
Abstract
Visceral leishmaniasis (VL) is a neglected tropical disease

transmitted by Lutzomyia longipalpis, a sand fly widely distribut-
ed in Brazil. Despite efforts to strengthen national control pro-
grams reduction in incidence and geographical distribution of VL
in Brazil has not yet been successful; VL is in fact expanding its
range in newly urbanized areas. Ecological niche models (ENM)
for use in surveillance and response systems may enable more
effective operational VL control by mapping risk areas and eluci-
dation of eco-epidemiologic risk factors. ENMs for VL and Lu.

longipalpis were generated using monthly WorldClim 2.0 data
(30-year climate normal, 1-km spatial resolution) and monthly soil
moisture active passive (SMAP) satellite L4 soil moisture data.
SMAP L4 Global 3-hourly 9-km EASE-Grid Surface and Root
Zone Soil Moisture Geophysical Data V004 were obtained for the
first image of day 1 and day 15 (0:00-3:00 hour) of each month.
ENM were developed using MaxEnt software to generate risk
maps based on an algorithm for maximum entropy. The jack-knife
procedure was used to identify the contribution of each variable to
model performance. The three most meaningful components were
used to generate ENM distribution maps by ArcGIS 10.6. Similar
patterns of VL and vector distribution were observed using SMAP
as compared to WorldClim 2.0 models based on temperature and
precipitation data or water budget. Results indicate that direct
Earth-observing satellite measurement of soil moisture by SMAP
can be used in lieu of models calculated from classical tempera-
ture and precipitation climate station data to assess VL risk.

Introduction
Visceral leishmaniasis (VL) is a neglected tropical disease

(NTD) transmitted by Lutzomyia longipalpis, a sand fly species
that is widely distributed in Brazil and the main vector for VL in
this country. VL is mainly a childhood disease and cases are
mandatorily reported to the Brazilian Ministry of Health through
the National System on Diseases Notification (SINAN, http://por-
talsinan.saude.gov.br/). Despite efforts to strengthen the current
VL national control program in Brazil, its incidence and geo-
graphical distribution has not yet been successfully reduced. VL is
in fact expanding its range, particularly in newly urbanized areas
(Lima et al., 2018). There is a need for more effective alternative
methods for control. In Bahia state, VL is considered an endemic
disease in rapid expansion. Between the years 2015 and 2017, this
state was responsible for 8.9% of notifications of VL in the coun-
try. In 2016 and 2017, the highest number of reported new cases
was in the Central-North, the West and south-eastern regions of
the state. In February 2018, the disease was present in 174 of the
417 municipalities in Bahia, with transmission classified as
intense in 17 areas, moderate in 26 and sporadic in 131 (Secretaria
de Saúde do Estado da Bahia, 2018). In Sao Paulo State, VL has
spread geographically along a major axis extending from the
Northwest to the Southeast towards the Bauru Region, following
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the Bolivia-Brazil gas pipeline and the Marechal Rondon Highway
(Cardim et al., 2016; Seva et al., 2017). The vector has been
reported in 193 out of 645 municipalities, with the western region
of the state experiencing rapid spread of the disease (Prestes-
Carneiro et al., 2019). 

We evaluate here use of data from the soil moisture active pas-
sive (SMAP) satellite, a National Aeronautics and Space
Administration (NASA) mission in 2015 that combines L-band
radar (15-30 cm) and a radiometer to directly measure volumetric
soil moisture in the top 5cm of soil around the world. This corre-
sponds to the known microhabitat of Lu. longipalpis, which is
reported from peridomicile of households in endemic areas
(Casanova et al., 2017). Geospatial distribution of VL and risk
models based on classical climate station data have been described
previously in Brazil based on thermal and hydrological drivers and
limiting factors on life cycle development (Nieto et al., 2009). In
Bahia and Sao Paulo, as in other regions countrywide, despite all
the measures taken by Brazilian public health agencies, VL has
expanded geographically. There is a clear need for innovative alter-
native control measures.

In this study, we aimed to map and model potential risk areas
for VL and Lu. longipalpis in two Brazilian states (Bahia and Sao
Paulo) using the computer algorithm of maximum entropy
(Maxent) (Phillips et al., 2006) and long-term normal temperature
and precipitation records from WorldClim 2.0 (Fick and Hijmans,
2017) as compared to monthly soil moisture data from SMAP to
identify patterns or similarities with environmental risk factors in
both states that can promote transmission and dispersal of VL. The
specific objectives of the present report were to: i) map and model
potential risk areas for VL and Lu. longipalpis using Maxent eco-
logical niche modelling software and classical long term normal
monthly temperature and precipitation records from WorldClim 2.0
and 19 derived bioclimatic factors; and ii) compare and contrast
models based on WorldClim 2.0 to Maxent-generated potential risk
surfaces for VL and Lu. longipalpis based on monthly soil moisture
data from SMAP to identify geospatial patterns of environmental
risk factors that promote transmission and dispersal of VL. 

Materials and methods

Study areas
Bahia state is located on the north-eastern Atlantic coast of

Brazil, latitude 19°57’00”S and longitude 44°31’00”W. The state
has an area of 567,295 km2 composed by 417 municipalities.
According to the Brazilian Institute of Geography and Statistics
(IBGE) the population amounts to 14.5 million inhabitants (IBGE
2010). The climate in the state goes from tropical in coastal areas
to semi-arid inland and annual average temperatures vary between
19.2° and 26.6°C. Rainfall ranges from 360 to 2000 mm. The dom-
inant vegetation is tropical forest, mangrove, cerrado and caatinga
(Bavia, 1996).

São Paulo State is located in the Southwest of the south-eastern
part of Brazil, latitude 23°33’1.87”S and longitude
46°37’59.91”W. The state has an area of 248,219,481 km² com-
posed by 645 municipalities with a population of 45,919,049
inhabitants (IBGE, 2010). The state territory covers seven distinct
climatic types considering temperature and rainfall. The climate
varies from subtropical and tropical savannah to tropical climate of
altitude. The predominant weather is characterized by a summer

rainy season and a dry season in winter, with temperatures above
22°C in the hottest month of the year (Miranda et al., 2014). 

Presence data
VL data was derived from the SINAN (http://portalsinan.saude

.gov.br/). Human incidence records of VL are reported by munici-
pality and geographic coordinates for the municipality was
obtained through IBGE (2010). A retrospective study was carried
out that included all the reported cases of VL from 1998-2018 (20
years) in São Paulo collected from the website for the Zoonosis
Division of the Epidemiological Surveillance Center of the
Disease Control Office, São Paulo State Secretary of Health
(CVE). In Bahia State, we obtained data for over 13 years from
SINAN (http://tabnet.datasus.gov.br/cgi/deftohtm.exe?sinannet/
cnv/leishvba.def).

Occurrence information for Lu. longipalpis in Bahia was
obtained from entomological monitoring surveys of sand flies car-
ried out by the Entomology Sector of the Central Laboratory,
Ministry of Health (LACEN) (Rodgers et al., 2019). For Sao
Paulo, data on sand fly vectors were recorded during entomologi-
cal collection protocols used in the surveillance activities by the
Superintendence in Control of Endemics (SUCEN) in which pres-
ence/absence of the vector were recorded from 1985 to 2015. The
maps were prepared for all municipalities in the states: 645 in Sao
Paulo and 416 in Bahia.

Environmental data sources and models 
Monthly SMAP L4 soil moisture data was obtained from

NASA’s Earth Data site (https://search.earthdata.nasa.gov/search).
SMAP L4 Global 3-hourly 9 km EASE-Grid Surface and Root
Zone Soil Moisture Geophysical Data V004 were downloaded for
the first image of day 1 and day 15 (0:00-3:00 hour) of each month.
WorldClim 2.0 data (30-year climate normal, -km spatial resolu-
tion, 1970-2000) were obtained from the WorldClim 2.0 Internet
site (www.worldlim.org/). We constructed separate ENMs for VL
and Lu. longipalpis using occurrence data records. The distribution
of VL cases was analysed considering the entire transmission cycle
and its ecological relationships (Nieto et al., 2006; Sami et al.,
2016). Environmental suitability models for VL and its Lu longi-
palpis vector in Bahia and Sao Paulo were generated using
WorldClim 2.0 data and the monthly SMAP data using the comput-
er algorithm of maximum entropy (Maxent). Human VL case
records were reported by municipality using geographic coordi-
nates for the municipality obtained through IBGE (2010). Lu.
longipalpis occurrence in Bahia was obtained from entomological
monitoring surveys of sand flies carried out by LACEN.
WorldClim 2.0 data (30-year climate normal, 1-km) and monthly
soil moisture data for the years 2015-2018 (SMAP L4, 10-km)
were used to model suitability. SMAP layers were then resampled
at 30 arc-seconds using the nearest neighbour joining method in
ArcGIS10.7 (ESRI; Redlands, CA, USA). Models for each year
for VL and Lu. longipalpis were developed using environmental
data layers derived from SMAP as compared to WorldClim 2.0.
data. Potential distribution maps for visceral leishmaniasis and Lu.
longipalpis were prepared using Maxent software to enable a com-
parison of map distribution patterns generated using SMAP month-
ly average data as compared to maps generated using WorldClim
2.0 bioclimatic monthly data.

Statistics
Similar methods were used to generate VL and Lu. lutzomyia
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risk maps in Sao Paulo and Bahia. Initial models were run in
Maxent, while the jack-knife (Phillips et al., 2006) procedure was
used to identify the value of each variable to model performance
so that the most meaningful variables generated the potential dis-
tribution. The models were built with 75% of the occurrence data
for model calibration/training data and 25% of the occurrence data
for model evaluation/test data, with ten replicate models based on
bootstrapping and a random seed. Model validation was done by
calculating the area under the receiver operating characteristic
(ROC) curve (AUC), which reflects the model’s ability to distin-
guish between presence records and random background points.
The jack-knife test was used to evaluate the relative importance of
the variables, considering the increase and decrease in model gain.

ENMTools.v. 1.3 (http://enmtools.blogspot.com) was then
employed to quantitatively compare the models by first calculating
the niche overlap between the vector distribution with the VL case
distribution. This tool calculated two indices for niche identity,
Schoener’s D (Schoener, 1968; Warren et al., 2008) and
Hellinger’s-based I (Schoener, 1968; Hosseinian et al., 2016) based

on the probability distribution of a given species for inhabiting par-
ticular regions. Both indices range from 0 to 1 (complete diver-
gence to high similarity, respectively). The best model for SMAP
and WorldClim2.0 was then selected based on sample size correct-
ed Akaike information criteria (AICc) for Maxent ENMs (Warren et
al., 2010; Warren and Seifert, 2011). Data preparation and distribu-
tion maps for visualization were created in ArcMap 10.7.

Results
The occurrence database was constructed using the human

cases for VL and Lu. lutzomyia captures in Bahia and Sao Paulo
from incidence records of SINAN and LACEN (for Bahia) and
SUCAN (for Sao Paulo) for the years 2015 to 2018. A map show-
ing the spatial distribution of both during the study period is shown
in Figure 1. A total of 202 locations in Bahia State had reported the
presence of VL cases, while only 76 municipalities had reported

                                                                                                                                Article

Figure 1. Municipalities with human visceral leishmaniasis case records from 2015-2018 (red) and Lu. longipalpis official presence
records (blue) in two Brazilian states. A) Sao Paolo State; B) Bahia State.
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presence of the vector. For Sao Paulo, the relationship between VL
and the vector was the opposite: 62 municipalities with VL cases
and 123 with the vector.

The contribution of each environmental variable to the model
was determined by its percentage contribution and the jack-knife
test of variable importance. Thus, the variable with the highest per-
cent contribution, i.e. the variable that increases model gain the
most when used in isolation and the variable that decreases the

gain the most when excluded, were selected as the top three con-
tributing variables to the ENM for Bahia state (Table 1) and Sao
Paulo state (Table 2).

All of the years modelled for both states produced AUC values
above 0.76 with the models for Sao Paulo yielding significantly higher
AUC values than Bahia for VL (P=0.014 and P=0.0018 for SMAP and
WorldClim 2.0, respectively). No significant difference between AUC
values for sand fly models for Bahia and Sao Paulo was observed. 

                   Article

Table 1. Maxent results comparing the predictive value of soil moisture active passive instrument vs WorldClim 2.0 data on risk of vis-
ceral leishmaniasis in Bahia State.

SMAP
Visceral leishmaniasis                 AUC                               Variable contribution (%)                         Jack-knife analysis

2015                                                               0.818                                                      SMAP 12 (21.3)                       AP 04 (increases and decreases SM model gain)
                                                                                                                                      SMAP 04 (19.9)                                                                    
                                                                                                                                       SMAP 06 (15)                                                                      
2016                                                               0.804                                                      SMAP 01 (28.3)                        SMAP 01 (increases and decreases model gain)
                                                                                                                                      SMAP 08 (13.9)
                                                                                                                                      SMAP 04 (12.7)                                                                    
2017                                                               0.763                                                      SMAP 09 (34.1)                                               SMAP 09 (highest gain)
                                                                                                                                      SMAP 06 (19.7)                                            SMAP 06 (decreases gain)
                                                                                                                                      SMAP 01 (14.8)                                                                    
2018                                                               0.838                                                      SMAP 01 (27.1)                                               SMAP 01 (highest gain)
                                                                                                                                       SMAP 05 (11)                                             SMAP 05 (decreases gain)
                                                                                                                                      SMAP 11 (10.9)                                                                    
Sand fly                                         AUC                               Variable contribution (%)                         Jack-knife analysis

2015                                                                0.85                                                     SMAP 12 (44.2%)                      SMAP 12 (increases and decreases model gain)
                                                                                                                                    SMAP 04 (20.2%)
                                                                                                                                     SMAP 08 (7.5%)                                                                    
2016                                                               0.859                                                      SMAP 11 (31.9)                                               SMAP 11 (highest gain)
                                                                                                                                      SMAP 01 (16.8)                                            SMAP 01 (decreases gain)
                                                                                                                                      SMAP 10 (15.1)                                                                    
2017                                                               0.828                                                      SMAP 02 (20.8)                                               SMAP 02 (highest gain)
                                                                                                                                       SMAP 11 (19)                                             SMAP 11 (decreases gain)
                                                                                                                                       SMAP 04 (16)                                                                      
2018                                                               0.869                                                       SMAP 01 (32)                                                SMAP 01 (highest gain)
                                                                                                                                      SMAP 12 (17.5)                                            SMAP 12 (decreases gain)
                                                                                                                                      SMAP 05 (10.4)                                                                    

WorldClim 2.0
Visceral leishmaniasis                 AUC                               Variable contribution (%)                         Jack-knife analysis

2015                                                               0.871                                                     Precip 10 (23.6)                       Precip10 (increases and decreases model gain)
                                                                                                                                     Precip 02 (11.5)
                                                                                                                                      Precip 06 (8.7)                                                                     
2016                                                               0.863                                                     Precip 10 (23.5)                                               TMin 01 (highest gain)
                                                                                                                                     Precip 05 (10.1)                                          Precip 10 (decreases gain)
                                                                                                                                      Precip 02 (7.8)                                                                     
2017                                                               0.852                                                     Precip 10 (41.1)                      Precip 10 (increases and decreases model gain)
                                                                                                                                      Precip 04 (6.7)
                                                                                                                                      Precip 11 (4.4)                                                                     
2018                                                               0.802                                                     Precip 10 (28.5)                      Precip 10 (increases and decreases model gain)
                                                                                                                                     Precip 05 (11.1)
                                                                                                                                      Precip 02 (7.8)                                                                     
Sand fly                                         AUC                               Variable contribution (%)                         Jack-knife analysis

All years                                                        0.881                                                     Precip 10 (27.4)                                             Precip 10 (highest gain)
                                                                                                                                        TMin 05 (15)                                             Precip 03 (decreases gain)
                                                                                                                                      Precip 03 (6.6)                                                                     
SMAP, soil moisture active passive instrument; AUC, area under the curve; Precip, precipitation; TMax, maximum temperature; Tmin, minimum temperature.
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Bahia State model
The Maxent models for VL in Bahia suggest a seasonal high

for SMAP in the months of September, November and January and
precipitation of the months of April, October and November as the
most meaningful variables in the VL prediction model. For the
sand fly model, the variables with most importance were maxi-
mum temperature of December and November, SMAP for the
months of October, November, January and May and precipitation

for the months of October and December. The geographic distribu-
tion of VL and its vector in Bahia is expanding toward the northern
and central regions of the state, with a well-defined small expan-
sion toward the South (Figures 2-4).

ENM Tools was used to select the ‘best’ model for VL and
sand fly suitability in Bahia and Sao Paulo states. According to the
AIC model evaluation criteria, the model for VL in 2017 in Bahia
state using SMAP data was the best model. For Sao Paulo, the best
model was the VL in 2018 using SMAP data. Overall, the SMAP

                                                                                                                                Article

Table 2. Maxent results comparing the predictive value of soil moisture active passive instrument vs WorldClim 2.0 data on risk of vis-
ceral leishmaniasis in Sao Paolo State.

SMAP
Visceral leishmaniasis                  AUC                              Variable contribution (%)                         Jack-knife analysis

2015                                                                0.869                                                     SMAP 06 (29.3)                                            SMAP 08 (increases gain)
                                                                                                                                      SMAP 04 (16.5)                                            SMAP 07 (decreases gain)
                                                                                                                                      SMAP 09 (10.2)                                                                    
2016                                                                0.959                                                     SMAP 11 (37.1)                        SMAP 11 (increases and decreases model gain)
                                                                                                                                      SMAP 08 (15.7)
                                                                                                                                      SMAP 03 (14.1)                                                                    
2017                                                                0.945                                                     SMAP 07 (49.1)                                               SMAP 09 (highest gain)
                                                                                                                                      SMAP 09 (13.9)                                            SMAP 07 (decreases gain)
                                                                                                                                      SMAP 08 (11.8)                                                                    
2018                                                                0.928                                                     SMAP 06 (66.1)                        SMAP 06 (increases and decreases model gain)
                                                                                                                                       SMAP 11 (7.2)
                                                                                                                                       SMAP 04 (5.1)                                                                     
Sand fly                                          AUC                                  Variable contribution                             Jack-knife analysis

2015                                                                0.869                                                     SMAP 06 (29.3)                                               SMAP 08 (highest gain)
                                                                                                                                      SMAP 04 (16.5)                                            SMAP 07 (decreases gain)
                                                                                                                                      SMAP 09 (10.2)                                                                    
2016                                                                0.874                                                     SMAP 11 (29.6)                        SMAP 11 (increases and decreases model gain)
                                                                                                                                      SMAP 03 (24.3)
                                                                                                                                       SMAP 08 (9.9)                                                                     
2017                                                                0.878                                                     SMAP 07 (27.2)                                               SMAP 06 (highest gain)
                                                                                                                                      SMAP 10 (18.6)                                            SMAP 07 (decreases gain)
                                                                                                                                      SMAP 03 (10.9)                                                                    
2018                                                                0.878                                                     SMAP 06 (45.5)                                               SMAP 09 (highest gain)
                                                                                                                                      SMAP 07 (12.4)                                            SMAP 02 (decreases gain)
                                                                                                                                       SMAP 02 (9.5)                                                                     

WorldClim 2.0
Visceral leishmaniasis                  AUC                              Variable contribution (%)                         Jack-knife analysis

2015                                                                0.971                                                     TMax 12 (28.5)                                               TMax 12 (highest gain)
                                                                                                                                     Precip 07 (10.9)                                          Precip 04 (decreases gain)
                                                                                                                                       Precip 04 (10)                                                                     
2016                                                                0.977                                                     TMax 12 (23.6)                                               TMax 12 (highest gain)
                                                                                                                                     Precip 05 (15.7)                                          Precip 04 (decreases gain)
                                                                                                                                      Precip 08 (9.8)                                                                     
2017                                                                0.961                                                     TMax 12 (30.1)                                              Precip 01 (highest gain)
                                                                                                                                      Precip 08 (9.9)                                           Precip 03 (decreases gain)
                                                                                                                                      Precip 03 (9.5)                                                                     
2018                                                                0.968                                                     TMax 11 (25.4)                                               TMax 12 (highest gain)
                                                                                                                                     Precip 08 (14.1)                                          Precip 08 (decreases gain)
                                                                                                                                         Tax 12 (9.2)                                                                        
Sand fly                                          AUC                              Variable contribution (%)                         Jack-knife analysis

All years                                                        0.883                                                     TMax 12 (25.5)                                              Precip 08 (highest gain)
                                                                                                                                     Precip 06 (24.8)                                          Precip 07 (decreases gain)
                                                                                                                                      Precip 08 (7.5)                                                                     
SMAP, soil moisture active passive instrument; AUC, area under the curve; Precip, precipitation; TMax, maximum temperature; Tmin, minimum temperature.
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dataset were better models than the WorldClim 2.0 dataset for VL
and sand fly in Bahia and Sao Paulo. The models using disease
occurrence data were considered better than when sand fly occur-
rence data was used when compared in ENM Tools.

ENM Tools was used to calculate niche overlap between the
models using Schoener’s D in ENM Tools (Warren et al., 2010).
For Bahia state we observed that the models for VL and sand fly
have some similar ENMs either using SMAP or WorldClim 2.0
data. None of the models have shown a complete identical niche
between disease and vector. For Sao Paulo, the models have shown
some niche overlap, except that the pair-wise overlaps for VL in
the year of 2017 had shown the least similarity between the niches

of each year analysed. In this state, complete identical niches were
not observed either. 

Discussion
The U.S. National Academies of Sciences decadal survey

‘Thriving on our changing planet: a decadal strategy for earth
observation from space’ (2018), recommends a renewed assess-
ment of potential public health applications of Earth-observing
satellite data systems in light of the more advanced capabilities of
the more recently launched satellite missions. A growing number

                   Article

Figure 2. Maxent probability models for visceral leishmaniasis cases and Lu. longipalpis presence based on Sao Paolo State health
records: comparison between soil moisture active passive instrument (SMAP) and WorldClim 2.0 data. A, C) models generated for VL;
B, D) models generated for the Lu. longipalpis vector.
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Figure 3. Maxent probability models for visceral leishmaniasis cases and Lu. longipalpis based on Bahia State health records: compari-
son between soil moisture active passive instrument (SMAP) and WorldClim 2.0 data. A, C, E) models generated for VL; B, D, F) mod-
els generated for the Lu. longipalpis vector.
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of published reports suggests that environmental satellite data and
ENM can be used to predict risk of vector-borne diseases as it
would lead to more effective public health surveillance and
response systems (Malone and Bergquist, 2012; Hess et al., 2018;
Malone et al., 2019; Scavuzzo et al., 2021). 

To provide the U.S. Department of Agriculture (USDA)
regional crop analysts with accurate soil moisture information to
predict where there could be too little or too much water in the soil
to support crops, SMAP data have been incorporated into USDA’s
Crop Explorer website (https://ipad.fas.usda.gov/cropexplorer/;
Colliander et al., 2017). By incorporating direct SMAP measure-
ments into Crop Explorer, agriculture analysts can review the gaps
in classical climate station data, especially where climate station
data coverage are sparse. With three-day global coverage and 3-10
km2 spatial resolution, SMAP can provide the Crop Explorer tool
with timely updates on soil moisture conditions. SMAP and USDA
data, along with tools to analyse it, are publicly available on
Google Earth Engine (https://earthengine.google.com/) for
researchers, non-profits, resource managers, and others who need
the information (Gorelick et al., 2017; Anderson, et al., 2016).

As has been done for crop prediction models, we propose to
use new remote sensing soil moisture tools in public health to
model the environmental suitability and geospatial developmental
dynamics of the ‘visceral leishmaniasis crop’ each year. Satellite
soil moisture data from SMAP was used to develop ENMs to pre-
dict the potential distribution of visceral leishmaniasis and its sand
fly vector Lu. longipalpis in Brazil based on the ambient thermal-
hydrologic regime. Results were compared to ENM risk maps
based on global long-term normal climate station data (WorldClim

2.0) in Sao Paulo and Bahia states in Brazil. 
Next steps would be to factor in population, land use, poverty,

irrigation (by municipality or census tract) to build a comprehen-
sive VL model using satellite-generated data at the
household/habitat scale (1-2 m) community/agricultural field scale
(30 m) and regional/climatic scale (1 km) in one system (Boser et
al., 2021). In combination with other eco-epidemiologic factors it
may be possible to produce a viable model for use in a spatiotem-
poral surveillance and response system, each 7-10 days, leading to
the long-term goal of VL elimination from the western hemisphere.
If successful, ENM models for VL may serve as a prototype for
other vector-borne diseases +/or soil transmitted helminths (STHs)
that develop in or on surface soils. 

Conclusions
This report should be regarded as proof of concept demonstrat-

ing validity of direct measurement of surface soil moisture as com-
ponent of ENM models of vector-borne and other environmentally
sensitive diseases using monthly data. Our results indicate direct
Earth-observing satellite measurements of soil moisture by SMAP
can be used in lieu of models calculated from standard temperature
and precipitation climate station data to assess disease risk and to
guide the need for control program interventions. There is a unique
match of the VL niche and moisture in the top 5cm surface soil via
the geophysical parameter measured by SMAP radar and
microwave sensors. However, there may not be a similar corre-
spondence, or as close a match, to microclimate life cycle param-

                   Article

Figure 4. Four-year composite map for VL and Lu. longipalpis in Bahia State by county pending availability of more data years to com-
pare long-term with annual incidence data.
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eters for other vector-borne diseases, e.g., malaria or Aedes-borne
arboviruses because of their different microhabitats. Further work
is in progress on more comprehensive spatio-temporal develop-
mentrate models using data from SMAP and other satellites at
more frequent temporal resolutions at scales needed to capture
essential life cycle features of vector-borne diseases. Anticipated
‘precision public health’ applications by municipality/county
health unit surveillance and response systems, with accurate case
finding at household-habitat level and sensor data collection fre-
quencies are needed to resolve seasonal and geospatial risk factors
and to guide appropriate control program interventions. 
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