constant terms for the univariate models differ by model and are not presented; **Chronic obstructive pulmonary disease; ***Pneumonia was not included in the multivariate model. SPLM, spatial panel
data linear model.
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Hidalgo, Michoacán de Ocampo, Nayarit, Quintana Roo, Sinaloa,
Sonora, Mexico, Tamaulipas and Zacatecas where little change
was noted over the study period; and Guerrero, Mexico City,
Oaxaca, Puebla, Querétaro, Tabasco, Tlaxcala, Veracruz de Ignacio
de la Llave and Yucatán where we observed generally decreasing
trends. The highest levels of the average trends of case fatality risk
were in Baja California Norte, Chiapas, Morelos and Sinaloa. 

Spatial panel linear models
In Figure 3, using the constant term of 0.5 in the logit transfor-

mation, we show the association (Pearson correlation) between the
relative number of males, people in the age group of ≥50 years,
pregnant women and the co-morbidities, whereas in Figure S1
(Appendix) we present a similar figure including the response vis-
à-vis 10-year age groups, in which it can be seen that it was con-
venient to aggregate age. Similar results were obtained using other
association measures. We observed high associations (>0.5)
between people aged ≥50 years and diabetes, hypertension, pneu-
monia; the highest association between co-morbidities were dia-
betes with hypertension and diabetes with pneumonia. Pneumonia
had the highest association with the logits; however, since an asso-
ciation in both directions between this variable and the response
was suspected, and there was some confusion between them, we
decided to eliminate it. 

To fit the spatial lineal model, we first obtained the Queen con-
tiguity matrix indicating the neighbours of each state (Table S1,
Appendix). Then the corresponding weights matrix was built. The
percentage of males and people aged ≥50 years showed as signifi-
cant variables in the univariate spatial linear models and in terms
of co-morbidities prevalence of asthma; cardiovascular diseases;
diabetes; COPD; hypertension; immunosuppression; pneumonia;
obesity; and chronic kidney disease (Table 1). The percentage of
pregnant women was not significant and thus not included in the
multivariable model. From the significant variables, we examined
the linearity assumption and observed that two variables (asthma
and cardiovascular diseases) had one outlier, each corresponding
to earlier observations at the time when few positive cases were
present; thus, we replaced them for the corresponding mean
(Figure S2, Appendix). 

Since the correlation matrix did not show a high correlation
between the inputs (Figure 3) and thus multicollinearity was not
suspected, we used all inputs in the multivariable model, except for
pneumonia and pregnancy as discussed before. Hence, the multi-
variate spatial linear model included percentage of men and people
aged ≥50 years as well as prevalence of asthma, cardiovascular
diseases, chronic kidney disease, diabetes, COPD, hypertension,
immunosuppression and obesity (Table 1). We determined that the
random effects (µ) and spatial effects associated with the response
(λ) were jointly significant (LM-H=566.71, P<0.001) and signifi-
cant when conditioned to one another (LM*-µ=25.477, P<0.001
and LM*-λ = 6.471, P<0.001; for the random effects and spatially
lagged effect, respectively), that random effects were necessary
(Hausman Chisq=0.800, P=0.999), and that the spatial lagged
effect for the error term (ρ) was also significant (t=6.187,
P<0.0001). Some interaction effects were considered, but since
they caused multicollinearity problems, they were omitted from
the model. The residuals obtained from the LMM by using all
covariates did neither show lack of normality nor lack of constant
variance (Figure S3 in Appendix). Results associated with the mul-
tivariable model are given in Table 1. All variables, except dia-
betes, immunosuppression, COPD and obesity, were significantly

associated with risk. The results show that the percentage of males
and being in the ≥50 group years were positively associated with
case fatality risk (OR=1.01778, P<0.001; OR=1.0399, P<0.001,
respectively). The co-morbidities significantly associated with
higher fatality risks were chronic kidney disease failure
(OR=1.0662, P<0.001), cardiovascular disease (OR=1.0315,
P=0.002), asthma (OR=1.0294, P=0.003), and hypertension
(OR=1.008, P=0.030).

Time series clustering
According to the silhouette criterion, four groups of time

series were necessary. The prototypes (centroids) of each cluster
corresponded to the states of Baja California Sur (cluster 1), San
Luis Potosí (cluster 2), Mexico City (cluster 3) and Sonora (cluster
4). The names of each state by group are displayed in Figure 4.

The groups were obtained according to the risk trends by state;
we observed four available trajectories of the standardized risks
along time (Figure 4). Group 1 included seven states which dis-
played a high increasing trend at the beginning and then a slow
decreasing trend, having a constant trend on average at the middle
of the time of observation. In general, these states kept their con-
stant levels (Colima or Querétaro). Group 2 included five states
with an increasing trend; they were those that maintained low risks
at the beginning but started to grow with time (Aguascalientes or
San Luis Potosí). Group 3 included ten states with a high fatality
risk from the beginning then a slow decrease and at the end
remaining more or less constant; these states had the highest fatal-
ity risks from the beginning (Baja California, Mexico City or
Morelos). Finally, Group 4 included ten states with a high risk
increase at the beginning, followed by a constant trend midway

                   Article

Figure 3. Association between inputs and between them and the
output, the logit transformation of the case fatality risks: men
(%), age group 50 years and over, pregnant women, and preva-
lence associated with the comorbidities.
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and ending with a decreasing trend. The trends in these states were
more dissimilar than in other groups, having a wider range of vari-
ation; this group included states such as Chiapas, which had a high
risk from the beginning and Yucatán that had had low values all
throughout the study. 

Discussion
We applied different spatio-temporal analyses concerning

COVID-19 case fatality risks. The descriptive analyses through
maps and animations allowed us to understand how the COVID-19
case-fatality risk evolved with time in what can be considered as the
first wave of COVID-19 and the beginning of the next wave in
Mexico. We observed how the risk in the various states differential-
ly increased, though this increase seemed to first be concentrated in
the Northwest, the Centre and in the Yucatán Peninsula. Later on, in
states such as Jalisco or Chiapas, the risk increased to rapidly reach
the highest values, together with those corresponding to the same
zones in which the risk increased from the beginning. Of notice is
how Chiapas has some of the highest values, which may be related
to the presence of indigenous population groups as some studies
have indicated through survival analyses (Argoty-Pantoja et al.,
2021). In this sense, it has been shown that the association with
COVID-19 cases spatially varies according to a disadvantage mea-
sure and an indigenous composition (Huyser et al., 2021).
Interestingly, Mexico City, despite having the greatest number of
deaths and positive cases, did not reach the same high risk levels as
the other states, which may be attributed to higher detection of mild
and asymptomatic cases compared to the rest of the country. We

also observed that the risk levels increased again at the end of the
study period; again a greater increase was observed in some states
in the North and in the Yucatan Peninsula, which might suggest a
cyclic behaviour. However, attention should be paid with regard to
the results associated with the first weeks, since few COVID-19
cases were identified at that time; and thus, the risk seemed to grow
faster compared to the then future weeks. This was also observed
when the spatial linear model was fitted in terms of other variables,
and this was the reason why percentages associated with two vari-
ables had to be replaced by their means. Thus, we think that the risk
assessments become more reliable after April or May. 

The spatial linear model had a good fit and allowed us to use
the longitudinal (through time) and spatial information (by state)
improving the precision of the estimated associations when com-
pared with a cross-sectional analysis. The dynamic of the risks var-
ied with time, thus results of different cross-sectional analysis
could provide different pictures. To improve the estimation pro-
cess, we used a small constant term in each model, which allowed
us to improve the normality assumption. Additionally, by consid-
ering that both time and space generate correlation between obser-
vations, we improved the estimations. For the multivariable model,
we eliminated pneumonia as an input since it is not necessarily a
precondition, as other co-morbidities, and can directly be caused
by the COVID-19 infection. Thus, we think that an analysis of the
direction of the association between COVID-19 and pneumonia
could be relevant in future research. According to the SPLM
results, the variables that were significantly, positively associated
with the case fatality risk were the percentage of males, percentage
of individuals in the ≥50 years age group, and prevalence of chron-
ic kidney disease, hypertension, cardiovascular diseases and asth-
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Figure 4. Groups of COVID-19 case-fatality risks trends (time series clustering) by state. They are obtained using a partitional cluster-
ing method, a dynamic time warping distance, k-medoids, and average linkage. Centroids are shown as grey dashed lines and corre-
spond to the states of Baja California Sur (cluster 1, with seven elements), San Luis Potosí (cluster 2, with five elements), Mexico City
(cluster 3, with ten elements), and Sonora (cluster 4, with ten elements). Cluster members are also shown, the centroids of each cluster
are in bold.
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ma. Notably, co-morbidities associated with the distribution of
COVID-19 in Mexico had been identified previously. An older
population structure and a high burden of cardio-metabolic co-
morbidities predispose individuals to a more severe disease, thus
increasing overall mortality (Bello-Chavolla et al., 2020, 2021).
The northern states in Mexico are characterized by higher rates of
chronic cardio-metabolic diseases, which may explain some of the
higher case-fatality rates observed in this study. Whether the distri-
bution of metabolic burden may be the primary influencer of case
fatality or whether this could be attributable to intrinsic deficien-
cies in the healthcare system obstructing access and quality of
medical care remains as an opportunity for future research.

When analysing clusters of the time series associated with the
case fatality risks, we used both partitional and hierarchical clus-
tering methods. We focused on the partitional method since we
obtained one cluster with only one state with the hierarchical clus-
tering approach. However, the structure of the time series pertain-
ing to each cluster produced similar results independently of the
method used. It is interesting to see the different patterns of risk
developed with time. The most common pattern, as seen in Group
1 and 3, corresponded to states with an initial increase followed by
a decrease of the case fatality risk with time and afterwards stabi-
lizing into a constant trend. However, some states showed a retard-
ed increase, while others (Group 2) generally increased with time.
Probably these differences were related to mobility and how the
disease propagated; perhaps much earlier in some states compared
to others. In this sense, we can clearly see how the northern frontier
around the Baja California Peninsula, Yucatan and the areas near
Mexico City had an earlier risk increase, which remained high
through all the time windows analysed. This can be explained by
considering that there is a higher external and internal mobility,
particularly around Mexico City, leading to higher population den-
sities and a stronger economic activity, which may be the reason
for the earlier risk increase (Ramírez-Aldana et al., 2021).
Similarly, social vulnerability could also be behind the trend differ-
ence between the states as shown when comparing death rates in
counties in the United States (Neelon et al., 2021) with high and
low vulnerability and in marginalized municipalities within
Mexico City (Antonio-Villa et al., 2021). The difference between
death rates in Europe has also shown this differential of fatality by
time and by country (Amdaoud et al., 2021) indicating that spatial
clusters in some regions evolve with time; however, it is difficult
to identify and define all the factors behind this behaviour.

The risk trends could also be examined through the fitted linear
mixed models, in which we used random and fixed effects and
identified that a four-order polynomial was necessary to properly
model the trends. The estimated trends allowed us to identify that
the most general structure is one in which the risk increases and
then decreases; though, as we saw in the clusters, this trend is not
present in all states. When considering only linear trends, we
observed that they decreased or remained around zero in most
states, which makes sense since the first wave showed a relatively
rapid up and down character in most states. However, once again
some states showed a generally increasing trend, possibly related
to the difference in the propagation of the disease through the ter-
ritory as a whole. It is important to understand the different trends
by state to identify what the differences are. Perhaps, by identify-
ing the reasons why some states had a more successful risk
decrease, it might be possible to implement this successful scheme
in other states and for future waves.

It is important to notice that the outcomes obtained are aggre-

gated by state and time. In this sense, the results, particularly in
terms of the spatial lineal model, cannot be inferred to an individ-
ual level (Pearce, 2000). For instance, we know that a higher per-
centage of individuals aged ≥50 years is associated with a greater
risk, but this fact does not necessarily tell us that all individuals
≥50 years are associated with a higher risk. Thus, all conclusions
in terms of the model must be taken with care. However, the aggre-
gated analyses give us a better understanding of trends, clustering
and risk association at the state level than a cross-sectional or ret-
rospective analysis does. In terms of the factors associated with
COVID-19 fatalities, both individual and aggregated analyses are
relevant. From the latter, it is possible to identify policy actions
that could improve specific conditions lowering the risk in groups
of individuals in future COVID-19 waves and also for other infec-
tious diseases. Additionally, we obtained associations that can be
considered robust since we simultaneously considered time and
different geographical units; thus, obtaining a better picture of
which conditions are truly associated with the risks in the first
wave of the COVID-19 pandemic. Indeed, it could be that all sig-
nificant estimated coefficients have low values (or odds ratios
close to one); however, in terms of deaths their effect is quite rele-
vant. For instance, assuming a risk of 0.2, or odds of 0.25, after an
increase in the percentage of males in one unit (being its estimated
coefficient 0.017, considering fixed values for the other variables),
the risk under the model would now have a value of 0.203, whereas
the odds would be 0.254. Hence, considering for instance 1000
infected individuals per week (a common value in many states dur-
ing the pandemic), the number of deaths would increase by
approximately three. In addition, considering the large population
size in Mexico and that the number of COVID-19 cases is with all
probability much larger than the one reported, the presence of
other significant variables could lead to effects that should be con-
sidered. Our analysis could be helpful in terms of policy making
(Franch-Pardo et al., 2020; Ahasan and Hossain, 2021) since we
are able to understand which zones are more vulnerable (with
higher risk), what type of death curve can be expected globally and
by state, and whether the death patterns will change with time. This
could help us understand if some measures considered in some
places could also be useful for other regions, or if similar patterns
should be expected in the future. Thus, policy should perhaps vary
according to the geographical conditions instead of applying the
same approach all over the country. Additionally, from the linear
model, we could identify which group of individuals and diseases
should be looked at more closely in order to reduce mortality rates.

A spatio-temporal analysis of COVID-19 case-fatality in
Mexico, as the one we present here, has not been previously per-
formed. However, we must consider that the number of COVID-19
cases is probably larger than reported and that the number of
deaths could vary as well. Thus, the risk is only indicative for the
real values. In this sense, we used only the information from
January to September in our analyses and not afterwards since
after October the definition of the meaning of a positive case was
modified. If further spatio-temporal analyses were performed,
including dates after and before October, this matter should be con-
sidered, and they would most possibly lead to adjusted risk values.
For future research, a similar analysis could be performed at a
higher resolution, such as at the municipality level. Indeed, efforts
have recently been made to provide aggregated data at this level
using the same dataset we used for our analysis, but also including
additional variables (Mas, 2021). 
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Conclusions
A heterogeneous profile of the distribution of case fatality risks

across Mexico has been produced for the first wave of COVID-19
in 2020. State profiles point at spatially defined units, which may
have influenced how COVID-19 mortality occurred during this
first wave and may provide valuable insight into COVID-19
dynamics in future outbreaks. They may as well as identify addi-
tional determinants. By combining spatial and temporal informa-
tion, a more in-depth understanding of COVID-19 case fatality
may inform public policies for regional pandemic management.
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