
Abstract
This study statistically identified the localised association

between socioeconomic conditions and the coronavirus disease
2019 (COVID-19) incidence rate in Thailand on the basis of the
1,727,336 confirmed cases reported nationwide during the first
major wave of the pandemic (March-May 2020) and the second
one (July 2021-September 2021). The nighttime light (NTL)
index, formulated using satellite imagery, was used as a provincial
proxy of monthly socioeconomic conditions. Local indicators of
spatial association statistics were applied to identify the localised

bivariate association between COVID-19 incidence rate and the
year-on-year change of NTL index. A statistically significant neg-
ative association was observed between the COVID-19 incidence
rate and the NTL index in some central and southern provinces in
both major pandemic waves. Regression analyses were also con-
ducted using the spatial lag model (SLM) and the spatial error
model (SEM). The obtained slope coefficient, for both major
waves of the pandemic, revealed a statistically significant negative
association between the year-on-year change of NTL index and
COVID-19 incidence rate (SLM: coefficient= −0.0078 and
−0.0064 with P<0.001 and 0.056, respectively; and SEM: coeffi-
cient= −0.0086 and −0.0083 with P=0.067 and 0.056, respective-
ly). All of the obtained results confirmed the negative association
between the COVID-19 pandemic and socioeconomic activity
revealing the future extensive applications of satellite imagery as
an alternative data source for the timely monitoring of the multi-
dimensional impacts of the pandemic. 

Introduction
The coronavirus 2019 (COVID-19) pandemic emerged in

Wuhan, Hubei Province, China, in December 2019 and increased
in January 2020 (Grainger et al., 2021). In February 2022, the
global number of confirmed cases has exceeded 408 million
(WHO, 2022), and the total number of deaths is more than 5.8 mil-
lion (WHO, 2022). Many countries have experienced multiple
waves of coronavirus outbreaks. Empirical data show that the
characteristics of the disease varied between waves during the
2020 pandemic (Iftimie et al., 2021). 

The first COVID-19 infected case in Thailand was confirmed
on January 13, 2020, in a Chinese tourist hospitalised in Bangkok.
This case is the first globally reported outside China (WHO,
2020). On January 30, 2020, Thailand’s Ministry of Public Health
(MoPH) publicly announced the first case of local transmission.
The newly infected cases increased rapidly in March 2020,
spreading from the major clusters of boxing stadiums and enter-
tainment venues and initiating the first major wave of the pandem-
ic (ADB, 2021).

During the first major wave (March-May 2020), the number
of new COVID-19 cases increased to approximately 3040, and
nearly 60 deaths were recorded. A second major wave occurred in
July-September 2021, during which the number of daily new cases
increased to more than 20,000, and the daily recorded deaths rose
to more than 100 (WHO, 2021). Consequently, the Thai govern-
ment imposed lockdown measures and required most of the
provinces in Thailand to implement strict policies to limit non-
essential activities, transportation, and production. Most people
volunteered to stay at home, and the practice of self-isolation
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played an essential role in curbing the spread. However, the effects
of COVID-19 are multidimensional. Not only have they stretched
health system responses, but they already exposed vulnerabilities
in the economy and society (World Bank, 2021; Kunno et al.,
2021).

In October 2021, the spread of COVID-19 was considered sub-
stantially controlled in Thailand. However, the pandemic situation
is still severe in other parts of the world. Most studies have inves-
tigated how control measures affect the outbreak (Kraemer et al.,
2020). Globally, only a limited number of studies have fully
utilised the capability of data and analytical methods to examine
the characteristics and consequences of the COVID-19 pandemic
and the containment measures (Bergquist and Rinaldi, 2020;
Ahasan and Hossain, 2021; Fatima et al., 2021).

With the evolution of continuously increasing public accessi-
bility, remote sensing data and spatial analysis are widely used in
studies on natural disasters and the spread of epidemics (Cao et al.,
2010; Xu et al., 2013; Liu et al., 2019). Particularly, nighttime light
(NTL) shown on satellite imagery can identify the boundary of
cities and quantitatively indicate the density of economic activities
and socioeconomic status (Liu et al., 2020). NTL has been com-
monly used in social and epidemiological studies as an approxi-
mate proxy for urban density and economic activity in various
places, particularly in Thailand (Luenam and Puttanapong, 2020;
Puttanapong et al., 2020; Sangkasem and Puttanapong, 2021).
Thus, in the case of the COVID-19 pandemic, the density of NTL
can potentially reflect the collective reaction to the lockdown and
quarantine policies.

By implementing geographic information systems (GISs) and
spatial analysis methods, epidemiological studies have indicated
that COVID-19 has spread in many areas with different spatial pat-

terns (Bergquist and Rinaldi, 2020; Kolak et al., 2021; Kunno et
al., 2021). Additionally, for multivariate association verification
and predictive analyses, the spatial lag model (SLM) and the spa-
tial error model (SEM) have been applied to the case of the
COVID-19 pandemic (Sun et al., 2020). However, in the case of
Thailand, no COVID-19 pandemic study has used remote sensing
data and spatial analysis tools. 

To fill this research gap, this study examined the spatial asso-
ciation between COVID-19 incidence rates and socioeconomic
conditions in Thailand during the two major waves of the pandem-
ic. In addition, this study quantitatively investigated the influence
of spatial spillover and developed prediction models. The obtained
outcomes can provide effective solutions for developing a timely
monitoring framework for COVID-19 outbreaks and future pan-
demics.

Materials and methods

Study area and season
This study focused on Thailand, an upper-middle-income

country with an area of 514,000 km2. The country comprises
511,770 km2 of land and 2230 km2 of water. The geographically
administrative hierarchy includes 77 provinces, 878 districts
(amphoes), 7225 sub-districts (tambons) and 74,965 villages
(moobans). Located in a tropical zone, it has three seasons: winter
from November to February, summer from March to May and
rainy season from June to October. Figure 1 illustrates the admin-
istrative boundary and classification of the regions. 

                   Article

Figure 1. Regional and provincial map of Thailand.

[page 170]                                                        [Geospatial Health 2022; 17(s1):1066]                                                                         

Non
-co

mmerc
ial

 us
e o

nly



Data sources
This cross-sectional study used COVID-19 cases from January

2020 to October 2021 as reported by the Centre of
Epidemiological Information, Bureau of Epidemiology, MoPH.
The data included the number of cases for all 77 provinces, with a
total of 1,727,336 confirmed cases distributed over the study peri-
od. The data are publicly available at the website of MoPH’s
Department of Disease Control (https://covid19.ddc.moph.go.th/).
In this study, the monthly COVID-19 incidence rates were comput-
ed as a ratio of confirmed cases per 100,000 population. 

The NTL data of Thailand from 2020 to 2021 were acquired
from the visible infrared imaging radiometer suite (VIIRS)’s day-
night band global stable light imagery at a spatial resolution of 
375 m2/pixel. All NTL light data come from the joint NASA/
NOAA Suomi National Polar-orbiting Partnership and are publicly
available (NOAA, 2019). NTL was averaged to compute the
monthly index at the provincial level, enabling the data to match
the spatiotemporal resolution of the COVID-19 cases.

Analysis by the local indicator of spatial association
COVID-19 patterns were determined based on the localised

detection of prevalent spatial patterns. For an exploratory spatial
data analysis, QGIS version 3.8.3 (Steiniger and Hunter, 2013) and
GeoDa version 1.20.0.8 (website) were used to determine the mea-
sure of spatial autocorrelation local indicators of spatial associa-
tion (LISA) analysis (Anselin et al., 2006). QGIS was applied to
integrate all data before being transferred to GeoDa for analysis. 

The spatial autocorrelation statistic (Moran’s I) is one of the
main methods for computing the degree of spatial correlation
(Moran, 1950). The following equation denotes the mathematical
specification of Moran’s I test.

                                      
(1)

where Xi is the variable of interest, N the number of spatial units

indexed by i and j, Wij the spatial weight matrix, the devi-

ation of Xi from its mean, and the deviation of Xj from its
mean.

The computed value indicates the correlation between X locat-
ed in area i and its neighbours geographically specified by the spa-
tial weight matrix (Wij).

Moran’s I has a limitation in identifying the location of corre-
lation. Hence, local Moran I or LISA was developed by extending
the mathematical fundamental of Moran’s I. Its mathematical rep-
resentation is as follows:

                                   
(2)

where Wij is the spatial weight matrix, and N the 

number of spatial units.
The obtained output is the statistics of Moran’s I at each loca-

tion i, which specifies the correlation between the value of X in area
i and the weighted average of its neighbours. In particular, the clus-
ter maps obtained from LISA have four cluster categories: High-
High, Low-Low, Low-High, High-Low and one pattern indicating
randomness (Anselin, 2003). The statistically significant spatial
correlations areas either indicate a positive bivariate association
with high incidence (High-High), or a positive association of low
incidence (Low-Low), while Low-High and High-Low are not the
outliers. Conventionally, the COVID-19 pandemic reduces eco-
nomic and social activity. Therefore, we expected areas charac-
terised by localised negative correlation to be detected in this study.

Regression analysis
The relation between the NTL index and COVID-19 incidence

rate in 77 provinces was examined with the regression models (i.e.
SLM and SEM) by using GeoDa version 1.20.0.8 (Anselin et al.,
2006). Natural log transformation was used to linearise the varia-
tions in all variables. A P-value <0.10 was regarded as a criterion
of statistical significance. All statistical tests were two-sided.
Equations 3 and 4 shown below mathematically represent the spec-
ifications of SLM and SEM, respectively.

The mathematical specification of SLM is:

ΔlogNTLi=β0 + β1logCOVID19i + ρWijΔlogNTLj+εi,                (3)

where ΔlogNTLi is the dependent variable (the year-on-year change
in the logarithm-transformed NTL index), logCOVID19i the inde-
pendent variable (the logarithm of COVID-19 incidence rate), i the
entity (77 provinces), β0 the intercept coefficient, β1 the slope coef-
ficient, ρ the spatial lag parameter (i.e. the spatial correlation coef-
ficient), Wij the spatial weight matrix, and εi an error term that is
normally distributed. Notably, the weight matrix (Wij) of SLM
defines the effects of neighbour j that influence location i (Anselin
and Arribas-Bel, 2013; Mollalo et al., 2020).

SEM assumes spatial dependence in the residuals, which are
conventionally ignored in the ordinary least squares (OLS) model
(Guo et al., 2020; Wu et al., 2020; Mollalo et al., 2020). In partic-
ular, the residuals are decomposed into two components, ui and εi,
and spatially connected via the spatial correlation coefficient and
the spatial weight matrix (Wij). 

SEM can be mathematically defined as follows:

ΔlogNTLi=β0 + β1logCOVID19i + ui,                                        (4)

where ui and uj denote the disturbance term at locations i and j,
respectively; λ the spatial correlation coefficient; εi an error term
that is normally distributed; and ui= λWijuj+ εi. 

Given that an ordinary least squares model (i.e. OLS regres-
sion) has a limitation in detecting the spillover effect, the standard
specification is modified to incorporate the effects of neighbouring
areas, leading to the formulation of SLM and SEM. SLM is based
on a spatially lagged dependent variable and assumes the direct
spatial influence between a particular area and the surrounding
ones (Wu et al., 2020). Meanwhile, SEM incorporates indirect spa-
tial dependency into the regression model by allowing the influ-
ence of neighbouring areas to pass through the disturbance term
(Anselin, 2003; Ward and Gleditsch, 2018; Mollalo et al., 2020;
Wu et al., 2020).
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Results
The monthly official statistics of COVID-19 infected cases are

presented in Figure 2. The COVID-19 confirmed cases were
22,689 and 1,260,258 in the first and second major waves, respec-
tively. Owing to the different variants of the COVID-19 virus, the
number of infected cases in the second wave was much larger than
that in the first one. 

Local indicators of spatial association analysis 
Figures 3-5 show the cluster analysis by using univariate LISA

of the logarithm-transformed COVID-19 incidence rates of both
major waves. In the first, the provinces with the statistically signif-
icant high rates were in the central region, namely, Samut Prakan
province, and also located in the southern zone near the Malaysia
border. In the second, the clusters of high incidence rates were
observed in Bangkok, its vicinity and in the southern border

                   Article

Figure 2. Monthly COVID-19 infected cases. Source: Ministry of Public Health, Thailand.

Figure 3. COVID-19 incidence (per 100,000 population). Univariate LISA results.
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Figure 4. Cluster maps of COVID-19 incidence (per 100,000 population). Univariate LISA results.

Figure 5. COVID-19 incidence (per 100,000 population): distribution of statistical significance. Univariate LISA results. 
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provinces. In both major waves, the clusters of statistically signif-
icant low rates were in several provinces in the northern region.

The outcomes of the bivariate LISA revealed the statistically
significant negative correlation between the year-on-year change in
logarithm-transformed NTL index and the logarithm of COVID-19
incidence rate in both waves. The LISA results are illustrated in
Figures 6-8. All Moran’s I values of the first and second waves were
negative. The cluster maps of the two waves revealed the provinces
that had a localised negative association between NTL density and
the COVID-19 pandemic. In the first major wave, several southern
provinces located near the Malaysia border and those located in the
central region had a significant negative association between NTL
density and COVID-19 incidence rate. In the second major wave, a
similar relationship was found in the central region, particularly in
Bangkok and vicinity, and also in the eastern coastal zone. 

Regression analysis 
The spatial modelling results are summarised in Table 1. For

both major waves of the pandemic, the obtained slope coefficients
of all regression models indicated that the growth of NTL density
had a statistically significant negative association with the
COVID-19 incidence rate (P<0.10). The values of R2 obtained
from SLM and SEM explained approximately 50.73% and 50.74%
of the variation in COVID-19 incidence rate in the first wave,
respectively. In the case of the second wave, the corresponding val-
ues were 19.85% and 19.59%, respectively. The spillover spatial
correlation coefficients of both SLM (λ) and SEM (ρ) also identi-
fied the statistically significant feature of localised spillover and
specifically captured the spatial correlation effect of the dependent
variable. This specification allows the slope coefficient (β1) to
accurately represent the relationship between NTL density and the
outbreak of the COVID-19 pandemic.

Discussion
The official statistics showed a total of 1,282,947 confirmed

cases of COVID-19 during the two major waves. As shown in
Figure 2, the total number of infected cases during the second wave
(July 2021-September 2021) was 1,259,407, whereas that during
the first wave was only 3017. For both major waves, univariate and
bivariate LISA analyses statistically detected the clusters of the
COVID-19 pandemic and the localised negative associations
between NTL and COVID-19 incidence rate. Furthermore, SLM
and SEM regression methods verified a statistically significant rela-
tionship between NTL and the rate of COVID-19 infected cases. 

Initially, the Thai government received many international
accolades for its effective containment of COVID-19, that is based
on the well-established infrastructure of the Universal Healthcare
System (ADB, 2021). However, a combination of factors triggered
the second wave and placed an extreme burden on the national
healthcare system due to the overwhelming numbers of infected
cases. Thus, as shown in Figure 2, the containment success during
the first wave did not imply a similar, consistent capability in the
subsequent phases of the pandemic, which was similar to other
Asian economies, such as Vietnam and Taiwan (Khan and Javaid,
2020; Shams et al., 2020; World Bank, 2021; Guo, 2020).

In addition, the outbreak of the COVID-19 pandemic is multi-
faceted. A spatial analysis was applied to the official data to exam-
ine the infected cases in spatiotemporal dimensions. As depicted in
Figures 3-5, the spatial distributions of both major waves indicate
that the highest incidence rate included clusters in the central
provinces, the areas in Thailand with the highest population densi-
ty. The clusters were also concentrated in several southern
provinces located near the borders, which have a high concentra-
tion of cross-border activities and many immigrant workers.

                   Article

Figure 6. COVID-19 incidence rate and year-on-year nighttime light (NTL) change. Bivariate LISA results. 
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Figure 7. Cluster maps of COVID-19 incidence rate and year-on-year nighttime light (NTL) change. Bivariate LISA results.

Figure 8. COVID-19 incidence rate and year-on-year nighttime light (NTL) change: distribution of statistical significance. Bivariate
LISA results.
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Meanwhile, in both waves, the clusters of low incidence were
identified in the northern provinces, the region with the low popu-
lation density due to its mountainous terrain. These patterns clearly
indicate the association between the COVID-19 incidence rate and
population density. In accordance with the experience of many
countries, a similar association was found in Lebanon (El Deeb,
2021), Mainland China (Ning et al., 2021), Turkey (Aral and
Bakir, 2022), Oman (Al-Kindi et al., 2020), and Bangladesh (Islam
et al., 2021). However, this association is inconclusive in several
areas, such as São Paulo State of Brazil (Alcântara et al., 2020). 

The high rate of COVID-19 infected cases has led to reduced
economic transactions and social activities. The NTL index, conven-
tionally acknowledged as an alternative proxy of socioeconomic
condition, can serve as a timely indicator of the concentration of
mobility and transaction (Henderson et al., 2012; Pinkovskiy and
Sala-i-Martin, 2016; Li et al., 2016). With the growing demand for
publicly accessible alternative indicators providing timely informa-
tion, the NTL index can potentially identify spatial clusters of the
COVID-19 pandemic. The areas with high numbers of infected
cases face either low growth or an adverse change in the NTL index. 

During the outbreaks of the pandemic in Thailand, when
restrictions were uniformly imposed across the country, the
provinces with high rates of COVID-19 infections encountered
significant declines in NTL density. Simultaneously, the restriction
and containment policies influenced voluntary behavioural
changes when the risks of infection increased (Maloney and
Taskin, 2020; Abulibdeh, 2021). As exhibited in Figures 6-8, the
bivariate LISA results statistically validated such negative associ-
ation in several central and southern provinces. Similarly, Lan et
al. (2021) suggested that a variation in NTL density is not only sta-
tistically correlated with the COVID-19 incidence rate, but it also
extensively reflects the changes in human activity and the intensity
of epidemic prevention and control measures in a particular region.
Hence, Beyer et al. (2021) suggested NTL as the index for tracking
and estimating the impact of COVID-19 outbreaks. 

To extend the capability of impact estimation, the relationship
between NTL density and COVID-19 infected cases can alterna-
tively be examined by using regression analysis. As seen in Table
1, the results affirm the robustness of the statistically significant
negative association between NTL growth and COVID-19 inci-
dence rate (P-value<0.10). Similar to the findings of Jechow and
Holker (2020), Elvidge et al. (2020), Beyer et al., (2021), Small

and Sousa (2021) and Xu et al. (2021), the current study’s results
show that the NTL index can be a proxy for observing and approx-
imating the socioeconomic impacts of the COVID-19 pandemic in
the case of Thailand. However, the obtained values of R2 shown in
Table 1 remain insufficient to generate a highly accurate predic-
tion, especially for estimating the impacts on monetary units. To
enhance the predictive power, the forecasting model should incor-
porate additional specifications and other alternative high-frequen-
cy data, such as mobility index, electricity and water consumption,
and mobile phone utilisation (Demirguc-Kunt et al., 2020; Li et al.,
2020; Ruan et al., 2020; Bustamante-Calabria et al., 2021).

Conclusions
An association between COVID-19 incidence rate and NTL

growth during the pandemic was confirmed, especially in
Bangkok, the central region and the southern border provinces.
Thus, the localised effects of the COVID-19 outbreak can be time-
ly identified using the NTL index. For future improvements, an
extension that incorporates additional variables into the regression
models can be a method for precisely estimating the socioeconom-
ic impacts of the COVID-19 pandemic. 
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