
Abstract
A complete sampling frame (CSF) is needed for the develop-

ment of probability sampling structures; utilisation of a spatial
sampling frame (SSF) was the objective of the present study. We
used two sampling methods, simple random sampling (SRS) and
stratified random sampling (STRS), to compare the prevalence
estimates delivered by a CSF to that by a SSF when applied to
self-reported hypertension and diabetes mellitus in a semi-urban
setting and in a rural one. A CSF based on Geodatabase of all
households and all individuals was available for our study that

focused on adults aged 18-69 years in the two settings. A single
digitized shapefile of solely household regions/structures as SSF
was developed using Google Earth and employed for the study.
The results from the two sampling frames were similar and not
significantly different. All 95%CI calculations contained the
prevalence rates of the two medical conditions except for one
occasion based on STRS and CSF. The SRS based on CSF showed
a minimum 95% CI width for diabetes mellitus, whereas SSF
showed a minimum 95% CI width for hypertension. The coeffi-
cient of variation exceeded 10.0% on six occasions for CSF but
only once for SSF, which was found to be as efficient as CSF.

Introduction
Sampling is a statistical technique used to make inferences

about study populations based on a sample of observations or indi-
viduals drawn from a total population. It is essential to choose a
representative sample to get a reliable population estimate.
Several probability sampling techniques are used to construct the
sample: simple random sampling (SRS), stratified random sam-
pling (STRS), etc. The characteristics studied could be a propor-
tion, a mean value (Christakos, 2005; Haining, 2003) or an
attribute based on the location (longitude and latitude) of the target
population (Rogerson et al., 2004).

Large-scale national surveys, such as the National Family
Health Survey (NFHS) and Demographic and Health Surveys
(DHS), use samples based on complete sampling frames (CSF)
that are time-consuming, requires resources and are expensive.
Sampling methods, such as SRS and STRS, are essential for
achieving adequate probability and therefore usefulness of the
sampling frames applied must be recent or periodically updated
and available in a usable format to map the target population accu-
rately (Thomas et al., 2019). Household (HH) data are more diffi-
cult to obtain in rural areas than in urban or developed areas since
they are scattered or irregularly spaced and sometimes lacking.
Hence, estimations based on survey sample designs may have
biases sometimes providing misleading results (Eric, 2008;
Haining, 2001).

The spatial sampling frame (SSF) is helpful when it is difficult
to sample every target population or get a reliable sampling frame.
It is widely used in environmental, ecological, mining, geology,
and hydrology studies (Cressie, 1991; Haining, 2003; Muller,
1998; Ripley, 1981; Stehman, 1996). Many studies have devel-
oped and used a SSFs based on geographical information systems
(GIS), the global positioning system (GPS) and satellite imagery
for data collection. The use of SSFs is gaining importance as an
alternative approach when the population under study is unavail-
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able or unknown, or a complete sampling frame is unavailable.
Various studies based on sampling frames have been carried

out. For example, a study among very high-density slum dwellers
in Delhi, India (Abhijit et al., 2014), where high-resolution satel-
lite imagery was used to identify housing density and assess slum-
dwellers concerning the quality of public services; a sampling
frame for a survey based on geo-located dwelling locations and
satellite data was developed and applied in nine countries
(Improving Health in Slums Collaborative, 2019); a study
focussing on urban poor women in six cities in Uttar Pradesh, India
employed GIS to construct the primary sampling unit (PSU) of res-
idential HHs eligible for interviews (Speizer et al., 2012); and in
Lilongwe, Malawi every household structure within the catchment
area was digitized and assigned geographic coordinates using
Google Earth satellite imagery (Escamilla et al., 2014). In the latter
case, a sampling frame of a list of HHs and a random sample was
generated to study the intensity of Plasmodium falciparum trans-
mission and the authors concluded that their approach to develop-
ing a sampling frame was accurate and that it could have utility
beyond morbidity studies. 

The availability of a CSF is challenging, time-consuming and
expensive, so researchers need to opt for an appropriate sampling
frame to capture precise and representative estimates (Haining,
2001; Swacha et al., 2017). Using a SSF appears to be a cost-effec-
tive option in resource-poor settings. The use of satellite images
and GIS to sample structures made it feasible to rapidly select a
representative population sample at a low-cost for a prevalence
survey in a rural Guatemalan village (Miller et al., 2020). A system
of unique household identifiers devised for household enumeration
made re-identification possible in a densely inhabited slum of
Maharashtra, India (Thomson et al., 2014). 

Comparison of sampling methods using CSF and SSF is rarely
attempted; moreover, the outcome variable is binary, while the spa-
tial data are in vector format. Hence our objective was to estimate
and compare CSF and SSF by two probability sampling methods,
SRS and STRS, in a semi-urban and rural study setting. We applied
these sampling frames in cross-sectional study design in a semi-
urban and a rural area to estimate the prevalence of two self-report-
ed disease conditions: hypertension (HT) and diabetes mellitus
(DM). Overall, our ultimate aim of using these two sampling meth-
ods was to estimate the population parameters with respect to fea-
sibility, efficiency and generalizability.

Materials and Methods
The master file of the list of all HHs geocoded with the list of

all individuals as a CSF with factors like gender, age, presence or
absence of disease conditions for the two study settings (semi-
urban and rural) are readily available. Ayapakkam, Chennai, is a
semi-urban setting, while Kallur Village, Tirunelveli is rural.
Despite the known geographic coordinates of the HHs, a single
digitized shapefile showing only HH structures as SSF was devel-
oped independently using Google Earth. Two settings, developed
under the umbrella of the Indian Council of Medical Research,
were chosen for this study.

Study settings

Semi-urban
A HH-level cohort for the study of demographic and health

surveillance has been developed by the National Institute of
Epidemiology (ICMR-NIE) in Ayapakkam, Chennai to document
various demographic and health indicators on a longitudinal basis.
The study population was surveyed from April 2015 to July 2019
noting its socio-economic profile, morbidity profile and health-
seeking behaviour as well as births, deaths, migration and other
vital events. All HHs and the key landmarks were mapped using
GPS. There were 10,927 HHs with 50,249 individuals in the study
area (Figure 1) and the proportions of self-reported HT and DM in
Ayapakkam were 6.4% and 7.4%, respectively.

Rural
The Department of Health Research’s flagship program has led

to the establishment, under a local medical college leadership, of
the Model Rural Health Research Unit (MRHRU) in Tirunelveli,
which is mentored by the ICMR-NIE (Joshua et al., 2020). One of
the key objectives of the MRHRU is to develop area-specific mod-
els depending on disease profiles, topography and morbidity pat-
terns to provide better health care services by undertaking relevant
research on local health issues identified by state and local health
authorities. As a first round, a demographic health database of all
11,006 HHs with 36,289 individuals was developed for Kallur
Village, a rural area in Tirunelveli (Figure 2). The study was done
between Jan 2016 and Aug 2019 using GPS and digitizing all HHs
and key landmarks in this study area. Here, the proportions of self-
reported HT and DM were 5.4% and 4.7%, respectively.

                   Article

Figure 1. The digitized study area and households of Ayapakkam,
Chennai in 2019.
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Study population
As per WHO guidelines in estimating the DM and HT preva-

lence (WHO STEPS Surveillance Manual, 2017), all persons aged
18-69 years were included in both study settings. The population
details are presented in Figure 3. 

Study design

Probability sampling using CSF
A Geodatabase of all HHs and a listing of all individuals were

adopted as CSF were readily available for both study sites. To esti-
mate the prevalence of self-reported HT and DM the two probabil-
ity sampling methods (SRS and STRS) were applied based on indi-
viduals and also on gender.

SRS selection without replacement was used to select the
required sample size from the CSF of adults aged 18-69 years that
had been stratified by gender for both sites (17,466 males and
18,241 females in Ayapakkam and 10,716 males and 13,017
females in Kallur Village). The required sample sizes resulted in
35,707 individuals for Ayapakkam and 23,733 for Kallur Village.

Spatial sampling using SSF
The shapefile consisted of solely residential regions of HHs,

digitized by Google Earth Pro 7.3.2 to generate the SSF. We sur-
veyed the area with a Garmin Handheld Trimble Juno SC and cap-
tured each HH location with values rounded to six decimals.
Utmost care was taken so that all HHs would lie within the gener-

ated shapefile in all possible forms. The result was a single, non-
continuous polygon, irregular in shape and size consisting of resi-
dential areas excluding non-residential regions (vacant land, parks,
watery bodies, commercial complexes, etc.). Figure 4A illustrates
this with respect to the digitized shapefile of Ayapakkam super

                                                                                                                                Article

Figure 2. The digitized study area and households of Kallur
Village, Tirunelveli in 2019.

Figure 3. Population details of Ayapakkam and Kallur (2015-19).

Figure 4. A) Ayapakkam study area with Google Earth view in
2019. B) Using Google Earth, a single shapefile of Ayapakkam
with solely digitized household regions (8 polygons).
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imposed on Google Earth imagery. Figure 4B shows a single
shapefile (union of 8 irregular polygons) of solely HH regions in
the study area. In the semi-urban area of Ayapakkam, houses were
much closer and had mainly similar structures. Around 15% of the
population there lives in multi-storeyed buildings or multiple liv-
ing units. Around two-thirds of each HH was evenly distributed.

We adopted the same GPS procedure for SSF in Kallur Village,
which is shown in Figure 5A. The polygon generated was also
irregular and manifold (156 irregular polygons) and combined to
form one shapefile (Figure 5B). The HHs in this rural area consist-
ed of small farmhouses, sometimes together in livestock-keeping
communities with huts closer to the river. There were occasions
when one side of the street belonged to the Kallur study area, while
the other side did not and where a few successive houses in the
street belonged to the study area, and the other half to a different
hamlet. Hence, utmost care was taken to digitize the residential
regions, as the range covered polygons varying from only three
houses up to one containing nearly 1,000 houses. Probability sam-
pling based on the SRS and STRS methods as used before was
adopted.

Spatial SRS
The single shapefile was fed into the R program. The required

(unique) random sample of points was generated as latitude and

longitude data. The random numbers were all unique geographic
locations of the residential region. If the selected coordinates did
not fall precisely on a HH or did not contain an individual in the
18-69 years age group, the closest neighbourhood HH was selected
(it occurred in less than 5% of the instances in both settings). For
points far away from an HH structure, the closest HH east of the
point was chosen [for Ayapakkam within 250 feet (76 m) and for
Kallur within 600 feet (183 m)]. This exercise was repeated inde-
pendently for both diseases. The required numbers of HHs were
selected first from the SSF of HH and then an individual aged 18-
69 years was randomly selected from the selected HH.

Spatial STRS
As mentioned earlier, this approach was based on a polygon

shapefile as sampling frame, assuming that genders in the HH were
independent. Hence, two independent SSFs of HHs were generat-
ed, one for the males and one for the females. When these two sep-
arate layers were overlaid, the entire population was comprised.
This exercise was independently repeated for both disease condi-
tions. We chose the required HHs from the SSF of the male stratum
and the required sample of HHs from the SSF of the female stra-
tum. For each stratum (male and female) we chose an individual
aged 18-69 years at random from the selected HHs.

Sample size in probability sampling 
SRS sample size 
The total number of individuals aged 18-69 years was taken as

the size of the target population. The sample size was calculated
using the formula:

                                   

(1)

where DEFF is the design effect (1.0 for SRS); N the size of the
population; prop the proportion of people with disease; d the limit
of accuracy required, defined in terms of a percentage of the esti-
mate (e.g., 10% of prop); and Zα the confidence level factor 
usually taken to be 1.96, corresponding to 95% Cl; hence
is 1.96 for a two-tail test where α is taken as 5%.

STRS sample size 
The sample size formula for this approach (Cochran, 1977) is

given by the formula:

                                      

(2)

                                                                                                        
where n is the required sample size; h the stratum number; N(h) the
population size of hth stratum; prop(h) the proportion of outcome in
each stratum; and d the limit of accuracy.

Sample sizes
For comparison purposes, the same sample size calculated for

probability sampling was used for both spatial sampling methods

                   Article

Figure 5. A) Kallur Village area with Google Earth view in 2019;
B) A single shapefile of Kallur village with solely digitized house-
hold regions (156 polygons) in 2019.
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(CSF and SSF). The following sizes were used: i) For a self-report-
ed HT prevalence in Ayapakkam by SRS of 7.7% among the CSF
of 35,707 individuals aged 18-69 years and a relative precision of
20% (i.e. + 1.5% at 95%CI), the required sample size would be
1,174 individuals. For one by STRS based on gender of 6.9%
among the CSF of 17,466 males (8.5% among the CSF of 18,241
females), the required total sample size would be 1,176 with a pro-
portional allocation of 575 males and 601 females; ii) For a self-
reported DM prevalence in Ayapakkam by SRS of 9.4% among the
CSF of 35,707 individuals aged 18-69 years and a relative preci-
sion of 20% (i.e. + 1.9% at 95%CI), the required sample size
would be 884 individuals. For one by STRS based on gender of
9.5% among the CSF of 17,466 males (9.3% among the CSF of
18,241 females), the required total sample size would be 885 with
proportional allocation of 433 males and 452 females; iii) For a
self-reported HT prevalence in Kallur by SRS of 6.4% among the
CSF of 23,733 individuals aged 18-69 years and a relative preci-
sion of 20% (i.e. + 1.3% at 95%CI), the required sample size
would be 1,288 individuals. For one by STRS based on gender of
5.6% among the CSF of 10,716 males (7.0% among the CSF of
13,017 females), the required total sample size would be 1,282
with a proportional allocation of 579 males and 703 females; iv)
For a self-reported DM prevalence in Kallur by SRS of 6.1%
among the CSF of 23,733 individuals aged 18-69 years and a rela-
tive precision of 20% (i.e. + 1.2% at 95%CI), the required sample
size would be 1,436 individuals. For one by STRS based on gender
of 6.4% among the CSF of 10,716 males (5.8% among the CSF of
13,017 females), the required total sample size would be 1,431
with a proportional allocation of 646 males and 785 females.

Data collection 
The ICMR has developed two Geodatabases on population

health, one for Ayapakkam, Chennai and one for Kallur Village,
Tirunelveli. We used these Geodatabases and generated 100 ran-
dom samples for our present study comparing CSF and SSF with-
out distorting the order of the dataset. Identical, pretested, struc-
tured questionnaires produced in English and Tamil, the local lan-
guage, were used in both areas. Using personal digital assistants
(PDAs) in the form of tablet computers, various sections on house-
hold characteristics, socio-economic profile, morbidity, and treat-
ment-seeking behaviour, were collected in both areas. 

Point and interval estimates
Our objective was to estimate the prevalence (prop) (in the

form of a binomial proportion) at 95%CI from samples based on
the above two sampling methods and two sampling frames. For a
single sample drawn through sampling methods using CSF and
SSF, the point estimate and 95%CI are given as
(prop±1.96×SE(prop)) where prop is the proportion and SE(prop)
the standard error of the proportion were calculated as per the
appropriate probability sampling method. The same estimation
procedure was adopted to get the proportion (prop) and
95%CI(prop) even for SSF.
95%CI(prop) = 95%CI of the binomial proportion =
prop±1.96×SE(prop)

                                          
(3)

where n is the sample size; prop the binomial proportion, i.e. the
prevalence estimate from a single sample; (1 – prop) is 1 – the

prevalence estimate from a single sample; and SD(prop) the stan-
dard deviation of the prevalence estimate from a single sample

, whereas SE(prop) is the SE of prevalence

estimate from a single sample is SD divided by

 
(4)

Since there is a risk that the estimates may not be similar or
consistent if the SRS method were adopted only once from CSF
and only once from the SSF, we generated 100 independent sam-
ples using both frames. All the samples drawn in the study were
without replacement. Therefore, each sample unit drawn from the
study population had only one chance to be selected. We generated
100 independent samples with 100 different random numbers and
the corresponding 100 independent estimates for both sampling
methods were calculated. Then we combined all the 100 indepen-
dent sample estimates to get a 95%CI for the population parameter
and then compared the two sampling frames.

Combined proportion method– CSF
By generating 100 independent samples of the same sample

size n, we arrived at 100 prop values and 100 (1-prop) values
where propi stands for the prevalence estimate from the ith indepen-
dent sample where 1-propi stands for the 1-prevalence estimate
from the ith independent sample. By taking the average of the 100
propi’s, we got the combined proportion ( ) and correspond-
ingly from the average of 100 (1-propi) values, the combined pro-

portion of non-disease ( ) (and the equation below gives the 
SE of :

                                                                (5)

where the calculated 95%CI of : (the average of the 100 propi

values) =

and n the same sample size for all the 100 

independent samples. 

Sampling distribution method - CSF
By treating each of the 100 propi values (the sample estimates)

as a random variable xi, we got the average of xi as and standard
deviation (SD) of xi as SD(x), which is also the SE of x by sam-

pling distribution principle. We then used ( ±1.96 SE(x)) as
95%CI. The mean of the 100 independent propi values is and the
SD can be calculated by the usual formula for mean & standard

deviation and 95%CI is ±1.96×SD(x).

Combining the proportion - SSF
By treating each of the 100 propi values (the sample estimates)

from SSF as 100 independent xi estimates, we got an average of xi

as and SD of xi as SD(x). We can then use ±1.96×SD(x)) as
95%CI. 

prop

1–prop
prop

prop

x

x
x

x

xx
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Data analysis
The results are presented in the form of proportions expressed

in percentages. The prevalence of self-reported HT and DM among
adults aged 18-69 years in the two study areas was estimated based
on CSF and SSF. We used STATA SE, version 16·0 software (Stata
Corp LLC, Texas, USA) to estimate the proportion of HT and DM
for the 100 samples of the two probability sampling methods and
for the two sampling frames. Prevalence of self-reported HT and
self-reported DM as estimates, along with 95%CI, was calculated.
We used four metrics to compare CSF and SSF: i) The absolute dif-
ference between population prevalence and sample prevalence
(Abs diff); ii) The width of the 95% confidence interval (95%CI
width); iii) The percentage coefficient of variation (CV %), which

is determined based on the 100 estimates as (SD/ ) *100, where
is the mean of 100 propi values and SD is the standard deviation

of 100 propi values; iv) The significance of the Z test between sam-
ple prevalence and population prevalence.

The Z test for single sample proportion compared to popula-
tion proportion when n≥30 can be calculated as follows:

(6)

where n is the sample size; prop is the binomial proportion or
prevalence estimate from a single sample; 1 – prop is 1 – preva-
lence estimate from a single sample; SE(prop) the standard error of

prevalence estimate from a single sample is ; 

‘population prop’ the prevalence in the population; and p the level
of significance (=0.05 for a two-sided test). Z follows a normal dis-
tribution with the reference table value as 1.96 and the correspond-
ing significant level p-value. 

In the SSF we used vector datasets, the HH locations as point

data and the medical conditions sought as binaries. In our semi-
urban study setting, the spatial autocorrelation using local joint
statistics for the HT distribution (99.0% of the points fall as
insignificant) and DM (99.3% of the points fall as insignificant). In
the rural setting, the outcomes were similar, i.e. 99.6% and 99.5%
for HT and DM, respectively. Hence there is not enough evidence
to say that the medical condition in question followed any pattern
but occurs at random and may be due to non-communicable dis-
ease conditions. As a result, the estimation did not take into
account the spatial autocorrelation factor.

All statistical analyses were two-tailed, and p<0.05 was con-
sidered statistically significant. SRS sample size calculation was
done using OpenEpi version 3.01 software. For STRS, a Microsoft
Excel spreadsheet was used to calculate the sample size. The sta-
tistical analyses were done using STATA SE and ArcGIS Desktop,
version 10 (ESRI, Redlands, CA, USA); Geoda 1.18.0 (https://geo-
dacenter.github.io/) and R 4.0.2 (https://cran.r-project.org/bin/win-
dows/base/) software were used for the spatial analyses. Figure 6
shows the workflow of the study.

Results

HT in semi-urban setting (Ayapakkam)
The prevalence of HT by the two sampling methods (SRS and

STRS) based on CSF ranged from 7.32% to 8.59%, whereas it
ranged from 7.24% to 8.35% when based on SSF. All the 95%CIs
based on both CSF and SSF contain the population prevalence
(7.72%) (Table 1). All sample estimates based on CSF and SSF
were not statistically significantly different from the population
prevalence (7.72%) (Table 2). The minimum difference (0.01) was
found in the combined proportion of 100 STRS based on CSF,
whereas the maximum difference (0.87) was found in one single
STRS based on CSF (Table 2). Considering the width of the

x
x
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Figure 6. Flow chart of the workflow of the study.
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95%CI, the minimum width (2.67) occurred when using the spatial
SRS with 100 replications based on SSF, while the maximum
width (3.29) was from one single STRS based on CSF (Table 2).
The CV ranged between 8.3% (spatial SRS sampling with 100
replications based on SSF) and 9.7% (STRS with 100 replications
based on CSF) and all the CV values were <10.0%, which is clear-
ly acceptable (Table 2).

DM in semi-urban setting (Ayapakkam)
The prevalence of DM by the two probability sampling meth-

ods based on CSF ranged from 9.24% to 10.86%, whereas it
ranged from 9.94% to 10.10% when based on SSF. All the 95%CI
contained the population prevalence (9.41%) in both sampling
frames (Table 1). The sample estimates were not statistically sig-
nificantly different from the population prevalence (9.41%) in any
of the sampling frames (Table 2). The absolute minimum differ-
ence (0.03) was found in one single STRS based on CSF, whereas
the absolute maximum difference (1.45) occurred in one single
SRS on CSF (Table 2). Considering the width of the CI, the mini-
mum width (3.41) was seen in STRS with100 replications based on
CSF, and the maximum width (4.21) with single SRS based on
CSF (Table 2). The CV ranged between 9.0% (STRS with 100
replications based on CSF) and 11.2% (SRS with 100 replications
based on CSF), which was the only value higher than 10.0%; coef-
ficient of variation all the other values were <10.0% (Table 2).

HT in the rural setting (Kallur Village)
The prevalence of HT by the two probability sampling meth-

ods using CSF ranged from 6.32% to 8.00%, whereas the use of

SSF ranged from 5.62% to 6.75%. All the 95%CI contained the
population prevalence (6.39%) except one single SRS based on
CSF (Table 1). All sample estimates were not statistically signifi-
cantly different from the population prevalence (6.39%) except for
one single SRS based on CSF (8.00%; Kallur HT) (Table 1). The
absolute minimum difference (0.05) was found in the combined
proportion of 100 STRS based on CSF, whereas the absolute max-
imum difference (1.61) was found in a single SRS based on CSF
(Table 2). Considering the width of the 95%CI, the minimum
width (2.33) was from spatial SRS with 100 replications based on
SSF, and the maximum width (3.04) was from one single SRS
based on CSF (Table 2). The coefficient of variation ranges
between 8.9% (spatial SRS with 100 replications based on SSF)
and 10.9% (spatial STRS with 100 replications based on SSF). The
majority of the CV values of probability sampling using CSF were
>10%, whereas, in spatial sampling using SSF, all the CV values
were <10% except one (spatial STRS with 100 replications; Kallur
HT) (Table 2).

DM in a rural setting (Kallur Village)
The prevalence of DM by the two probability sampling meth-

ods using CSF ranged from 6.15% to 6.57%, whereas SSF ranged
from 5.85% to 7.34%. All the 95%CI contained the population
prevalence (6.09%) in both sampling frames (Table 1). All sample
estimates were not statistically significantly different from the
population prevalence (6.09%) in both sampling frames (Table 2).
The absolute minimum difference (0.06) was found in the com-
bined proportion of the 100 SRS replications based on CSF, where-
as the absolute maximum difference (1.25) was found in one single

                                                                                                                                Article

Table 1. Estimates of simple and stratified random sampling methods using complete and spatial sampling frames for two medical con-
ditions.
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spatial STRS based on SSF (Table 2). Considering the width of the
95%CI, the minimum width (2.24) was from STRS with 100 repli-
cations on CSF, and the maximum width (2.76) was from one sin-
gle spatial STRS based on SSF (Table 2). The coefficient of varia-
tion ranged between 8.5% (spatial SRS sampling with 100 replica-
tions based on SSF) and 9.6% (SRS with 100 replications based on
CSF), and all the values were <10.0%, which is clearly acceptable
(Table 2).

Overall, 95%CI of all CSF and SSF contained the population
prevalence rates with only one exception that occurred when using
the CSF. It may be due to a 5% chance (Table 1). The Z test of sig-
nificance between the sample estimates and population parameter
was significantly different from the population prevalence on only
one occasion for CSF (Table 2). In the entire exercise of results
presented here, in two instances the minimum CIs noted concerned
SSF in the case of HT and CSF in the case of DM. In contrast, CSF
showed the maximum width for HT and DM (Table 2). The mini-
mum CV was observed on three occasions in the case of SSF and
on one when using CSF in the entire study presented here.
Maximum CV was observed on three occasions using CSF and
only once using SSF. Apart from that, on six occasions when using
CSF, the CV exceeded 10.0%, whereas only once when SSF was
used. Hence, SSF is as efficient as CSF. The findings are based on
the metrics mentioned above and shown in Table 3.

Discussion
Sampling methods lead to quick estimates at reduced costs but

suffer from accuracy compared to complete enumeration. SRS is
simple to apply, generalizable and still less commonly applied in

practice. The construction of a complete sampling frame is a chal-
lenge and potentially expensive as it generates lower precision
leading to low efficiency due to less representative data (Malhotra
and Birks, 2006). In stratified sampling, heterogeneous data are
divided into homogenous non-overlapping strata followed by SRS
applied to each stratum (EPA, 2002). The heterogeneity in each
stratum can be eliminated by splitting the data into homogeneous
strata (Cochran, 1977), which makes SRS highly representative
and easier to exercise. However, it can sometimes be difficult to
identify relevant stratification variables or impossible to stratify all
variables, which can turn out to be expensive.

The current study attempted an innovative approach by using a
large spatial data repository to compare the prevalence of self-
reported HT and DM in a semi-urban and a rural setting using two
probability sampling methods. Except for one instance when using
CSF, all 95%CI contained the population prevalence and were not
significantly different when comparing the two sampling frames.
CSF yielded a minimum 95%CI width for DM, whereas SSF yielded
a minimum for HT. On six occasions when using the CSF and once
when using the SSF, the CV exceeded 10%. Taking together, the
results strongly support the notion that SSF is as efficient as CSF.

The error variance of the estimator of the population mean is
reduced by stratification, according to a study employing raster
data (or satellite imaging data) samples from a spatially autocorre-
lated homogenous surface (Wang et al., 2010). Establishing a het-
erogeneous layer in a physical and logical framework in the spatial
dimension is typically difficult. Furthermore, stratified sampling
consistently exhibits lower sample variances than random sam-
pling in geographical sampling (EPA, 2002). The spatial perfor-
mance of grid-based models has been evaluated in an earlier study
using the Spind software, a statistic for comparing spatial and clas-
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sical (non-spatial) indices. These differences were statistically sig-
nificant at medium and high autocorrelation (Carl and Kuhn,
2017). In another study, the authors had non-autocorrelated data,
and their investigation suggested no difference between the spatial
and the classical (probability) measures of accuracy (Swacha,
2017). Other earlier studies located all residences within 20 yards
or meters of the survey point (Kolbe et al., 2006; Wang et al.,
2010;), whereas others (Grais et al., 2007) randomly selected one
direction by the ‘spinning pen’ method and then picked the first
household found following that route.

In another study (Grzegorz et al., 2017), the samples were
obtained using a raster dataset of vegetation from (5m x 5m) plots,
comparing the performance of the methodology in assessing
species composition patterns and environment vegetation. They
employed non-probability preferred sampling and probabilistic
sampling based on simple random sampling (SRS) and systematic
sampling (SYS). Non-probability preferential sampling, according
to their research, narrows the environmental gradient. An experi-
ment was conducted in Minnesota to determine the effect of nitro-
gen fertilizer application rate on corn yield. The study showed that
precision in the analysis of variance was significantly improved by
compensating for these differences in spatial structure, with coef-
ficients of variations of 11.4% versus 8.9% for classical probability
sampling on the one hand with SRS and SYS on the other, respec-
tively (Hernandex and Mulla, 2002).Under budget constraints and
without an HH sampling frame, multilevel spatial sampling was
used to sample more uniformly distributed women farmers and
to collect demographic information. The spatial sampling method
produced a nationally representative value that was comparable
(Maduekwe and Vries, 2019).

In 2014, National statistical agencies were motivated to
replace the traditional census frame with a spatial sampling frame,
namely a list of residential postal addresses (Australian Bureau of
Statistics, 2014; Kalton et al., 2014; Valliant et al., 2014). Any
community-level study requires a list of every individual house-
hold, and respondents can be randomly selected in the study com-
munity. For the past two decades, sampling households for survey-
based research has gained much attention (Lee et al., 2006). In

developing a spatial sampling frame, the use of Google Earth satel-
lite imagery and the geographical information system appears to be
an efficient alternative in a demographic surveillance system
(Escamilla et al., 2014); and insecure environments and when cen-
sus data are unavailable (Yihan and David, 2016). Earlier studies
have employed different spatial sampling methodologies to choose
a finite number of sample units by overlaying a regular geometric
extent of the study area and assuming homogeneity within each
unit (Desard and Bar-Hen, 2005). Kumar (2007) claims that regu-
lar grid cells do not match the very irregular geometries of residen-
tial neighbourhoods and suggests using discrete geographic space
to generate a sampling frame of residential regions using GPS, GIS
and remote sensing (RS). He showed that the method was robust
and comparable. 

Also, an investigation of Plasmodium falciparum transmission
intensity was investigated in Lilongwe, Malawi with all HH struc-
tures digitized and assigned coordinates based on satellite imagery
and GIS (Escamilla, 2014). Both Kumar (2007) and Escamilla et
al. (2014) used discrete geographic grids of residential units (HH)
as the spatial sampling frame for their research, accounting for spa-
tial heterogeneity by giving weights when selecting a set of ran-
domly selected geographic locations.

Advancements in 3S technologies, namely GIS, GPS and RS,
offer a tremendous opportunity to create an efficient spatial sam-
pling approach for demographic and health surveys. We also
endorse that the use of GIS, GPS, and RS technologies, which
should be applied to pinpoint the whereabouts of residential
HHs as an indirect measure of a listing of these units.

We proposed a method for developing an HH spatial sampling
frame (geographically constrained single shapefile of the residen-
tial population) in semi-urban and rural contexts. The spatial data
consists of a single shape file rather than a geographic extent. Also,
we compared the prevalence of self-reported HT and DM by two
probability sampling methods using CSF with SSF. We show that
the estimates are reliable, efficient, and comparable to those of tra-
ditional methods or CSF estimates. SSF would be helpful in situa-
tions with budgetary or other constraints, insecure environments,
and when census data are unavailable. A CSF necessitates more
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human resources, while the cost in the SSF is the requirement for
personnel skilled in GIS use. In addition, there is increased need
for desk work, primarily in preparing or mapping residential
regions. Any desired variable sample size or sampling design
would be achievable with the spatial sampling frame.

In the present study, we have used individuals as the unit of
analysis using CSF. In contrast, in using SSF, we randomly select-
ed the HH, and then an individual was selected and used as the unit
of analysis. Malaria indicator surveys generally aim to estimate
disease prevalence at the community level by sampling from a list
of all HHs, primarily heads of households (Escamilla et al., 2014).

We assumed that HHs (indirectly an individual) are selected
directly from the SSF of solely HH regions of the population, as
done in telephone surveys, which choose from a subscriber direc-
tory or utilize random digit dialling (indirectly an HH) (Lepowski,
1988) rather than going through multiple phases of selection. In
large-scale national surveys, the HHs are selected first, followed
by individuals. When HH is used as a unit of study, the variation is
likely to be a little higher. Weights are typically assigned to
account for unequal probability of selection and survey non-
response. When the data exhibits spatial autocorrelation, they
adjust the weighted sample distribution for key study variables.
Since our study was based on the entirely surveyed list of HHs in
the study area, non-response did not occur. The disease conditions
were randomly dispersed in space. The spatial design sought ran-
dom sampling of a single eligible individual per sampled HH,
based on the assumption that a HH of individuals is relatively
homogeneous compared to the broader population of individuals.
As a result, no weights were assigned. We considered separate
datasets for males and females. From a spatial perspective, HHs
with males and those with females were investigated as separate
layers. They were independent and can be overlaid to comprise the
whole study population. Because individuals can only exist in one
stratum, they were considered to be independent. 

GIS, GPS and linking GPS to PDAs simplified the collection
and framing of a complete enumeration list (SSF) and analysis of
the population data. Although Google Earth Pro version 7.3.2 pro-
vided high-resolution satellite images, we would have missed a few
new residential houses had we used only Google Earth images,
however, this did not occur as we had access to the entire locations
of all HHs in 2019 for both study settings. We used Garmin
Handheld Trimble Juno SC GPS units to survey and observed that
Google Earth streets could sometimes shift but by less than 10 m.
The survey data could therefore be directly taken to the GIS envi-
ronment with the GPS unit. Getting signals from satellites was
much faster in urban settings than in rural ones. With a limited num-
ber of field staff, weather conditions and repeated visits of the
demographic health survey, it took a long time to digitize all HHs,
including the entire study area, and complete the survey. This
method provides an opportunity for an efficient spatial approach
comparable to the classical approach. However, it involves more
desk work, primarily in preparing the digitized map of residential
regions using Google Earth; GIS analyst or trained personnel is
essential and requires GIS software. The urban setting was digitized
with only eight polygons of residential areas to make a single poly-
gon shapefile which was much easier. In contrast, combining 156
polygons into one polygon in the rural setting was cumbersome.
Refusal or non-response error does not occur in this study; other-
wise, non-response must be addressed at the analysis time. The vast
majority of Kallur families live in single-family houses, with only
a small percentage of the population living in multi-story or multi-

family housing in each location or site. However, roughly 15% of
the population in our semi-urban neighbourhood of Ayapakkam
lives in multiple living units or HHs. If the study selected a location
or residence with more than one HH, the first one with the required
age group of 18-69 years was selected randomly. In a relatively
small number of instances (<5%) in both study areas, randomly pro-
duced points do not correspond with HH locations and selected
empty houses or petty shops. If the study area consists primarily of
high-rise structures, it may oversample the sampling methods.
Changing random points to coincide with the nearest households
would also eliminate the sample’s randomness.

Conclusions
Using SSF is as efficient as using CSF by two probability sam-

pling methods in two study settings as shown by our study inves-
tigating two non-communicable diseases. However, this type of
sampling frame should be further validated and compared with
more probability sampling methods to determine its utility in com-
municable or infectious disease conditions and urban settings. This
exercise would pave the way to understanding the pros and cons of
using both frames in future research.
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