
Abstract
Coronavirus disease 2019 (COVID-19) has strongly impacted

society since it was first reported in mainland China in December
2020. Understanding its spread and consequence is crucial to pan-
demic control, yet difficult to achieve because we deal with a com-
plex context of social environment and variable human behaviour.
However, few efforts have been made to comprehensively analyse
the socio-economic influences on viral spread and how it pro-
motes the infection numbers in a region. Here we investigated the
effect of socio-economic factors and found a strong linear rela-
tionship between the gross domestic product (GDP) and the cumu-
lative number of confirmed COVID-19 cases with a high value of
R2 (between 0.57 and 0.88). Structural equation models were con-
structed to further analyse the social-economic interaction mecha-
nism of the spread of COVID-19. The results show that the total
effect of GDP (0.87) on viral spread exceeds that of population
influx (0.58) in the central cities of mainland China and that the
spread mainly occurred through its interplay with other factors,
such as socio-economic development. This evidence can be gen-
eralized as socio-economic factors can accelerate the spread of

any infectious disease in a megacity environment. Thus, the world
is in urgent need of a new plan to prepare for current and future
pandemics.

Introduction
The coronavirus disease 2019 (COVID-19), first reported in

Wuhan, Hubei Province, China in December 2019 and labelled as
a pandemic by the World Health Organization (WHO) on 11
March 2020 (Worldometer, 2020), has become a worldwide threat.
Two years have passed and we still face the challenge of COVID-
19, which has impacted social and economic activities around the
world (Bonaccorsi et al., 2020; Human development report, 2020;
Guan et al., 2020). In consequence, global human development
may have declined for the first time in the recent 30 years (Human
development report, 2020). Source of infection, way of transmis-
sion and a susceptible population are the three main elements that
decide how infectious diseases spread. Therefore, in addition to
the reproduction of the virus itself, socio-economy factors related
to these key elements play an important role in the spread of the
pandemic. While population movements, population density (PD)
and the situation of probable virus-endemic areas obviously
impact its spread, the influence of the socio-economic factors
remains unclear and so is the mechanism of interaction between
these factors. An examination of how the influential factors are
related to the spread of COVID-19 would not only be helpful for
understanding the mechanism of multiple influential factors on the
spatial spread of the pandemic, but would also provide insights
into the ways of future prevention against similar infectious dis-
eases (Enserink et al., 2020; Qiu et al., 2020).

Recent literature on the initial spread of the COVID-19 has
highlighted the role of population movement, which is highly
related to the level of social and economic development. In mod-
ern society, population movement between regions and inside
regions is largely due to economic and social life including work,
business, family, tourism, etc. Studies have found that cities with
a higher population influx (PopInflux) from Wuhan usually had
more confirmed cases in the early stage (Jia et al., 2020; Qiu et al.,
2020; Zhang et al., 2020). Jia et al. (2020) developed a spatial-
temporal exponential model using PopInflux to estimate the con-
firmed cases in prefectures, with the gross domestic product
(GDP) used as an important index. Zhang et al. (2020) used a lin-
ear regression model to simulate the relationship between
PopInflux and the imported cases suggesting that population
movement plays an important role in the spread of COVID-19.
These studies verified the importance of population movement in
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the spread of the infection. However, the driving force of migration
in this context has not been studied.

Studies examining the relationship between social-economic
factors and the initial spread of infectious diseases have found that
cities with higher GDP per capita have higher COVID-19 trans-
mission rates (Chakraborti et al., 2020; Qiu et al., 2020; Sun et al.,
2020). In addition, situation and scale of the PopInflux from
Wuhan were contributing to the spread of the disease before
Wuhan’s shutdown (Wu et al., 2021). The expansion of the trans-
portation networks also had a significant influence leading to
increased transmission (Adda et al., 2020). Besides, since COVID-
19 is airborne and supported by close contact, environments such
as schools and offices promote transmission (Markowitz et al.,
2019). However, only few studies have focussed on comprehen-
sive quantification about how social-economic factors influence
transmission and the complex interactions among these variables.

Structural equation model (SEM) is an effective causal analy-
sis of the influential mechanism of the social-economic factors
model, which can measure the relationship between multiple inde-
pendent variables and multiple dependent variables (Grace et al.,
2016). SEM has several advantages for causal analysis. First, it can
manage observed variables and the so-called latent variables which
cannot be measured directly (Yang et al., 2020). Second, SEM can
deal with the error level of observed variables so that the estima-
tion of correlations between latent variables are less affected by
measurement errors. Third, SEM can analyse direct and indirect
effects quantitatively, thereby disentangling complicated variable
interactions (Grace et al., 2016). The technique has been widely
used in soil examination (Angelini et al., 2016), environmental sci-
ence (Hao et al., 2020) and ecology (Grace et al., 2016) and can
therefore be a potential approach when attempting to analyse the
influential mechanism(s) of the social-economic factors on virus
transmission.

The main objective of this paper was to quantify the impacts of
social-economic factors at the early stages of COVID-19 spread,
including a study of the interaction of these factors and their direct
and indirect effects. We first conducted correlation analysis and
regression analysis to recognize the most representative influential

factors on the cumulative number of confirmed cases (COVID)
and then utilised the SEM models to identify the complex intercon-
nection of socio-economic variables and their effects on transmis-
sion. The overall aim was to provide a future epidemiological per-
spective on COVID-19 leading to a better understanding of its
transmission, thereby supporting government decision-making.

Materials and methods
We investigated the effect of social-economic variables on

COVID-19 covering the key episodes of the spread of the virus in
mainland China. The study involved 306 prefecture-level cities of
the 31 provinces from 21 January to 27 February 2020 using SEM.
The socio-economic variables, including GDP, PD, road accessi-
bility, PopInflux and distance to the probable epicentre were
selected as the influential factors. The samples of confirmed
COVID-19 cases used covered the critical periods of virus incuba-
tion and transmission

Data
The raw data were collected from the repository of the Centre

for Systems Science and Engineering (CSSE) at Johns Hopkins
University (Dong et al., 2020). Wuhan was the epicentre and the
infection number in Hubei Province was the highest among the 31
provinces. Cities in other provinces with high infection numbers
included Beijing, Shanghai, Guangzhou, Shenzhen and
Chongqing. In general, the infection numbers in southeast China
were much higher than those in northwest China. The south-east-
ern coastal cities are economically advanced areas with a high PD
and more developed transportation than other regions and there
was, to some extent, a consistency between the severity of the
infection and the level of urban development in the geographical
distribution (Figure 1A and B). 

Confirmed COVID-19 cases and time line
We explored the relationship between the socio-economic fac-

                   Article

Figure 1. Spatial distribution of gross domestic product (GDP) and COVID-19 in China. A) GDP in 2019; B) the cumulative confirmed
number of COVID-19 cases on 27 February 2020.
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tors and the number of COVID-19 cases in 288 cities with con-
firmed cases in mainland China (excluding Hubei Province) and
35 central cities (excluding Wuhan). We also investigated the rela-
tionship in local regions, such as Hubei Province, the Yangtze
River Delta Area, the Pearl River Delta Area, Jing-Jin-Ji, a big-city
cluster in northern China and the Cheng-Yu Economic Circle.

We chose the dates 30 January 2020 (C130) and 6 February
2020 (C206) for SEM modelling based on the COVID-19 incuba-
tion period of 14 days (Dong et al., 2020; Bendavid et al., 2020).
We added 13 February 2020 (C213), the 7th day after the lockdown
of Wuhan, to have three days with seven days between them
(C130, C206 and C213) for linear regression analysis.

Influential variables
Influential variables are the following (Table 1):

- Gross Domestic Product (GDP) was used as measure of produc-
tion activities and economic strength. It is generally recog-
nized as the best indicator to measure the economic situation
of a country or a region (Ma et al., 2015; Zhang et al., 2020)
during a certain period calculated according to the national
market price (Zhang et al., 2020). When the GDP for 2019 was
not available, GDP for 2018 was used as alternative (National
Bureau of Statistics);

- Population Density (PD), the number of people per unit land area
(Qiu et al., 2020; Wu et al., 2021), was downloaded for main-
land China from the website www.worldpop.org at a resolution
of approximately 1 km2 at the equator (Lloyd et al., 2019) and
calculated to city scale by aggregation. This dataset available
at intervals of five years, with the currently latest data from
2020.

- Road Accessibility (RoadAccess), another reflection of economic
development (Jia et al., 2020; Qiu et al., 2020), was generated
from https://download.geofabrik.de. The RoadAccess grid
map used was calculated from the main roads extracted from
original road vector data for mainland China following
Sanderson et al. (2002) and Venter et al. (2016) using score 8
for distances from the road at <500 m distance and exponen-
tially decaying to 0 at >15 km. To obtain the mean
RoadAccessof each city, the grid data were aggregated to city
scale (Venter et al., 2016; Wu et al., 2021);

- Distance to the epicentre (Dis2Wuhan), the Euclidean distance
from Wuhan to the destination city, was achieved by generat-
ing the gravity centre of each city and calculating the distances
using ArcGIS 10.2 (ESRI, Redlands, CA, USA); 

- Population influx from Wuhan (PopInflux), the quantity of popu-
lation movement, was collected daily between 1 to 23 January
2020 from Wuhan to each city based on Baidu migration big
data (http://qianxi.baidu.com/). Baidu uses the change of posi-
tioning data during a certain period to get the PopInflux data
from the source region to the destination. The total daily
PopInflux for each city data were calculated by aggregation
(Wu et al., 2021).

Statistical approach

Data preprocessing before linear regression and structural
equation modelling

The influential variables and COVID-19 on the dates C130,
C206 and C213 were normalized by logarithm (base 10) transfor-
mation, and then changed into a normal distribution (Ghasemi et
al., 2012). The PopInflux data obtained from Baidu migration data
only made the data of the top 100 cities available, so the daily
PopInflux of cities with little population flow from Wuhan could
potentially be zero. After summing the data from 1 to 23 January
2020 by city, there were still some zeros. To ensure the stability of
the result, we added a very small margin value (0.01) to the Pop
Influx data.

Ordinary least square regression
Ordinary least square (OLS) regression (Hutcheson et al.,

2011; Patton et al., 2018; Wu et al., 2021) was conducted to inves-
tigate the relationship between GDP and the case number. For lin-
ear regression of one variable, n groups of observations (X1,
Y1),(X2, Y2), …(Xn, Yn) were assumed. The principle of the OLS
method is to minimize the sum of the squares of the residuals to
determine the best fitting curve, which is determined by minimiz-
ing the total fitting error, i.e. the total residual error. In addition to
the convenience of calculation, the estimator obtained this way has
excellent characteristics. We also checked the model and the atten-
dant assumptions for adequacy and validity (Ghasemi et al., 2012;
Patton et al., 2018).

Structural equation modelling
This method, a statistical framework combining two or more

relational models to obtain multiple relationships, was used to
establish, estimate and test causal relationships (Grace et al., 2006,
2016; Yang et al., 2020). SEM can deal with observed variables
and latent variables; it can also have multiple dependent variables

                                                                                                                                Article

Table 1. Overview of variables investigated.

Variable                                         Year              Resolution      Sources                                                                                             Symbol

Gross domestic product (GDP)             2019                     City scale          National Bureau of statistics, provincial and Municipal                                    GDP2019
                                                                                                                                 Bureau of Statistics                                                                                                            
Population density                                     2020                     1 km grid           Worldpop                                                                                                                        PD2020
                                                                                                                                 (https://www.worldpop.org/)                                                                                             
Road accessibility                                       2020                        Vector             OpenStreetMap
                                                                                                                                 (https://download.geofabrik.de)                                                                           RoadAccess
Distance to Wuhan                                        -                                 -                   Calculated from the administrative division map of 
                                                                                                                                 mainland China in 2015 downloaded from (http://www.resdc.cn/)                Dis2Wuhan
Population influx from Wuhan                2020                     City scale          Aggregated from the daily population influx from Wuhan to each city         PopInflux
                                                                                                                                 from 1 to 23 January, 2020
                                                                                                                                 (http://qianxi.baidu.com/)                                                                                                  
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in one model and is capable of establishing a multivariate relation-
ship, which refers to the sum of direct and indirect interactions
between variables (Grace et al., 2016). The COVID-19 is a novel
type of infection, whose transmission has not yet been fully clari-
fied as it is affected by multiple factors. Here, SEM was utilized to
identify the influence of socio-economic factors on COVID-19
transmission. We used the maximum likelihood estimation
method, commonly applied in SEM modelling, which iteratively
solves the model parameters to obtain the optimal parameter esti-
mation of the fitting model (Grace et al., 2016). We established
SEM models using the five observed variables described above:
GDP, PopInflux, PD, RoadAccess, Dis2Wuhan plus one latent
variable that represented COVID-19 on the dates chosen
(COVID). Figure 2 shows the potential paths in a hypothesis-ori-
ented SEM model. First we hypothesized that all five socio-eco-
nomic variables have direct effects on COVID; second that GDP
may indirectly affect COVID-19 through its effect on PopInflux,
PD and RoadAccess; third that the direct influence of PopInflux on
COVID-19 would probably be driven by GDP, PD and
RoadAccess. Finally, we thought that RoadAccess may also be
affected by GDP and PD and then affect COVID-19. Based on
these hypotheses, we fed the data into the model for fitting, adjust-
ed the model by adding the effective paths and removing the non-
significant paths to obtain the best-fitted SEM models for different
regions (Hu et al., 1999; Schumacker and Lomax, 2004). To verify
the socio-economic influence when lacking PopInflux data, we
also constructed SEM models without PopInflux.

Results

Socio-economic factors and COVID-19
The relationship between the socio-economic factors and

COVID-19 (Figure 3) and the correlation among the socio-econom-
ic factors (Figure 4) were evaluated by Spearman’s correlation. For
the 288 cities, PopInflux from Wuhan, GDP in 2019 (GDP2019) and
the PD in 2020 (PD2020) were the variables most correlated with
COVID-19 (Figure 3A). GDP and PopInflux showed the highest
correlations (Figure 4A), i.e. the correlation of PopInflux with
COVID-19 was higher than that of GDP2019 and PD2020 during
this period. All the curves rose first steeply (i.e. at the starting dates
before 31 January) and then stabilized at a high level. For instance,
the correlation of PopInflux was stable at a correlation coefficient of
0.75, while RoadAccess was slightly better correlated with COVID-
19 than that of Dis2Wuhan, which was negatively correlated with
COVID-19 but at a low level, an indication that the distance to the
origin of the virus plays a very limited effect on the development of
transport facilities.

As for the 35 central cities, the correlation coefficients of
GDP2019, PD2020 and PopInflux increased at the starting dates as
before but then also remained stable. In the beginning, the correla-
tions of GDP2019 and PD2020 were higher than that of PopInflux,
then the correlation coefficients of the three indices were nearly the
same at the 0.84 level. The RoadAccess coefficient achieved a value
higher than 0.5 between 23 and 28 January 2020, indicating its effect
on the transmission of COVID-19 in the early stage. The negative
correlation of Dis2Wuhan with COVID-19 was not as strong as
other factors mainly because the big cities with high case numbers,
such as Beijing, Guangzhou, etc., are situated far from Wuhan. This
again shows the effect of transportation conditions on the spread of
COVID-19 in modern society. The fluctuations in the correlation
coefficients at the starting dates (i.e. before 24 January) may be relat-
ed to the lack of early detection and diagnosis experience of the epi-
demic in some less developed cities. Compared with the results for
the 288 cities, the central cities are usually the most developed, thus
having higher socio-economic levels and more convenient trans-
portation. This explains the stronger correlations of GDP2019,
PD2020 and RoadAccess in the central cities (Figure 4B).

                   Article

Figure 2. The structural equation model hypothesis showing the potential, influential factors under research. GDP2019, GDP 2019;
PD2020, poulation density; PopInflux, population influx; Dis2Wuhan, distance to Wuhan. COVID, the cumulative number of con-
firmed cases of COVID-19; C130, COVID-19 on 30 January 2020; C206, COVID-19 on 6 February 2020. The paths between variables
represent direct influences, with the path coefficients given.
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Linear relationship between GDP2019 and COVID-19
The results presented above showed a strong positive correla-

tion between GDP2019 and COVID-19. We then continued by
analysing the linear relationship between GDP2019 and COVID-
19 at different dates (C130, C206 and C213). Before the analysis,
we conducted a normality test on the data and found that they were
not normally distributed. Therefore, we performed a logarithmic
data transformation before the regression analysis. As shown in
Figure 5, COVID-19, in most instances, were strongly, linearly
associated with the GDP2019 variable. Thus, the more developed
the economy is, the more people are infected. This pattern was
consistent, both in the country as a whole and locally in Hubei
Province, Jing-Jin-Ji and the Cheng-Yu Economic Circle. In Figure

5A, the highest R2 of regressions was 0.61 for C130 and C206 in
288 cities, while the R2 was 0.59 for C213, i.e. slightly less than
before.

Figure 5B shows the highest R2 of regressions (0.74) of
COVID-19 on the C206 and C213 dates in the 35 central cities and
0.72 for C130. As can be seen in both Figure 5A and B, the slope
of the fitting line rises with the date. In Hubei (Figure 5C), GDP
and COVID-19 had a positive linear trend. In Jing-Jin-Ji (Figure
5D) and Cheng-Yu Economic Circle (Figure 5E), GDP and
COVID-19 had a significant linear relationship and the regressions
met the assumptions of adequacy and validity. Due to the limited
sample size in these areas, we must be careful when referring to the
conclusions of these regression models. In general, GDP and
COVID-19 had a clear linear relationship pointing towards the

                                                                                                                                Article

Figure 3. Correlations between the socio-economic variables and the number of cumulative confirmed COVID-19 cases. A) 288 cities
in mainland China (Hubei excluded); B) 35 central cities in mainland China (Wuhan excluded).

Figure 4. The correlation matrix among the different variables. A) 288 cities in mainland China (Hubei excluded); B) 35 central cities
in mainland China (Wuhan excluded). The diameter of the circles represents the degree of correlation.
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Figure 5. Linear relationships between gross domestic product (GDP) 2019 and the cumulative number of confirmed cases COVID-19
on 30 January, 6 February and 13 February. A) 288 cities (Hubei excluded); B) 35 cities (Wuhan excluded); C) Hubei Province; D) the
Jing-Jin-Ji cluster; E) the Cheng-Yu economic circle. Note that there are several points with the same y-ordinate in figure A because in
the early days the cumulative number s of COVID-19 cases in some cities were the same.
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potential role of economic development in the spread of COVID-
19. The R2 was between 0.57 and 0.88 for all models. In general,
COVID-19’s spatial distribution followed this pattern.

Direct and indirect effects of different factors on COVID-19
To further explore the direct and indirect effects of PopInflux,

GDP2019, PD2020, RoadAccess, Dis2Wuhan and their interac-
tions, we constructed an SEM model for influential factors and

COVID-19 for C130 and C206, which represents the 7th and 14th

day of the lockdown in Wuhan.
The SEM models for the 288 cities (excluding Hubei province)

and the 35 central cities (excluding Wuhan) explain 72% and 84%
of the variances, respectively (Figure 6A and B). In Figure 6A,
GDP can be seen to have an indirect impact (0.46) on COVID-19
by strongly affecting PopInflux and PD2020, as well as a small
direct effect (0.21) on COVID, while in Figure 6B, GDP has no

                                                                                                                                Article

Figure 6. The constructed structural equation models (SEM). The paths between variables represent direct influences, and the numbers
next to them are path coefficients. The green paths represent positive effects, while the red ones represent negative effects. The black
paths represent the observed variables that make up the latent variables, with the numbers next to them are the coefficients contributed
by each observed variable. Solid lines indicate significant paths, while dashed ones indicate lack of insignificance. R2 represents the
explained proportion of the variance. C130 and C206 denote the cumulative confirmed cases on 30 January and 6 February, respec-
tively. The influential factors are gross domestic product (GDP) in 2019 (GDP2019), population influx (PopInflux), population density
in 2020 (PD2020) and distance to Wuhan (Dis2Wuhan). The road access path of was removed from the final SEM models as it was not
affecting COVID-19 significantly in all models.

Table 2. Effects on COVID-19 of socio-economic factors and distance from Wuhan.

Group                                                                                      Effect            GDP2019         PopInflux               PD2020              Dis2Wuhan

288 cities in mainland China (excluding Hubei Province)                      Total                        0.67                         0.43                               0.16                              –0.25
                                                                                                                            Direct                       0.21                         0.43                                0.16                              –0.25
                                                                                                                                                           0.009**                   0.00**                           0.015*                           0.00**
                                                                                                                          Indirect                     0.46                         0.00                               0.00                               0.00
35 central Cities in mainland China (excluding Wuhan)                         Total                        0.87                         0.58                                0.37                                  -
                                                                                                                            Direct                       0.00                         0.58                                0.37                                  -
                                                                                                                                                                                            0.00**                           0.00**                                
                                                                                                                          Indirect                     0.87                         0.00                               0.00                                  -
GDP2019, GDP 2019; PopInflux, population influx; PD2020, population density 2020; Dis2Wuhan, distance to Wuhan. **Statistical significance at P≤0.01; *statistical significance at P≤0.05. Significance of the indirect
effects and the total effects are not given by structural equation models. Italics indicates the largest effect coefficient in this line.
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direct effect on COVID-19 but only indirect effects through
PopInflux and PD2020. PopInflux had a strong direct effect on
COVID-19 in both models. As shown in Table 2, the total effect of
GDP on COVID-19 in the two models was 0.67 and 0.87, respec-
tively, which is higher than that of PopInflux (0.43 and 0.58,
respectively). PD2020 had generally a small direct effect (0.16) on
COVID-19 (Figure 6A), while its effect for the central cities was
more significant with a coefficient of 0.37 (Figure 6B). The rela-
tionship between Dis2Wuhan and COVID-19 was not significant
in the model for the central cities in mainland China but negatively
correlated (–0.25) for the 288 cities.

RoadAccess had no significant effect on COVID-19 and was
therefore deleted from the modelling. Overall, GDP had the high-
est total effect on COVID-19 compared to the other influential fac-
tors and PopInflux had the highest direct effect. This indicates that
the virus must have broken through the traditional limits of dis-
tance to spread by transportation.

The SEM models that were constructed for local regions in
China only include GDP2019 and PopInflux (Figure 6AD-F). In
Hubei province, PD2020 is also included (Figure 6C). This shows
that GDP2019 influenced the spread of COVID-19 mainly by the
interaction with the PopInflux in local areas. In Hubei province,
the Yangtze River Deltaand the Pearl River Delta (Figure 6AC, D
and F), GDP2019 had only an indirect effect on COVID-19 but no
significant direct influence, while PopInflux had the highest direct
and total effects on COVID-19 (Table 3). In the SEM model of
Cheng-Yu Economic Circle (Figure 6E), GDP2019 had a signifi-
cant, direct effect on COVID-19 with a path coefficient of 0.65,

which was greater than that of PopInflux (0.31) as seen in Figure
6E. Importantly,comparted to all other variables, GDP2019 had the
highest total effect (0.92) on COVID-19 (Table 3). In these areas
(Figure 6AC-F), the SEM models could explain between 61% and
90% of the variance. The overall results indicate that the spread of
COVID-19 in local areas is mainly controlled by PopInflux, which
is mainly affected by GDP2019, suggesting the potential influence
of the economy on the spread of the virus. 

The structural equation models with and without PopInflux
data

The results of our study showed GDP has a strong total effect
and PopInflux a strong direct effect on COVID-19 in mainland
China. To verify the socio-economic influence when lacking
PopInflux data, we constructed SEM models for cities in mainland
China without PopInflux.

For the models of the 288 cities and the 35 central cities, R2 of
the models without PopInflux was 0.65 and 0.82, respectively
(Figure 7). R2 decreased only by 0.07 and 0.03, respectively, com-
pared to the SEM models using all variables. This indicates that the
explicatory potential for GDP is strong with respect to spreading
the virus. Table 4 shows that GDP had a higher total effect on
COVID-19 than PD, Dis2Wuhan and RoadAccess, which had the
highest direct effect for the model in 288 cities and the most indi-
rect effect for the model in central cities. This indicates that GDP
plays an important role for transmission of the virus.

Using only GDP in the modelling (Table 5), the R2 is 0.58
(Hubei province), 0.43 (Yangtze River Delta), 0.86 (Cheng-Yu

                   Article

Table 3. Total, direct and indirect effects on COVID-19 in different geographcal areas.

Effect                            Hubei Province Yangtze River Delta Cheng-Yu Economic Circle Pearl River Delta
                    GDP2019         PD2020      PopInflux       GDP2019     PopInflux              GDP2019     PopInflux             GDP2019      PopInflux

Total                        0.72                      0.29                   0.76                       0.69                    0.78                               0.92                     0.31                              0.86                      0.92
Direct                     0.00                      0.29                   0.76                       0.00                    0.78                               0.65                     0.31                              0.00                      0.92
                                   -                       0.00**              0.00**                       -                     0.00**                          0.00**                  0.06                                 -                      0.00**
Indirect                  0.72                       0.00                   0.00                       0.69                    0.00                               0.27                     0.00                              0.86                      0.00
GDP2019, GDP 2019; PD2020, population density 2020; PopInflux, population influx. **Statistical significance at P≤0.01; Significance of the indirect effects and the total effects are not given by structural equation models.
For each model, italics indicates the largest effect coefficient in this line, i.e., 0.76 (Popflux) is largest than 0.72 (GDP2019) and 0.29 (PD2020) for the total effect in Hubei Province. 

Table 4. Effects on COVID-19 of socio-economic factors and distance from Wuhan with exception of PopInflux.

Group                                                                                          Effect                       GDP2019                    PD2020                   Dis2Wuhan

288 cities in mainland China (excluding Hubei Province)                           Total                                      0.66                                      0.15                                     –0.30
                                                                                                                                  Direct                                     0.53                                      0.15                                     –0.30
                                                                                                                                                                                0.00**                                 0.047*                                  0.00**
                                                                                                                                Indirect                                   0.13                                      0.00                                       0.00
35 central Cities in mainland China (excluding Wuhan)                              Total                                      0.74                                      0.46                                     –0.25
                                                                                                                                  Direct                                     0.30                                     0.46                                     –0.25
                                                                                                                                                                                  0.27                                     0.08                                    0.00**
                                                                                                                                Indirect                                   0.44                                      0.00                                       0.00
GDP2019, GDP 2019; PD2020, population density 2020; Dis2Wuhan, distance to Wuhan. **Statistical significance at P≤0.01; *statistical significance at P≤0.05. Significance of the indirect effects and the total effects are
not given by structural equation models. Italics indicates the largest effect coefficient in this line.

Table 5. Comparison of R2 of structural equation models for mainland China and various geographical areas.

Model                                                             The 288           The 35             Hubei       Yangtze River       Cheng-Yu Economic           Pearl
                                                                         cities        central cities    province          Delta                         Circle                 River Delta

Models based only on GDP2019                                        0.57                        0.75                       0.58                       0.43                                       0.86                                  0.74
Models without PopInflux                                                  0.65                        0.81                          -                             -                                            -                                        -
Models based on all variables (section results)          0.72                        0.84                       0.90                       0.61                                       0.88                                  0.85
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Economic Circle) and 0.74 (Pearl River Delta), which almost have
the same explanatory power as the models using all variables. For
the model in Cheng-Yu Economic Circle, the R2 only declined by
0.03. In Hubei Province, although the R2 had declined by 0.32,
GDP still explains more than 50% of the variance (Table 5). In the
Yangtze River Delta and the Pearl River Delta, the R2 had declined
by 0.18 and 0.11. These results show the important influence of
GDP on COVID-19. 

Discussion

Applicability and limitation
We identified the most influential socio-economic factors on

COVID-19 in mainland China. The SEM modelling suggested a
strong effect of GDP on COVID-19 through its interactions with
other variables, in particular population density and population
influx. Although the situation nationwide is complex and might
need more explanatory variables, GDP remains one of the most
important variables and by explaining more than 50% of the vari-
ance. The finding that economy has a positive correlation with
infection numbers in a region is supported by the work of Qiu et
al. (2020) and Zhang et al. (2020), and our conclusion that
PopInflux has a direct effect on the transmission of COVID-19 is
consistent with the studies of Jia et al. (2020) and Zhang et al.
(2020). 

The advantage of SEM modelling is that it can deal with obser-

vation variables with errors to make the model more reliable. For
example, the actual number of infected patients may not be equal
to the number of reported confirmed cases on a day (Bendavid et
al., 2020) because of missing reports, especially in the early stage
of viral spread. Further, we used COVID-19 for certain key periods
depending on the common14-day incubation period (i.e. the 7th and
14th day after the lockdown of Wuhan) as the dependent variables.
This choice assisted our attempt at revealing the COVID-19 trans-
mission mechanisms. Finally, the SEM modelling is a partial cor-
relation analysis method, which is more conducive to identifying
the direct effects of influential factors by excluding influences
from other factors and can therefore disentangle complicated vari-
able interactions.

The strong relationship between GDP and COVID-19 empha-
sizes the great influence of socio-economic variables on the initial
spread of the virus. COVID-19 had a long incubation period in
China until its gravity became obvious. Thus, the period before the
lockdown allowed an initial, natural spread of COVID-19 without
strong interventions, while the later pattern after March 2020 was
more complex due to a strict policy based on experience gained
(Sun et al., 2020). In 2020 and 2021, there were new outbreaks in
many places in China, but rapid intervention strategies brought the
pandemic under control by lockdowns, forced quarantine at home
and travel restrictions. This is consistent with our conclusion that
population movement is a key factor affecting the spread of the
virus. Beijing has experienced several outbreaks and these newly
confirmed cases verify that economically developed cities are at
high risk.

                                                                                                                                Article

Figure 7. The constructed structural equation models without using PopInflux. The paths between variables represent direct influences
and the numbers next to them are path coefficients. The green path represents the positive effect, while the red ones represent negative
effects. The black paths represent the observed variables that make up the latent variables, with the numbers next to them the coeffi-
cients contributed by each observed variable. Solid lines indicate the path is significant while dashed lines indicate insignificant. R2 rep-
resents the explained proportion of the variance. C130 and C206 denote the cumulative confirmed cases on Jan. 30th and Feb. 6th,
respectively. The influential factors are gross domestic product (GDP) in 2019 (GDP2019), population density in 2020 (PD2020), and
Dis2Wuhan(Dis2Wuhan).
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The possible non-linear relationships between the influential
factors and the spread of COVID-19 should be considered by
researchers in further studies. Although the sample size of 288
cities across the country met the requirements of SEM modelling,
a larger sample size could have been useful, particularly for local
area analysis where we had to reduce the number of parameters as
much as possible to ensure the reliability of the models. Finally, the
fitted SEM model did notfully explain the variances presented by
the COVID-19 transmission, possibly because of other factors we
did not measured, which requires further investigation. Apart from
these limitations, the fitness indices, as well as the R2 of the fitted
models, had a good explicatory capability and provided a valuable
reference for better understanding the socio-economic influence on
the viral spread. 

Although there are many variables representing the socio-eco-
nomic level of a place, such as city vigour (Wong et al., 2002),
night-time lights (Ma et al., 2015), GDP is one of the most widely
used and easy to access (Zhang et al., 2020). We verified that its
total effects on the spread of COVID-19 exceed that of PopInflux.
The population flow data can be applied in the susceptible-
exposed-infectious-removed (SEIR) model to dynamically update
the specific number of different populations in simulating the
spread of infectious diseases (Xia et al., 2004; Weinberger et al.,
2012; Viboud et al., 2016). However, PopInflux data are usually
unavailable in some regions. Our results show that GDP could be
an alternative for PopInflux for modelling when such data are
unavailable. In addition, from the available population flow data of
some regions, we can infer the unknown data of other regions
based on GDP. In epidemic modelling, GDP can also provide ref-
erences for adjusting the basic reproductive number R0 for SEIR
model (Alexis et al., 2003; Chen et al., 2003; Lalwani et al., 2020)
or other related parameters.

Conclusions
Social factors are not only the most important factors for pro-

moting the spread of infectious diseases, but they arte also the key
to effectively preventing and eliminating them. For example, when
the Chinese Government responded to the outbreak during Spring
Festival in 2020, the rapid and strict measures made brought the
situation quickly under control (Sun et al., 2020). This has also
been verified in the latter outbreaks of coronavirus in mainland
China. Importantly, our research results provide additional policy
suggestions for fighting COVID-19 that could be useful also aginst
other epidemic infections. 

Travel bans would prevent the wider viral spread, while
screening and establishing risk-free areas as quickly as possible is
by far the best way to minimize economic damage. Further, high-
risk areas such as hub environments and economically developed
cities with large population flows requires rapid and strong atten-
tion (Delikhoon et al., 2021). For long-term respons to epidemics
in metropolises, it is suggested to implement a hierarchical re-
opening strategy, for example by focusing on less serious areas
first to reduce economic loss (Ge et al., 2021). Some research
shows that the impact of lockdown on mobility is stronger in
developed urban areas where income per capita is lower but
inequality is higher (Bonaccorsi et al., 2020). Interestingly, a
recent study across England indicates taht spatial differences in
COVID-19 mortality rate are related to socio-economic and envi-
ronmental factors (Sun et al., 2020). 

Economic development and health presents a dilemma.
Historically, long-run improvements in health have been tied to
economic growth through three broad mechanisms: better nutri-
tion, enhancements in public health infrastructure and more effec-
tive medical technology (Frakt et al., 2018). However, some
researchers have found that small particular matter (PM2.5), a side
effect of economic growth, might increase the COVID-19 mortal-
ity rate (Wei et al., 2019; Yan et al., 2020). Economic development
is inevitably accompanied by the increase of the moving popula-
tions and the concentration of labour. Developed areas with dense
populations, frequent mobility and poor air quality provide condi-
tions for the spread of infectious diseases. Therefore, attention
must be paid to balancing economic development and social health
in the future.

Although GDP exerts both total and indirect effects on the
spread of COVID-19, socio-economic development and COVID-
19 of a region have a strong positive correlation. Therefore, the
effects of the economy on population influx, population density
and road accessibility should not be overlooked. Overall, however,
various socio-economic factors are under the control of the econo-
my and have complex interactions with each other. Our results
indicate that social and economic factors are closely related to the
spread of the virus, both in a direct and an indirect way. Hence,
cities with rapid economic development run a greater risk than
other areas. For those areas in an outbreak, more stringent inter-
vention and control measures such as a travel bans or home quar-
antine should be implemented. 
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