
Abstract
Assessment of personal exposure in the external environment

commonly relies on global positioning system (GPS) measure-
ments. However, it has been challenging to determine exposures
accurately due to missing data in GPS trajectories. In environmen-
tal health research using GPS, missing data are often discarded or
are typically imputed based on the last known location or linear
interpolation. Imputation is said to mitigate bias in exposure mea-
sures, but methods used are hardly evaluated against ground truth.
Widely used imputation methods assume that a person is either
stationary or constantly moving during the missing interval.
Relaxing this assumption, we propose a method for imputing loca-
tions as a function of a person’s likely movement state (stop,
move) during the missing interval. We then evaluate the proposed
method in terms of the accuracy of imputed location, movement
state, and daily mobility measures such as the number of trips and
time spent on places visited. Experiments based on real data col-
lected by participants (n=59) show that the proposed approach

outperforms existing methods. Imputation to the last known loca-
tion can lead to large deviation from the actual location when gap
distance is large. Linear interpolation is shown to result in large
errors in mobility measures. Researchers should be aware that the
different treatment of missing data can affect the spatiotemporal
accuracy of GPS-based exposure assessments.

Introduction
GPS allows measuring a person’s movement and activity pat-

terns, which is a key element in assessing personal exposure in the
external environment (Loh et al., 2017). GPS trajectory data are
increasingly used to monitor community mobility (participation)
of people with limited mobility (Evans et al., 2012; Hordacre et
al., 2014; Jayaraman et al., 2014; Hanke et al., 2019) and deter-
mine environmental correlates of physical activity (PA) (Jones et
al., 2009; Maddison et al., 2010; Wheeler et al., 2010; Quigg et
al., 2010; Almanza et al., 2012; Kerr et al., 2012; McGrath et al.,
2015; Rundle et al., 2016; Jansen et al., 2018). Despite the grow-
ing use of GPS, there is no good consensus on GPS data process-
ing procedures for environmental health research (Kerr et al.,
2011; Krenn et al., 2011; Klinker et al., 2014; McCrorie et al.,
2014; Fillekes et al., 2019). This is partly because human trajecto-
ry data are sparsely sampled where built structure interferes with
GPS signals. In many health studies using GPS, missing intervals
(or time gaps) in GPS trajectories are often excluded for subse-
quent analysis although those gaps represent significant portions
of important places visited. Their exclusion can generate biased
exposure measures and thus affect inference with respect to envi-
ronment-health links (Mennis et al., 2018). The spatial buffer of
raw GPS data is of limited use as a measure of activity spaces
(Hirsch et al., 2014) because temporal aspects of visited places
(e.g., arrival time, duration of stay) can be miscalculated due to
missing data (Christensen et al., 2021).

Not surprisingly, researchers have attempted to impute loca-
tions over missing intervals in trajectories (geographic imputation
in short) to improve the assessment of spatiotemporal exposure of
persons to the external environment. It has been shown that there
can be a difference of several minutes for PA at various locations
before and after imputation (Meseck et al., 2016). Dwell time at
home was substantially underestimated from raw data (i.e. without
imputation) and imputation rendered this measure less biased
(Yoo et al., 2020). Imputation is increasingly seen as a viable strat-
egy for dealing with missing data in trajectories. Imputation is
even more necessary as a large volume of low-resolution GPS data
is generated by smartphones. Given the prevalence of missing
location data in GPS trajectories, it is important to consider effects
of treating missing GPS data when assessing exposures. 

Although making GPS data complete is integral to accurate
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and reliable analysis, imputation is often conducted without a good
knowledge of how it works. An existing imputation method typi-
cally assumes that a person is either stationary or constantly mov-
ing during the missing interval. We propose a geographic imputa-
tion method that considers a person’s potential stop and move
(SAM) characteristics during time gaps. To achieve this, we com-
pared how accurately different geographic imputation methods
infer locations and movement states during time gaps. We also
compared the accuracy of daily mobility measures (e.g., the num-
ber of trips and time spent on places visited) as mentioned by
Fillekes et al. (2019) resulting from different imputation methods.
This article is intended to shed light on what makes effective impu-
tation strategies and how imputation methods affect exposure
assessment.

Materials and methods

How missing GPS data are treated in health research
To understand the geographic context of health behaviour,

researchers have resorted to GPS, accelerometers and geographic
information systems (GIS). A GPS-equipped device measures an
individual’s movement (or location) at given intervals, generating
spatial trajectory data; an accelerometer measures the level of PA
(or body posture); while GIS puts together the geospatial data (e.g.,
walkability, access to food, air pollution, green space, etc.) in a
geographic context. The combination of these technologies enables
objective and contextual measurement of health behaviours at a
high level of specificity and accuracy (Chaix et al., 2012, 2013;
Jankowska et al., 2015). To determine environmental correlates of
PA, researchers synchronize GPS data with accelerometer data
based on timestamp and overlay the synchronized data with con-
textual data in GIS (Klinker et al., 2014; Oreskovic et al., 2015).
Spatiotemporal accuracy of imputed GPS trajectories (i.e. where a
person was at a particular time) is not only crucial to the integra-
tion of these data but can also affect the validity of conclusions
based on such data.

To examine how missing data in GPS trajectories are treated in
this type of research, we selected reputable articles in environmen-
tal health using GPS trajectory data with high specificity (e.g.,
actual locations rather than indoor/outdoor or within/outside of
neighbourhoods), where accelerometers or GIS are used at varying
degrees. Table 1 summarizes approaches to treating missing GPS
data alongside findings in these articles. The review reveals that
gaps (signal loss) are prevalent. Missing data are discarded for
analysis (i.e. not imputed) in many studies. It appears that the
imputation of missing location data has recently become common-
place. Below we describe existing imputation methods used in
studies listed in Table 1. An unknown location is typically imputed
to the last known location of a GPS track point before signal loss
(‘last fix’ onwards). The unknown location is less commonly
imputed to the first known location after signal loss (‘first fix’
onwards). Location data are typically missing when persons are in
an area where the GPS signal does not penetrate (e.g., buildings,
subways, tunnels and the like). In other words, ‘missingness’ in
GPS trajectories is not a random event. This type of imputation
method is denoted as stop-based (ST) in Table 1. This method can
impute location well if a person is stationary during signal loss.
However, most studies using this method fail to check whether the
gap is part of a stop.

Another common method is to impute an unknown location
with the assumption that persons are constantly moving during sig-
nal loss. It is possible to delineate a space-time prism (STP) or a
maximal possible boundary of a person’s whereabouts with spa-
tiotemporal coordinates of two anchor points (last fix, first fix)
(Miller, 1991; Pfoser and Jensen, 1999; Hornsby and Egenhofer,
2002). In a typical form, unknown locations are linearly interpolat-
ed along the path between two anchor points with a constant veloc-
ity as a representative location of STP. The path can be represented
as the straight line, the least-cost route (Chaix et al., 2019) using
external data (e.g., transportation network), or popular routes
mined from a person’s historical trajectories (Wei et al., 2012;
Zhao et al., 2021). This type of imputation method is denoted as
linear interpolation (LI) in Table 1. It performs well if the assump-
tion of constant motion is valid.

Some recent studies listed in Table 1 use personal activity and
location measurement system (PALMS) (Carlson et al., 2015).
This approach allows researchers to clean GPS trajectory data,
identify trips (moves) and locations (stops), and integrate GPS data
with PA data. With default parameter values, PALMS detects sig-
nal losses longer than 10 min (LOS) in GPS data to mark last fix
and first fix. PALMS marks a trip start if it detects movement
(speed >0.57 m/sec) and marks a trip end if the device is stationary
for 3 min. It marks a stop if first fixes, last fixes, trip starts and trip
ends are spatially clustered within 30 m for at least 5 min. This
means that PALMS imputes the unknown location of missing data
to the centre of the spatial cluster if the gap exceeds 10 min and
forms part of a stop. Otherwise, missing data is imputed as part of
a move; thus imputing location is highly contingent on LOS.

A statistical approach to imputation has also been proposed
(Barnett and Onnela, 2018). In this approach, an unknown sub-tra-
jectory over the missing interval is modelled as a sequence of
events, in which an event is either a flight (move) or a pause (stop).
It determines whether a move occurs based on probability involv-
ing similarities between the current data point and observed events
and then models the event displacement using density functions for
events conditional on the time and location at last fix. The method
is designed to account for GPS data that are missing completely at
random (MCAR) with short duration (less than 10 min). However,
many GPS trajectories, such as being inside a building, are missing
not at random (MNAR). 

In synthesis, a geographic imputation method for GPS trajec-
tory data can be classified into different types depending on: i)
which movement state missing data is imputed as; ii) whether it
models random or non-random gaps; and iii) whether or not it uses
external (or historical) data. We present a method that considers
possible stop-and-move (SAM) characteristics of human trajecto-
ries during non-random gaps without using external data. The
method is applicable to imputing locations over missing intervals
that are reproducible in many real-world settings without stringent
data requirements. The proposed method has two-step processes
that can determine the likely movement state and impute location
accordingly. 

A proposed method for geographic imputation
The purpose of geographic imputation is to estimate ‘unknown

location at a given time during time gaps’, denoted as z(tu), where
ti<tu<tj. It is formulated as follows:

z(tu) = z(ti) + ῡ ∆t where ∆t = tu - ti (1)

                   Article

Non
-co

mmerc
ial

 us
e o

nly



                                                                                                                                Article

                                                                             [Geospatial Health 2022; 17:1081]                                                          [page 211]

Table 1. Treatment of missing data in GPS trajectories in environmental health studies.

GPS study                     Imputed        Method of              Imputation details                              Summary of findings                             Locality
                                       or not          imputation                              

Rodriguez et al., 2005                No                            -                                                 -                                                             More PA is associated                                             US
                                                                                                                                                                             with high population density and street connectivity
Wiehe et al., 2008                      Yes                         ST                              Set to last fix if gap                                              GPS can be used to                                               US
                                                                                                                <30 m; otherwise set to data                           determine where adolescents 
                                                                                                                         point close to home                                      spent time away from home                                          
Jones et al., 2009                        No                            -                                                 -                                PA is associated with gardens and street environment                UK
                                                                                                                                                                                    (farm, grassland) for urban (rural) children
Maddison et al., 2010                Yes                         ST                              Set to last fix if gap                                         Majority of adolescents’                                  New Zealand
                                                                                                                                    <100 m                                                 MVPA bouts occurred within 
                                                                                                                                                                                                 1 km of school (71%) or 150 m 
                                                                                                                                                                                                   of home environment (46%)                                          
Oliver et al., 2010                       No                            -                                                 -                                                           It is feasible to combine                                 New Zealand
                                                                                                                                                                                            accelerometer and GPS to measure 
                                                                                                                                                                                                          transport-related PA                                                 
Almanza et al., 2012                   No                            -                                                 -                                                       Positive association between                                      US
                                                                                                                                                                                                           green-space and PA                                                  
Rainham et al., 2012                  Yes              Overlay, ST, LI,          If last and first fix fall within                     Adolescents’ commuting contributes                           Canada
                                                                                  manual                             known locations                                            a lot to MVPA especially                                             
                                                                                                                        (e.g., home, school),                               in urban areas where automobiles 
                                                                                                                 set to those locations; if not,                            are not used for commuting;
                                                                                                                 set to last fix if gap <10 sec;                            urban adolescents are more 
                                                                                                                   or use linear interpolation                             physically active than suburban 
                                                                                                                                                                                                          or rural adolescents                                                  
Oreskovic et al., 2015               Yes                  Overlay, ST             Imputed to school if gap >2 h                                 Being at school, on the                                            US
                                                                                                              near school; imputed as last fix                        streets/sidewalks, in parks and 
                                                                                                                           if gap ≤2 h within                                       playgrounds associated with
                                                                                                                    the matched GPS/PA data                                       greater odds of MVPA
James et al., 2017                       No                            -                                                 -                                              PA has positive nonlinear relationship                               US
                                                                                                                                                                                                with walkability and greenness
Van Hecke et al., 2018               Yes                     PALMS                          Set to stop location                                       Time spent on public open                                    Belgium
                                                                                                            nearby if gap >10 min and spatial                              spaces goes up when
                                                                                                                      clusters of data points                                            accompanied, for
                                                                                                                   are marked as ‘stationary’;                                  non-western Europeans
                                                                                                                 otherwise, set to part of trip                                                        
Lee and Kwan, 2018                  Yes                          LI                      Set to a linearly interpolated                    Random forest and gradient boosting                               US
                                                                                                                        path between last fix                                            (machine learning)                                                  
                                                                                                                                 and first fix                                           can be used to predict PA type                                        
                                                                                                                                                                                                       (walking, running, etc.) 
                                                                                                                                                                                                  from GPS and PA data reliably
Barnett and Onnela, 2018        Yes                Probabilistic              Resampling from empirical                                      A proposed method                                  China (GeoLife)
                                                                                                                     distribution of observed                               nearby dataimproves accuracy
                                                                                                                                                                                                         of mobility measures                                                
Remmers et al., 2019                Yes                     PALMS                          Set to stop location                               Active transport contributes to PA;                         Netherlands
                                                                                                            nearby if gap >10 min and spatial                     density and small activity space
                                                                                                                   clusters of data points are                       size is positively associated with PA;
                                                                                                                      marked as ‘stationary’;                           green space not associated with PA
                                                                                                                 otherwise set to part of trip
Chaix et al., 2019                        Yes               ST, LI, manual                Imputed to known stop                           Walking trip contributes much to PA                             France
                                                                                                                           locations nearby; 
                                                                                                                           manually imputed 
                                                                                                                        as the shortest path                                                               
Tamura et al., 2019                     No                            -                                                 -                                                   Greenness is associated with PA                                    US
Allahbakhshi et al., 2020           Yes                          LI                      Set to a linearly interpolated                    Adding GPS features (such as speed)                Multiple countries
                                                                                                                    path between last fix and                                  can improve classification
                                                                                                                                    first fix                                           of activity type(e.g., laying, walking,                                    
                                                                                                                                                                                    running, cycling, sitting) with random forest                           
ST, stop-based interpolation; LI, linear interpolation; MVPA, moderate-to-vigorous physical activity; PALMS, personal activity and location measurement system.
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where ti is the time of last fix; tj is the time of first fix; tu is any time
between ti and tj when unknown location is estimated; and ῡ an
unknown velocity during ∆t. It states that z(tu) is determined by
how much a person moves from the last known location z(ti). If a
person is stationary during the gap (from ti to tj), then ῡ can be set
to zero and z(tu) set to the last fix location z(ti). This is equivalent
to the simple ST method discussed above. If a person is constantly
moving during the gap, then ῡ can be set to the mean velocity (ῡij)
following the path between i and j. This is equivalent to the simple
LI method discussed above. The presumption of a singular move-
ment state (either stationary or moving) during a gap is not always
held. To illustrate, it is unrealistic to have constant motion with
very low speed during a gap (Figure 1A). Rather, it is more likely
that a person alternates a SAM sequence during the gap (Figure
1B) (Hwang et al., 2018). In summary, z(tu) can be better modelled
as a function of likely movement states which can be singular or
composite.

States during a gap Sij can vary depending on gap distance ∆zij

and gap velocity ῡij. Following the sensitivity analysis conducted
by Hwang et al. (2018), 1 m/sec and 100 m are recommended for
MV (cut-off in gap velocity) and SR (cut-off in gap distance),
respectively. The state is imputed as a stop if both gap distance and
velocity are small (i.e. less than cut-off values) but imputed as a
move if both gap distance and velocity are large (i.e. larger than
cut-off values). Large gap distance and small gap velocity would
be imputed as a SAM sequence since large distance indicates mov-
ing and small velocity indicates being stationary at some point.
Small gap distance and large gap velocity would instead be imput-
ed as stop or move (SOM), i.e., move if a person is making a short
trip and stop if high velocity is an artefact of signal noise.

An unknown location is imputed differently depending on Sij

(Figure 2). z(tu) is set to the location of the last known point z(ti) if
Sij were imputed as stop but linearly interpolated between i and j at
the velocity of ῡij if Sij were imputed as move. If Sij is imputed as
SAM, z(tu) would be presumed to be stationary up until ta, where
ti<ta<tj, and then move at an unknown velocity ῡ between ta and tj,
where ta (the time of trip start) is determined by ῡ and the distance
between i and j. [In the previous work (Hwang et al., 2018) both
stop-and-move and move-and-stop were considered when Sij is
inferred as SAM. Experiments indicate that both location imputa-
tion and state inference with move-and-stop perform poorly.
Hence, we considered stop-and-move here.]. ῡ depends on whether
S>j (state of record following j) is stop or move. The state before or
after the missing interval is determined by fuzzy inference over the
minimum segment duration (MinSegDur) (Hwang et al., 2018). An
experiment indicates that state is most accurately inferred when
MinSegDur is set to 9 min. If S>j is move, then a person is assumed
to move at the same speed as ῡ>j (mean velocity of record follow-
ing j). If S>j is stop, the average speed on a route taken between i
and j is set to ῡ. Once Sij is imputed as SOM, z(tu) should be set to
z(ti) if a gap is surrounded by stops at both ends; otherwise set to
z(ti) + ῡij ∆t. As the proposed method extends a path interpolation
algorithm conditional upon the likely movement state, it will be
referred to as conditional path interpolation (CPI) in short in fol-
lowing sections.

Experiments
To assess the performance of CPI and other imputation meth-

ods, we collected two-day continuous GPS trajectories from 59
participants during the warm season. Participants’ activity spaces
were in Chicago and its vicinity. During an orientation and with

informed consent, they were provided with GPS loggers (QStarz
BT-Q1000XT) and given instructions for using and completing
travel surveys. The orientation included a pilot tracking under
direct supervision of research staff, to ensure compliance with the
protocol. Upon completing an orientation, participants went about
their daily lives always carrying GPS loggers except for water
activities during the tracking period (i.e. the full 48 hours agreed
on for GPS tracking and data analysis). All participants agreed to
record time and location using a voice recorder when they started
and ended any trip (move) lasting at least 45 sec on a real-time
basis to minimize memory bias. They were made aware that a
move would be delimited by a stop of at least 2 min’s length to
reduce confusion over what counts as SAMs (Fillekes et al., 2019).
They also completed travel surveys by retrieving recorded audios
when amenable to them and recorded locations objectively at the
time of starting and ending a trip using a button in the GPS logger.
This was used to verify the accuracy of self-reported location and
time in the travel surveys. Two research staff reconciled any incon-
sistency in travel surveys by visually inspecting raw GPS data in
GIS and checking with participants. Any self-reported data that
could not be verified with certainty were excluded. Thus, these val-
idated data constitute ground truth. The sampling rate of a GPS
logger is 5 sec. Any gaps ranging from 90 sec to 2 days (tracking
period) are imputed. Minimum stop duration (MinStopDur) ranges
from 2 min to 30 min in studies on stop detection (Hwang et al.,
2018) and was set to 2 min in this study to increase the number of
sampling points. MinSegDur is set to 9 min for fuzzy inference.

                   Article

Figure 1. Path interpolation at various modes of motion. A) con-
stant motion; B) state-varying motion.

Figure 2. The proposed algorithm for geographic imputation in
GPS trajectories.
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Some changes were made from the previous work (Hwang et
al., 2018) in pre-processing GPS data. In order to examine the per-
formance of imputation independent of outlier detection methods,
we did not remove outliers in the current work. We retained GPS
track points with ‘no fix’ for positioning methods (e.g., differential
GPS, dead reckoning). While location of these data points is inac-
curate, their timestamps provide a check to when a person might
have gotten in or out of a built structure or tunnel that could have
caused signal loss. Original coordinates with ‘no fix’ were replaced
with coordinates of their temporally close data points with a supe-
rior positioning method. 

After removing redundant (speed from the previous point <1
m/sec) or inaccurate GPS track points (horizontal dilution of posi-
tion ≥3.5 or the number of satellites used <4), we imputed data
with three different methods (i.e. ST, LI, CPI). GPS data is then
segmented into SAM episodes using the trajectory segmentation
algorithm (Hwang et al., 2018). A stop episode is a sub-sequence
of a trajectory where a person exhibits little movement for at least
MinStopDur. A move episode is a part of a trajectory that is delim-
ited by two consecutive stops. Episodes are used to compute daily
mobility measures for each participant. 

To evaluate the performance of imputation methods, we first
calculated location deviation (LocDev), the Euclidean distance (in
meters) between estimated locations and actual locations at the
time of trip start/end during time gaps. The time of trip start/end in
a travel survey provides a crucial timestamp when state and loca-
tion change in a GPS trajectory (i.e. with highest uncertainty). The
performance of the imputation is thought to be the worst at these
timestamps. Then, we considered to what extent the state is cor-
rectly inferred timewise at the level of episodes. Third, we
accounted for how daily mobility measures, estimated for each
participant during the tracking period, differed from reported
mobility measures across different imputation methods. That way,
we could examine both direct (e.g., during time gaps) and indirect
(e.g., during the tracking period) effects of imputation methods at
various levels of observations (i.e. that were specific to sampling
points, episodes and participants). 

Results
Based on 260 sampling points (verifiable locations at trip start

and end over missing interval), average LocDev for CPI, LI and ST
was 58 (±63 standard deviation), 79 (±339) and 135 (±499) m,
respectively. The Wilcoxon signed-rank test confirms the differ-
ence between CPI and ST (z-statistics –3.583, P=0.000) but no dif-
ference between CPI and LI (z-statistics –0.008, P=0.994). In con-
trast to CPI and LI, LocDev measures of ST (Figure 3) had more
data points exceeding 500 m. For instance, large LocDev of 5949
m by ST was remedied to 149 m when data were imputed by CPI
that maps a gap to SAM instead of stop. While gaps are frequently
associated with stops, ST can impute locations inaccurately when
a gap is deemed to be in composite states such as SAM, with large
gap distance and low gap velocity. Hence ST should be used with
caution for imputing missing locations. Solely relying on ST for
imputation can result in misidentification of locations of places
visited. 

In addition to evaluating positional accuracy at a point of time,
we considered how accurately the state is classified at the level of
episodes over a period, e.g., from time of arrival to departure. The
classification accuracy is measured as the percent of correctly clas-

sified state (PCC) in sec for each of labelled episodes during gaps.
The mean classification accuracy of CPI, LI and ST by participants
was 76.49% (±20.82 SD), 8.52% (±16.48 SD), and 73.11%
(±26.27 SD), respectively. The Wilcoxon signed-rank test con-
firmed that CPI improves the classification accuracy over LI (z-
statistics –5.887, P=0.000) and ST (z-statistics –2.084, P=0.037). 

To evaluate positional accuracy and classification accuracy
jointly, we examined how the classification accuracy changes at
varying values of LocDev that is assigned to each episode based on
arrival time (because not all locations of trips are known). To this
end, we calculated the proportion of computed episodes that were
minimally matched (co-occurring with a labelled episode of the
same state ≥2 min) and maximally matched (2 min ≤ co-occurring
with a labelled episode of the same state ≤ the total duration of the
labelled episode - 10 min) during gaps where the LocDev values
were less than the threshold, which ranged from 25 to 900 m.
Figure 4 shows that the classification accuracy of CPI (red) was
consistently greater than that of LI (blue) and ST (green) at differ-
ent LocDev values. 

We also considered how imputation methods affect daily
mobility measures calculated for the entire tracking period
(beyond missing intervals). For each of the 59 participants, we
computed the number of stops, time spent on stops (in sec), the
number of trips, and time spent on trips (in sec) from a GPS trajec-
tory that was imputed differently. In order to represent how com-
puted mobility measures agree with ground truth, the mean abso-
lute error (MAE) (i.e. the average of the absolute differences
between reported vs. estimated mobility measures) was calculated
(Table 2). The Wilcoxon signed-rank test confirmed that CPI
yields less MAEs than other methods at P=0.01, except for the pair
in the number of stops between CPI and LI, as well as the pair in
time spent on trips between CPI and ST. LI excessively miscalcu-
lates temporal aspects of episodes (e.g., time spent on trips), while
ST infers the number of episodes less accurately than does CPI.

All in all, CPI outperformed ST and LI in imputing location
and state during gaps (Figures 3 and 4) and inferring daily mobility
measures during the tracking period (Table 2). ST was more widely
applicable to imputing non-random gaps than LI because more
non-random gaps were associated with stops than moves. ST is,
however, subject to misclassification of exposure during gaps that
are better modelled as composite states than a singular state. LI
negatively affects the accuracy of trajectory segmentation, result-
ing in inaccurate daily mobility measures. LI is therefore not rec-
ommended for inferring mobility measures especially in filling
gaps with long duration given its poor performance. The experi-
mentation results provide a proof of concept for CPI.  

Discussion
CPI offers improvement over other methods (ST, LI) in imput-

ing missing data in GPS trajectories and brings together those
methods into a unified one. Statistical tests show that ST underper-
forms other methods in imputing locations and LI distinctively
underperforms other methods in inferring states and mobility mea-
sures. Low performance of LI, especially in inferring mobility
measures, is consistent with the finding of one existing study
(Barnett and Onnela, 2018). To improve CPI, the presumption
made about composite movement states warrants further refine-
ment and validation. It is shown that the smaller temporal range of
an imputable gap, the better imputation performs (Hwang et al.,
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2018). Depending on the margin of error allowed for exposure esti-
mates, one can reduce the range of an imputable gap instead of fill-
ing gaps entirely. We did not evaluate positional accuracy of move
in fine granularity as much as stop because participants were
instructed not to record their locations while moving (e.g., driving)
for safety reason. 

The accuracy of trajectory imputation is affected by how data
quality issues are addressed prior to imputation. We anticipate that
there are cascading effects of inadequately treated data quality
issues on imputation, segmentation, and exposure measures
(Sambasivan et al., 2021). The review of cases with large LocDev
reveals that low performance is linked to inadequately treating
imperfect data points such as outliers especially in urban canyons
(e.g., downtown Chicago) with frequent GPS signal shortage.
Further research on robust pre-processing methods is needed to
develop best practices for GPS data processing and enhance spa-
tiotemporal exposure assessment. The current study elucidates role
of imputation - as part of data pre-processing - in exposure mea-
sures. To make spatiotemporal exposure assessment clinically use-
ful, it is important to consider ways in which a person is exposed
to the environment. For instance, more exposure is expected at a
place where more time is spent walking than driving. Modality of
exposure cannot be precisely captured at the level of raw GPS tra-
jectories that are discretely and sparsely sampled. Instead, raw data
can be turned to SAM episodes as a high-level representation of
raw data. Modality of exposure can be logically inferred from
these episodes with relevant attributes such as dwell time/location
or mode of transportation. 

A growing number of research strives to examine how health
outcomes are linked to geographic contexts using GPS data as
location-aware mobile devices have become commonplace. The
full potential of GPS technology for improving our understanding
this topic is, however, not realized yet as there is no good consen-
sus on how to process uncertain GPS trajectory data. Imputation
serves as a preliminary process for turning ‘discretely’ sampled
raw GPS track points into a ‘continuous’ sequence of SAM
episodes. We acknowledge that it is challenging to measure the
magnitude, frequency, and duration of exposure to different envi-
ronments in relation to health outcomes. Still, we can better infer
how persons interact with the environment if GPS trajectories were
seamlessly imputed and accurately segmented into episodes that
have a bearing on the modality of exposure. 

CPI can be used to fill data gaps and reduce bias in activity
space measures and daily (community) mobility measures in envi-
ronmental health research. As CPI does not require additional data
like other methods (such as popular path or the shortest path
method), CPI can be applied to processing near real-time GPS data
as well as historical GPS data. Furthermore, CPI can be used for
up-sampling (i.e. increasing the sampling rate) of low-resolution
trajectory data (e.g., from smartphones) and compressed trajectory
data (e.g., in the ‘cloud’). Unlike a statistical approach that
accounts for random gaps with a short duration, CPI can be applied
to filling non-random gaps with a long duration.  

Conclusions
The proposed CPI method for geographic imputation considers

both SAM characteristics of a personal trajectory during the miss-
ing interval. CPI outperforms existing imputation methods (ST, LI)
in estimating location and movement states and daily mobility

measures. Furthermore, ST can lead to misclassification of expo-
sure location when gaps are associated with composite states (such
as SAM), while temporal aspects of episodes (e.g., time spent on
activity locations) will be grossly miscalculated if LI is used.
Given present experimentation results, CPI is expected to reduce
bias in exposure measures. 
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Table 2. Mean absolute error of daily mobility measures by impu-
tation methods.

                                                                        CPI          LI         ST

The number of stops                                                      4.66            4.61          5.46
Time spent on stops (reported in hours)                 5.79           20.50         5.76
The number of trips                                                        3.49            6.05          3.85
Time spent on trips (reported in hours)                  0.32           23.18         0.37
CPI, conditional path interpolation; LI, linear interpolation; ST, stop-based interpolation.

Figure 3. Boxplot of location deviation in meters by imputation
methods. CPI, conditional path interpolation; LI, linear interpo-
lation; ST, stop-based interpolation.

Figure 4. Classification accuracy over varying values of location
deviation (LocDev). cpi_pcc_min = the proportion of minimally
matched episodes by conditional path interpolation (CPI);
cpi_pcc_max = the proportion of maximally matched episode by
CPI; li_pcc_min = the proportion of minimally matched episodes
by linear interpolation (LI); li_pcc_max = the proportion of maxi-
mally matched episode by LI; st_pcc_min = the proportion of min-
imally matched episodes by stop-based interpolation (ST);
st_pcc_max = the proportion of maximally matched episode by ST.
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The main contribution of this study is to demonstrate how the
different treatment of missing data in GPS trajectories affects the
accuracy of spatiotemporal exposure assessment. Given findings
of the current study, researchers should exercise caution in using
ST for estimating missing locations and using LI for inferring
mobility measures when working with sparsely sampled GPS tra-
jectories. Effective imputation is the first step towards increasing
the usability of GPS trajectory data for improved exposure assess-
ment and beyond. As spatiotemporal data (including GPS trajecto-
ries) increase in volume, availability and role, more attention to the
uncertainty of spatiotemporal data is warranted. 
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