
Abstract
The work presented concerns the spatial behaviour of coron-

avirus disease 2019 (COVID-19) at the regional scale and the
socio-economic context of problem areas over the 2020-2021
period. We propose a replicable geographical information systems
(GIS) methodology based on geocodification and analysis of
COVID-19 microdata registered by health authorities of the

Government of Cantabria, Spain from the beginning of the pan-
demic register (29th February 2020) to 2nd December 2021. The
spatial behaviour of the virus was studied using ArcGIS Pro and a
1x1 km vector grid as the homogeneous reference layer. The GIS
analysis of 45,392 geocoded cases revealed a clear process of spa-
tial contraction of the virus after the spread in 2020 with 432 km2

of problem areas reduced to 126.72 km2 in 2021. The socio-eco-
nomic framework showed complex relationships between
COVID-19 cases and the explanatory variables related to house-
hold characteristics, socio-economic conditions and demographic
structure. Local bivariate analysis showed fuzzier results in persis-
tent hotspots in urban and peri-urban areas. Questions about
‘where, when and how’ contribute to learning from experience as
we must draw inspiration from, and explore connections to, those
confronting the issues related to the current pandemic.

Introduction
In the Christmas period 2021, Spain suffered its sixth wave of

the coronavirus disease 2019 (COVID-19) pandemic, which
changed for the worse with the new the Omicron variant. With a
population close to 47.5 million in 2021 (Register of Residents,
National Statistics Institute), Spain reached 5.4 millions of
COVID-19 cases in December 2021 despite 37.7 million (79.4%)
fully vaccinated people (Health Ministry of the Government of
Spain).

The management of the pandemic was originally centralised
in Spain but moved to the regional health authorities from the end
of the strict lockdown in June 2020. In this so called ‘new normal’
period, each Spanish region set different rules and restrictions in
place to overcome each wave of the pandemic. However, the
regions coordinated part of the decisions with the Inter-territorial
Council of the Government of Spain, which supported part of the
regional management with the declaration of two ‘states of emer-
gency’ from 14 March 2020 to 21 June 2020 and from 25 October
2020 to 9 May 2021. This was done as the Inter-territorial Council
constituted the only possible legal framework to establish stricter
rules from regional governments and mobility restrictions
between regions.

Considering that the region is the reference area of pandemic
management in Spain, scientific research must pay attention to its
borders. That means that our contribution of new knowledge to
help policymakers to design efficient measures mitigating the
spread of COVID-19 would be based on local custom approaches
and balancing economy and health as proposed by Campagna
(2020). Thus, our research was a collaboration between the
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University of Cantabria, the Valdecilla Hospital Research Institute
(IDIVAL) and the Department of Health of the Regional
Government of Cantabria. In line with this collaborative frame-
work, the study area was the Region of Cantabria (Northern
Spain). The main goal of our research was based on spatial statis-
tics and geographic information systems (GIS), implemented by
ArcGIS Pro from ESRI-Spain COVID-19 GIS Hub, ArcGIS
GeoEnrichment Service. We wished to reveal the key spatial spa-
tiotemporal trend patterns of COVID-19 at the regional scale in
2020 and 2021 and approached the problem areas using their
socio-economic context as an exploratory research line to identify
variables correlated to the number of COVID-19 cases.

The potential of hotspot analysis based on mapping of
COVID-19 microdata, a tabular structure of test results continually
recorded by the health authorities with fields giving data such as
age, sex and date for onset and cure, was explored to differentiate
the problem areas. Testing represents key data in pandemic man-
agement (Bergquist et al., 2020), while cartography can reveal the
modality of viral spread since it includes spatial and temporal
trends and distinguishes significant spatial patterns. Focusing on
areas with hotspots, we could obtain specific, significant hotspot
patterns (new, consecutive and intensifying) that appeared along
the timeline, such as in the initial time slices (historical), with
many significant repetitions over time (sporadic) or with signifi-
cant hotspot behaviour in more than 90% of the study time (persis-
tent). This approach showed problem areas with interesting spatial
and statistical nuances, which is essential to overcome the pandem-
ic challenges. 

We have previously used 3D bin analysis of COVID-19
(2021b) based on geocoded microdata, and others have applied it
at the city level (Chunbao et al., 2020), the county level (Tokey,
2021) and, recently, the sub-district level (Syetiawan et al., 2022).
It is true that this approach presents methodological risks with
respect to the parameters (spatial and time units) (Kulldorff, 2001),
which led us to propose non-subjective criteria to define the rela-
tive bin size based on expected distance of cases using nearest
neighbour analysis, and the internal time periods by dividing the
overall period by time units of 2-4 weeks as reference indicator of
cumulative incidence. 

The methodological proposal began with the geocodification
of daily microdata of COVID-19 positive cases registered by the
health authorities of the Government of Cantabria. We accumulat-
ed 20-months series covering the years 2020 and 2021 with high
spatial and temporal resolutions. This allowed a spatially homoge-
neous analysis based on a 1x1-km vector grid to compare models
in both years contextualising the socio-economic variables sup-
ported by the ArcGIS GeoEnrichment Service from ESRI-Spain
COVID-19 GIS Hub.

The global body of GIS literature, geostatistical methods and
spatial patterns on COVID-19, considers several perspectives and
scales from the beginning of the pandemic, and presents an
increasing trend focused on virus spread (Fatima et al., 2021;
Franch-Pardo et al., 2021). The spatial analysis of COVID-19
includes counterintuitive data that challenge policymakers, who
have to think globally but take decisions locally (Salama, 2020) to
reduce the risk in the mitigation stage (Jindal et al., 2020). A multi-
scale approach is necessary in the spatial analysis of the virus and
location technology is essential to learn about spatial and epidemi-
ological frameworks needed to design control of the disease
(Gerber, 2009). In addition, maximum spatial resolution of
geocoding cases can reveal local patterns avoiding distortions of

aggregated data from health administrative units, census sections
or postal code areas (Cromley, 2019). This approach provides other
possible foci not only related to COVID-19 incidence and context
variables, but also to socio-demographic characteristics of patients
and hotspots (Mohammad Ebrahimi et al., 2021).

The main aim of research on COVID-19 in a social sciences
context is related to the relation between COVID-19 incidence and
demographic, socio-economic and environmental variables. Health
geography highlights the importance of the environment in
COVID-19 spatial behaviour, especially in urban areas (Das et al.,
2021) with higher incidence in vulnerable areas, such as slums,
especially during the first waves (Ferreira, 2020). Strong evidence
links virus distribution and population density in urban areas
(Dhaval, 2020; Hamidi et al., 2020; Niu et al., 2020; Desmet and
Wacziarg, 2021). Additionally, some research considers the con-
centration of economic activities (Huang et al., 2020; Perles et al.,
2021a), socio-economic characteristics (Bamweyana et al., 2020;
Whittle and Díaz-Artiles, 2020) or environmental conditions, espe-
cially pollution (Sera et al., 2021). Some authors have linked pop-
ulation density with economic activities as key indicators of ‘spa-
tial concurrence’ which is directly related to virus spread in urban
areas (Buffalo and Rydzewski, 2021). Some interesting research
on concurrence has used a spatial interaction index (Al Kindi et al.,
2021) or applied space-time path and prism to study the move-
ments of new cases in time and space (Yin et al., 2021).

Spatial policies and strategies not only focusing on mitigation
(Ye and Hu, 2020), but also on containment measures (Coccia,
2021), constitute efficient approaches. Although important, the
potential of GIS in simulations and forecasting for short-term pre-
dictions of pandemic evolution are not yet fully developed
(Ahasan and Hossain, 2021). One of the most extended methods is
geographically weighted regression (GWR) based on socio-demo-
graphic multi-variant approaches (Almendra et al., 2021).
Nevertheless, scale effects are essential in the forecasting model by
Dhaval (2020) and related to this, the use of administrative bound-
aries and aggregated data seems one of the major methodological
risks in the spatial analysis of the pandemic (Buffalo and
Rydzewski, 2021).

In this context, we aimed to analyse COVID-19 problem areas
using microdata and implementing 3D bins and emerging hotspots
models. It is essential to avoid aggregated data distortions (apply-
ing our method to microdata points instead of aggregated cases by
administrative boundaries) and, on the other hand, our proposal
contribute to make models comparable over time (using a regular
1x1-km vector grid in 2020 and 2021).

Materials and methods

Study site
This research focuses on the Region of Cantabria, located in

the north of Spain. This region has a population of nearly 583,000
inhabitants in 2021 (Register of Residents of the National Statistics
Institute) and a surface area of 5300 km2. The Region of Cantabria
presents an important contrast between mountainous features
(orography) and population distribution. The coastal area shows
higher population densities in contrast to the inland valleys that
have higher elevation and less population (Figure 1). Santander,
the capital city of Cantabria, is situated in the central coastal area
with 173,000 inhabitants near Torrelavega, the second city with
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about 51,000 inhabitants. According to Batista and Poelman
(2016), these two cities, together with over twenty municipalities
with a total population of 380,000 (about 65% of the region),
define a polycentric functional urban area (FUA). This dynamic
area presents a prominent concentration of economic activities,
population, transport infrastructures and, additionally, strong com-
muting between central areas and the surroundings. The intra-
regional area has three coastal units and nine inland valleys in a
dominant open landscape (BOE-A-2015-682, 2015).

Data
The daily recorded data of epidemic diseases are collected by

the health authorities of the Government of Cantabria and kept in
what is called the Fast Action Territorial Information System
(SITAR). These so called microdata are presented as a tabular
structure where each positive tested case of COVID-19 is an
anonymised row and many fields give data for address, age, sex as
well as dates for onset and cure/decease. The microdata table also
includes two binary fields to identify if a positive case is in a care
home or if it corresponds to a health professional. In July 2020 the
research team implemented SITAR to study the spatial patterns of
COVID-19 in the Region of Cantabria using ArcGIS Pro and

ArcGIS Online. We geocoded the records of cases testing positive
for COVID-19 from the beginning of the official register (29th

February 2020) until 2nd December 2021. 
The data structure of SITAR includes three thematic geo-

databases (GDB) that concern health, socio-demographic context
and buildings (De Cos et al., 2020). Health GDB is necessary for
this work because it includes administrative health areas and loca-
tion of fundamental facilities (health centres, care homes and phar-
macies). Socio-demographic GDB integrates data about demo-
graphic structure and socio-economic variables from official
sources (Census and Register of Residents of the National
Statistics Institute) and, additionally, data from ESRI based on big
data (De Cos et al., 2021a). Finally, SITAR contains a cadastral
GDB at the building level with data referred to economic activities
by residential areas, numbers of floors, etc.

Approach
We designed a method in three stages for the 20 month study

period as shown in Figure 2: i) data entry and layer preparation; ii)
identification of COVID-19 problem areas; and iii) socio-econom-
ic variables in the identified problem areas.

                                                                                                                                Article

Figure 1. Territorial frame of the Region of Cantabria (North Spain). Sources: ESRI (Administrative Base map), National Geographic
Institute (National Cartographic Base 200), Government of Cantabria (Digital Elevation Model), National Institute of Statistics (Data
from Register of Residents, 2021) and the European Union (Urban Atlas, 2018).
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Data entry and layer preparation 
We geocoded the microdata of the COVID-19 cases with

ArcGIS based on multiple-field entries (address, locality, munici-
pality and postal code). The new point layer of cases was revised
and filtered to delete cases in care homes because the pattern of
spread there is different from the rest of the conventional neigh-

bourhoods (De Cos et al., 2021b; Perles et al., 2021a). The
geocoded cases were divided in two different layers filtering by the
starting year continuing the next stages in parallel for 2020 and
2021. We prepared a regular structure of units with the Region of
Cantabria as a base map using a 1x1-km pixel vector grid to anal-
yse and compare the spatial patterns in the COVID-19 problem
areas.

                   Article

Figure 2. Methodological stages based on microdata and geographical information system analysis.
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Identification of the problem areas
The second stage started with a preliminary study of the statis-

tical pattern of COVID-19 cases. We explored the non-randomness
of the distribution to guarantee valid spatial pattern results. To
achieve this, we applied the extended nearest neighbour analysis
that confirmed the statistically significant and clustered distribu-
tion of COVID-19 cases for both years. On this basis, our method
highlighted the use of space-time cluster analysis using the ArcGIS
3D bin approach with each bin including the two dimensions of the
pandemic (where and when) based on the ArcGIS regular space-
time cube structure where each location and time step have precise
IDs. Bins sharing the same location ID represent a time series,
while bins sharing the same time-step ID comprise a time slice. In
this way we could represent each place and time with a specific
COVID-19 situation. We based the method parameters (spatial size
and time slices) on non-subjective criteria and standardised
approaches to ensure ‘exportability’.

In our approach, the spatial size of each bin was determined by
the expected distance obtained in the exploratory nearest neigh-
bour analysis. We used the weighted average of expected distance
in 2020 and 2021 (i.e. 326 m), while the internal time slices for
each year (2020 and 2021) required a minimum of ten periods in
the ArcGIS tool for the bin creation. Additionally, we considered
common periods used by the health authorities to calculate cumu-
lative incidences (two weeks) and, finally, we simplified the
scheme further by using internal periods of four weeks.

The identification of problem areas was based on hotspot anal-
ysis. Here, we should point out that the space-time trend could
result in a maximum of 16 significant patterns (8 hotspot or 8
coldspot types). Furthermore, the method also identifies a type
called ‘no pattern detected’, which defines areas where the virus
existed, but without a significant trend. Problem areas correspond
to hotspot patterns where the space-time trend of COVID-19 cases
increases significantly. In this stage we compared and cross-tabu-
lated hotspots in 2020 and 2021 to identify the space-time process
by pattern. Here, it is essential to adjust the hotspot analysis to the
1x1-km vector grid as homogeneous reference for spatial units.

Socio-economic context of problem areas 
Areal interpolation and weighting by population are essential.

To conclude our GIS methods proposal, we enriched the polygons
representing the problem areas by ESRI’s GeoEnrichment Service
Data that adapts data from original areas (census sections, for
instance) to the areas that users provide. These areas are spatially
related to the original data as overlapped areas (total or partially),
then each selected variable was estimated by the area overlapped
and, finally, it considered the presence of buildings (and indirectly
the population living there).

In relation to the variables, we considered the household char-
acteristics at this stage (average size; total spending; and percent-

age of unemployment); socio-economic conditions (poverty risk
by age group; average income per capita; average selling price per
m2; and average rental charges per m2); demographic structure
(population age rate; proportion of young people; and proportion
of adults); and residential environment (type of residential proper-
ty; number of family homes; and number of economic activities).
Here, we joined the variables at the spatial 1x1-km grid level and
analysed local bivariate relationships in order to get a deeper
understanding of the COVID-19 incidence relation with the socio-
economic context. This would also avoid distortions caused by the
non-stationary behaviour of COVID-19 distribution (Mou et al.,
2017). Local bivariate relationship is a useful approach to analyse
COVID-19 distribution in relation to socio-economic variables for
two main reasons: non-linearity and non-stationarity. In contrast to
other valid and frequently used methods, such as ordinary least
square (OLS) and GWR, local bivariate analysis is not only
focused on linear relationships. Indeed, we used local bivariate
analysis as a useful method to provide not only spatial intensity of
correlation, but also the pattern of the relationship (positively lin-
ear, negatively linear, concave, convex, undefined complex or not
significant). Furthermore, in previous research on the spatial pat-
terns of COVID-19 at detailed scales, we have demonstrated the
non-stationarity of COVID-19 distribution with a statistical signif-
icance (P<0.01) of the Koenker Index (De Cos et al., 2021b).
Although GWR is appropriate to analyse non-stationary data, in
our research, we do not pretend a predictive or multivariate model
in contrast to other studies (Jardim de Figueiredo et al., 2022).

Results
The Region of Cantabria recorded 49,556 COVID-19 cases

and 623 direct deaths during the 20-month study period. As shown
in Table 1, our results are based on the study of 45,392 cases
(91.6% of all) due to two main reasons: the geocodifying success
and the need to avoid cases from care homes that would have
added spatial distortions due to the different spread modality there
(De Cos et al., 2021a). Thus, this research focused on the spatial
pattern of COVID-19 cases in general neighbourhoods.

With regard to the evolution of the pandemic between 2020
and 2021 as shown in Figure 3A, six waves with many peaks and
short valley periods can be noted but there are no clear differences
between the years. However, as shown in Figure 3B, control mea-
sures and the vaccination process had a clear effect on the number
of severe cases both with respect to hospitalised patients and those
in Intensive Care Units (ICU) as the peaks became increasingly
low in 2021 in contrast to the high values in 2020. This clearly
shows the recent reduction of virus severity (Jindal et al., 2020),
which is especially relevant when the same annual dates are com-
pared year by year (first wave front compared to the fourth wave

                                                                                                                                Article

Table 1. Registered positive COVID-19 cases.

                           Global register                Geocoded cases in Cantabria
                                                    General                            In care homes                          Total                                     Not in care homes

COVID-19 positive cases                         49,556                                                   2118                                            47,510*                                                             45,392
Percentage                                                100.00%                                                4.27%                                            95.87%                                                             91.60%
*Geocodification notes: 1175 cases had unknown address in the microdata register, 729 cases had no matched address, and 142 cases were not Cantabria residents and were therefore deleted. Source: open data from
the Government of Cantabria, Spain and COVID-19 microdata daily records from the health authorities (Government of Cantabria, Spain).
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and especially the second wave front compared to the sixth wave).
Here, we wish to point out that the higher values of the fourth and
fifth waves (2021) with respect to 2020 do not contradict our inter-
pretation. Truly, that period in 2020 (from March to June) corre-
sponds to the strict confinement with a clear valley between the
first and second waves.

Problem areas patterns based on space-time trends
As we stated previously, our methodological approach sug-

gests that the problem areas correspond to hotspot patterns, where
the space-time trend of COVID-19 cases is significant and increas-
ing. On this basis, our cartographic results show several differ-

                   Article

Figure 3. A-B) Evolution of COVID-19 series: a comparison between 2020 and 2021. Source: open data on COVID-19 in Cantabria
from the Government of Cantabria, Spain.
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ences with respect to distribution and patterns in the COVID-19
problem areas. As shown in Figure 4, the space-time trend of the
pandemic in 2020 reveals a process of increasing spread with dif-
ferent patterns of hotspots:
- City centres of the most populated cities (Santander and

Torrelavega) show an increasing trend of cases with intensify-
ing hotspots in more than 90% of the time slices during 2020
without presence of coldspots. 

- Close peri-urban arcs of sporadic hotspots in the Santander-
Torrelavega FUA and the main urban areas along the oriental
coast. This picture is part of a repetitive pattern of increasing
trends of hotspots in 2020.

- The border areas of the Santander-Torrelavega FUA and ser-
vice centres in the rural inland valleys show consecutive
hotspots with a repetitive pattern in the problem areas, espe-
cially in the last time slices of 2020.
In contrast, the spatial patterns in 2021 were more controlled

and simpler (Figure 5). The clustered persistent hotspots in the
Santander-Torrelavega FUA included significant hotspots without
coldspots in more than 90% of the temporal slices in 2021. Other
similar problem areas appeared along the oriental coast near
Bilbao, a close metropolitan area with over 1 million inhabitants. 

Our quantitative results clearly demonstrate the process of a
spatial contraction of the pandemic (Table 2). After 432 km2 of sig-
nificant hotspot patterns in 2020, their total expanse shrank back to
126.72 km2 in 2021. Furthermore, our results showed absence of
viral transmission in an increasing percentage of areas with cases
lacking statistical space-time significance: areas without a pattern
occupied 10.1% of Cantabria in 2020 and 17.7% in 2021. It is
important to highlight that 41.8% of the cases in 2021 were in
areas without a space-time significant trend in contrast to 15.0% in
2020. Another conspicuous aspect in Table 2 is the decrease of the
average age of positive cases in 2021: 43.4 years in 2020 and 36.6
in 2021. The highest such age (46.7) appeared in 2020 in an area
without patterns belonging to the old, rural part of Cantabria,
where low population density and low mobility contained the
spread, thereby limiting the development of significant hotspots.

Comparing the results of the cross-tabulation of emerging
hotspot patterns in 2020 and 2021, we identified 17 combinations
grouped in six classes: disappearing problem areas, evolution of
significant patterns, new significant problem areas in 2021, no pat-
tern detected any time, no evident trends and, finally, no cases
(Table 3). More than three quarter of the region (76.8%) remained
unchanged without cases in both years. 

                                                                                                                                Article

Figure 4. Space-time COVID-19 emerging hotspots in 2020. Sources: ESRI (Administrative Base map), National Geographic Institute
(National Cartographic Base 200), Copernicus FUA layer and COVID-19 microdata daily records from the health authorities
(Government of Cantabria, Spain).
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Table 3. Cross-tabulated patterns of COVID-19 hotspots 2020-2021.

Hotspot pattern                                                      Area              Cases
                                                                                                                                                km2                 %                   Number             %
                                  2020                                            2021                                                                                                                           

Disappearing problem areas                                                                         316.31                   5.94                          12,420                  27.36
                             Consecutive hotspots                            No pattern detected                                                 259.94                   4.88                            9767                   21.52
                                Sporadic hotspots                               No pattern detected                                                  18.37                    0.34                           2,460                    5.42
                                    New hotspots                                   No pattern detected                                                   7.00                     0.13                             127                     0.28
                             Consecutive hotspots                                      No cases                                                             25.00                    0.47                              52                      0.11
                                Sporadic hotspots                                         No cases                                                              5.00                     0.09                              12                      0.03
                             Intensifying hotspots                                       No cases                                                              1.00                     0.02                               2                       0.00

Evolution of significant patterns                                                            115.69                   2.17                          25,996                  57.27
                             Intensifying hotspots                             Persistent hotspots                                                   53.68                    1.01                          18,561                  40.89
                                Sporadic hotspots                                Persistent hotspots                                                   43.54                    0.82                           6,553                   14.44
                             Consecutive hotspots                            Persistent hotspots                                                   11.45                    0.21                             636                     1.40
                                Sporadic hotspots                                  Historic hotspots                                                      3.00                     0.06                              88                      0.19
                             Consecutive hotspots                              Sporadic hotspots                                                     3.01                     0.06                              85                      0.19
                                Sporadic hotspots                                 Sporadic hotspots                                                     1.00                     0.02                              73                      0.16

New significant problem areas in 2021                                                                                                                                                              
                                         No cases                                        Persistent hotspots                                                   11.04                    0.21                              39                      0.09

No pattern detected any time                                                                                                                                                  
                              No pattern detected                             No pattern detected                                                 400.80                   7.52                            5953                   13.11

No evident trends                                                                                      392.91                   7.38                             984                     2.17
                              No pattern detected                                       No cases                                                            136.18                   2.56                             306                     0.67
                                         No cases                                       No pattern detected                                                 256.72                   4.82                             678                     1.49
          No cases                                                                                                                                                                    
                                         No cases                                                  No cases                                                           4090.11                 76.78                              0                       0.00
                                                                                                              Total                                                              5326.85                100.00                        45,392                 100.00
Source: COVID-19 microdata daily records from the health authorities (Government of Cantabria, Spain).

Table 2. Space-time COVID-19 emerging hotspots dimensions in 2020 and 2021.

COVID-19 space-time patterns in 2020
                                                                          Area (km2)               Area (%)              Cases (number)     Cases (%)               Average age

Statistically significant patterns                                             432.00                                8.11                                     14,521                          85.05                                   42.84
Consecutive hotspots                                                               299.40                                5.62                                       4182                            24.49                                   43.75
Intensifying hotspots                                                                 54.68                                 1.03                                       7042                            41.24                                   42.13
New hotspots                                                                                7.00                                  0.13                                         45                               0.26                                    42.16
Sporadic hotspots                                                                      70.91                                 1.33                                       3252                            19.05                                   44.76
No pattern detected                                                                 536.98                               10.08                                      2553                            14.95                                   46.68
No cases                                                                                     4357.87                              81.81                                         0                                   -                                           -
Total                                                                                             5326.85                             100.00                                   17,074                         100.00                                  43.41
COVID-19 space-time patterns in 2021
                                                                          Area (km2)               Area (%)              Cases (number)     Cases (%)               Average age

Statistically significant patterns                                             126.72                                2.38                                     16,480                          58.20                                   36.07
Persistent hotspots                                                                   119.71                                2.25                                     16,337                          57.69                                   37.28
Sporadic hotspots                                                                       4.01                                  0.08                                         97                               0.34                                    29.98
Historical hotspots                                                                      3.00                                  0.06                                         46                               0.16                                    33.12
No pattern detected                                                                 942.83                               17.70                                    11,838                          41.80                                   37.24
No cases                                                                                     4257.29                              79.92                                         0                                   -                                           -
Total                                                                                             5326.85                             100.00                                   28,318                         100.00                                  36.55
Source: COVID-19 microdata daily records from the health authorities (Government of Cantabria, Spain).
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Focusing on problem areas we interpreted three main patterns
that changed between 2020 and 2021:
- Some significant problem areas in 2020 disappeared in 2021

by changing into ‘no pattern’ or ‘no cases’. This process affect-
ed 5.9% of the area, where 27.4% of the cases occurred during
the study period.

- In a small part of the region (2.2%) significant patterns
appeared during both years. Here, the main change was from
intensifying and sporadic hotspots in 2020 to a persistent pat-
tern in 2021. Importantly, this small area showed a significant
hotspot trend and a high concentration of cases (25,996),
which corresponds to 57.3% of all cases detected.

- As the pandemic contraction took hold when moving into
2021, a paradoxical retrograde development was observed in a
limited part of the study area (0.2%). Although the new signif-
icant problem areas had changed from no cases in 2020 to only
39 in 2021, it still appeared as the persistent hotspot type.

Problem areas in socio-economic context
We analysed the socio-economic context of problem areas

using data from the GeoEnrichment Service of ESRI-Spain

COVID-19 GIS Hub. Although we accessed and analysed a high
number of variables, we focused on the more relevant results. The
preliminary analysis of linear bivariate correlations revealed that
there was little or no association between the number of COVID-
19 cases as the dependent variable and many explanatory variables
using the 1x1-km pixel vector grid. However, we detected two
exceptions: the population density correlated positively (0.78) with
the number of COVID-19 cases, while the average selling price per
m2 correlated negatively (–0.95). The main difference between
these explanatory variables is that density presented a homoge-
neous correlation from the spatial perspective and local bivariate
relationships could therefore not be implemented. On the other
hand, as shown in Figure 6A, local bivariate relationships between
average selling price per m2 and COVID-19 demonstrated local
spatial differences. Globally, however, the spatial pattern showed
linear negative relationships in the inland areas, rural service cen-
tres and part of coastal areas. Nevertheless, the relationships
changed in the Santander-Torrelavega FUA, especially in the per-
sistent problem area of Santander City and its surroundings.
Additionally, south of Torrelavega and at the borders of the FUA,
the relationships turned into undefined.
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Figure 5. Space-time COVID-19 emerging hotspots in 2021. Sources: ESRI (Administrative Base map), National Geographic Institute
(National Cartographic Base 200), Copernicus FUA layer and COVID-19 microdata daily records from the health authorities
(Government of Cantabria, Spain).
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Different local relationships with COVID-19 appeared in other
correlated variables, such as the percentage of aged people (mainly
negative linear, except in the Santander-Torrelavega FUA and the
oriental coastal area) and the income per capita that resulted in a
fuzzy pattern where an undefined complex type was predominant
and only some small cluster of pixels appeared in the oriental and
occidental coastal areas. As shown in Figure 6B, the total spending
by household variable showed an opposite relationship with
COVID-19 cases depending on the dynamism of the area. Peri-
urban areas with prominent commuting and rural service centres,
i.e. places where people and economic activities were concentrat-
ed, presented positive linear relationships. Total spending by
household can be understood as an indirect indicator of lifestyle
that increases the risk of COVID-19 contagion. In contrast, low
density areas and inland valleys both showed a negative linear cor-
relation with the number of COVID-19 cases.

Discussion
Our method highlights the use of cluster analysis based on

space-time and 3D bins and emerging hotspots pioneered by
Hägerstand (1970) and Gatalsky et al. (2004) and developed into a
commercial product by ESRI. The resultant cartography is reveal-
ing as it includes spatial and temporal trends and can detect signif-
icant spatial patterns. To our best knowledge, this method was
applied to COVID-19 analysis by Chunbao et al. (2020) using data
at the city level, then by De Cos et al. (2021b) using geocoded
microdata, by Tokey (2021) adapted to the county level and,
recently, by Syetiawan et al. (2022) at the sub-district level. Our
models answer ‘where’, a key question according to Kamel and
Geraghty (2020), while we also focus on ‘when’, while we aim
deeper to solve the question in relation to control. ‘How’ and ‘why’
in future studies. 

Geospatial sciences play a strategic role in shortening response
times for pandemic management (Zhou et al., 2020) and planning
measures according to spatial models of key topics, such as inci-
dence ratios, hotspot setting and even accessibility to healthcare
centres (Mohammadi et al., 2021). Along with this thinking, we
previously developed a geoprevention approach based on models
to control the virus spread (De Cos et al., 2021b). The results
aimed to facilitate the alignment of restrictions and measures with
specific patterns of each area in the region. Nevertheless, here we
have to consider difficulties linked to Spanish territorial and
administrative organisation that can result in mismatched hotspots,
administrative health units and management units (Andrés et al.,
2021). In doing so, we observed significant differences within
municipalities that encouraged acting at local scales (Salama,
2020), in this case under the municipal boundary, a focus suitable
for our methodological approach. By applying a high spatial disag-
gregation, i.e. coordinate pairs and temporal granularity (daily),
our multi-scale approach (Dhaval, 2020) not only enabled a
detailed space-time analysis, but also identification of new territo-
rial boundaries (the epidemiological problem areas) without con-
straints from administrative or management units. 

Importantly, the context conditions (the socio-economic vari-
ables, building characteristics, economic activity, etc.) remained
largely unchanged during the study period, while other variables
necessarily changed in real time introducing some fuzziness in the
GIS models. This can, for example, occur with pollution levels that
can change by the hour in urban areas, which necessitates a fine

scale chronogeography framework (Parkes and Nigel, 1980) or it
can lead to spatial concurrence (Buffalo and Rydzewski, 2021). 

The changing spatial pattern of COVID-19 is related to the
regulatory framework (varying from almost normality to strict
confinement), which can produce different results in the spread of
the virus depending on timely decisions (Seong et al., 2021). Many
researches confirm the important role of containment measures to
mitigate viral spread (Alcântara et al., 2020; Li et al., 2020). We
agree that it plays an important role and admit that it is a limitation
that changes in regulatory context were not included in our model,
although we did consider it as background in the interpretation of
results. Combining changing factors (both mobility and regulatory
framework), Buffalo and Rydzewski (2021) state that models of
pedestrian mobility and spatial concurrency models are less reli-
able in non-mobility restriction periods, while the spread of the
virus is linked to proximate areas in restrictive frameworks as
demonstrated in a case study carried out in Malaga, Spain using a
dynamic model based on the confluence-transmission concept
(Perles et al., 2021b).

Our study showed a contraction and simplification of the
COVID-19 problem areas during the study period. Although
hotspots affected urban, peri-urban areas and rural service centres
in 2020, the spread of the virus was more controlled, and reduced
to the main cities as in 2021. This is in accordance with Buffalo
and Rydzewski (2021) who concluded that when there is commu-
nity transmission, the spatial spread of the virus does not only
affect the main cities but also those of medium size (as seen in
Figure 4). On the other hand, the problem areas in 2021 were more
common in densely populated areas as they concentrate the risk
factors, a fact also noted by Fernández et al. (2021) in their case
study in Asturias, a region bordering Cantabria. Thus, population
density and COVID-19 spatial patterns are linked (Bamweyana et
al., 2020), which is also evident from the ‘effective local density’
(Desmet and Wacziarg, 2021), the inhabitants to area ratio as
shown on the 1x1-km pixel vector grid. 

Some recent studies dissociate socio-economic vulnerability
and COVID-19 cases as only being punctual associations (Buffalo
and Rydzewski, 2021), a result that we also obtained when apply-
ing local bivariate relationship of income per capita that resulted in
a predominant fuzzy pattern of undefined complex type. Another
dissociation is related to ageing. We obtained a mainly negative
linear relation except in the Santander-Torrelavega FUA and the
oriental coastal area. Therefore, ageing may be related with sever-
ity but not with spread. Similarly, a recent study of USA counties
found that areas highly affected by COVID-19 mostly had a low
proportion of aged people (Tokey, 2021). As also stated by
Almendra el al. (2021), our results suggest that areas primarily
inhabited by a dynamic mix of middle-age and young with high
spending habits per household and an active lifestyle decisively
contribute to the genesis of significant COVID-19 problem areas.

Local bivariate relationships demonstrated that the virus pre-
sents a non-stationary spatial behaviour. Type and intensity of rela-
tion between explanatory and dependent variables changed across
the study area. Nevertheless, deep research along this line of inves-
tigation is necessary in the future. Exploratory study of permanent
variables is of interest and should be analysed monographically
considering also other factors that might affect the COVID-19 spa-
tial patterns. Indeed, a multi-factorial approach contributing to
knowledge of the spread of the virus in urban and metropolitan
areas (Perles et al., 2021b) could be revealing. We say this since
chrono geographic analysis at detailed scales and applied to com-

                   Article

[page 188]                                                        [Geospatial Health 2022; 17(s1):1067]                                                                         

Non
-co

mmerc
ial

 us
e o

nly



                                                                                                                                Article

Figure 6. A-B) Examples of local bivariate relationships with the COVID-19 cases as the dependent variable: average selling price per
m2 and total spending by household. Sources: ESRI (Administrative Base map), National Geographic Institute (National Cartographic
Base 200), Copernicus FUA layer and COVID-19 microdata daily records from the health authorities (Government of Cantabria, Spain).
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plex, dense and dynamic systems, where many factors can con-
tribute to viral spread, are of interest in terms of spatial concur-
rence (Buffalo and Rydzewski, 2021).

Many rules and measures to reduce COVID-19 transmission
were implemented by the national and regional governments in
Spain during the two years of the pandemic. The vaccination pro-
cess that started in January 2021 is one of the most important ones
for the work presented here, as we finished this research in 2021,
at which time 83.4% of the population of Cantabria had been vac-
cinated according to health regional data for the Government of
Cantabria. This is a very high vaccination ratio considering that
many children have not been vaccinated yet, even though vaccina-
tion of 5 to 11-year olds started in mid-December 2021.

At the beginning of the pandemic Jindal et al. (2020) stated
that the two stages for the risk mitigation would be to reduce the
spread and decrease disease severity. However, with an effective
vaccine available, we hold the idea that controlling spatial patterns
(virus spread) can reduce severity indirectly because the probabil-
ity of infection of non-vaccinated and vaccinated vulnerable peo-
ple decreases in a scenario of low contagion. This consideration is
of special importance at the time this paper was conclude
(Christmas, 2021), Cantabria registered the worrying record of
near 1000 new cases per day in the context of the sixth wave with
the Omicron variant.

Invisible boundaries complicate spatial pattern analysis and
virus containment. Examples include new problem areas, adminis-
trative boundaries used by policy makers to implement contain-
ment and mitigation measures, statistic areas to access to data
sources about socio-economic context, etc. This is a wide research
field with open borders as demonstrated by Mollalo et al. (2021) in
their recently published scoping review about spatial analysis of
COVID-19 vaccination. The study of vaccination from a spatial
approach is increasing and more sophisticated techniques than
choropleth maps are necessary. When data registers are available
from health authorities, our methodological proposal may be
applied to vaccination microdata, which could show hotspots as
areas where increased vaccination is needed, while coldspots and
areas without visible patterns of spread might indicate areas requir-
ing a deeper analysis.

Moore et al. (2021) state that vaccination against COVID-19
seems insufficient with regard to containing outbreaks and spread,
at least in areas with low-medium proportion of vaccinated people.
However, with data from the sixth wave, we reinforce that idea and
conclude that spatial models are revealing, innovative and can
assist decision-making, i.e. it is time to put social sciences, GIS
and health geographics at the service of health authorities.

Conclusions
Our research demonstrates the nuances of COVID-19 areas

and contributes to an understanding of the pandemic from a spatial
point of view. Admittedly, an important varying factor during the
20-month study period were the different proportion of vaccinated
people in the second year and the changing decision-making in
forecasting, organization and management of health services as the
COVID-19 epidemic evolved. 

Focusing on the significant hotspots, the effective population
density, as indicated by commuting and concentration of economic
activities in the urban, peri-urban areas and rural service centres
under study can be understood as potential concurrence areas. This

reinforced the interest in where, when and how people interact in
the same neighbourhood. Hence, GIS-science tools ecosystem and
health geographic concepts and methods can contribute to tackle
the pandemic from an interdisciplinary approach joining spatial
research to other specific and consolidated disciplines in the pan-
demic, e.g., epidemiology, medicine and virology in particular.

Our models revealed problem areas and distinguished several
patterns. On this basis, we provide support for decision makers in
matters of geoprevention as a way to design measures at regional
scale with local targeted strategies. In this sense, virus contention
plans can be strengthened with spatial perspective.
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