
Abstract
Exploratory disease maps are designed to identify risk factors

of disease and guide appropriate responses to disease and help-
seeking behaviour. However, when produced using aggregate-
level administrative units, as is standard practice, disease maps
may mislead users due to the Modifiable Areal Unit Problem
(MAUP). Smoothed maps of fine-resolution data mitigate the
MAUP but may still obscure spatial patterns and features. To
investigate these issues, we mapped rates of Mental Health-
Related Emergency Department (MHED) presentations in Perth,
Western Australia, in 2018/19 using Australian Bureau of
Statistics (ABS) Statistical Areas Level 2 (SA2) boundaries and a
recent spatial smoothing technique: the Overlay Aggregation
Method (OAM). Then, we investigated local variation in rates
within high-rate regions delineated using both approaches. The
SA2- and OAM-based maps identified two and five high-rate
regions, respectively, with the latter not conforming to SA2
boundaries. Meanwhile, both sets of high-rate regions were found
to comprise a select number of localised areas with exceptionally
high rates. These results demonstrate how, due to the MAUP, dis-
ease maps that are produced using aggregate-level administrative
units are unreliable as a basis for delineating geographic regions
of interest for targeted interventions. Instead, reliance on such
maps to guide responses may compromise the efficient and equi-
table delivery of healthcare. Detailed investigation of local varia-
tion in rates within high-rate regions identified using both admin-
istrative units and smoothing is required to improve hypothesis
generation and the design of healthcare responses.

Introduction
The spatial distribution of disease and its correlates is regular-

ly investigated by government health departments and by
researchers. Often, the purpose of this investigation is to inform
spatial interventions that address disease burden. For example,
disease maps can help facilitate efficient targeting of finite health-
care resources to high-risk populations (Lessler et al., 2018; Tuson
et al., 2020).

Often, point-level (e.g., individual-level) data are available as
the starting point for analysis. However, for the analysis of rates,
a denominator (usually population) needs to be defined, based on
a set of areal units. In Australia, examples of such units include
administrative units available under the Australian Statistical
Geography Standard (ASGS) – e.g., Statistical Areas Level 1
(SA1s) (ABS, 2016a), which each comprise approximately 430
residents, or 200 dwellings. Comparable areas to SA1s in other
countries include census Output Areas in the UK and Census
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Blocks in the US. SA1-level population sizes and case counts are
often small enough that their reporting compromises privacy.
Consequently, analysts and custodians cannot freely share them,
e.g., with the scientific community or the public. Additionally, geo-
graphic units with small population sizes often have statistically
unstable rates, which are unreliable for decision-making (Werner
& Strosnider, 2020). Finally, analysing SA1s independently of one
another prevents identification of spatially contiguous, high-rate
regions of disease. Such regions are often of interest to decision-
makers, since they represent the opportunity to intervene with ‘at
risk’ populations at scales larger than the finest resolution at which
data are collected or made available (the ‘minimal’ resolution).

For these reasons, higher-scale administrative units are often
used to produce disease maps. In the example of the ASGS, such
units might be SA2s, which each contain, on average, approxi-
mately ten thousand residents (ABS, 2016a). However, such
aggregation exacerbates a common geographical problem: the
Modifiable Areal Unit Problem (MAUP) (Openshaw & Taylor,
1979; Tuson et al., 2019). This problem is two-fold in nature: con-
clusions drawn can differ when results are based on data aggregat-
ed spatially by either i) different scales, or ii) different geographi-
cal boundaries at a given scale. Examples include aggregation of
SA1s by either SA2s or SA3s (the “scale”, or aggregation aspect)
and gerrymandering of US political votes (Hodge et al., 2010; the
boundary, or “zonation” aspect). Furthermore, aggregation by
higher-scale administrative units has the effect of smoothing
underlying features within the boundaries of the chosen units, and
diluting features that straddle the units’ borders. Thus, features of
interest are easily obscured when aggregating. These issues are
amplified when the units used are far larger than necessary, e.g.,
Statistical Areas Level 3 (SA3s) in Australia and other, similar
units in other jurisdictions (e.g., see: ACSQHC, 2017; AIHW,
2007; Center for the Evaluative Clinical Sciences, 1996; Kamel
Boulos & Geraghty, 2020; Mooney & Juhász, 2020); in such cases,
policy makers and health service planners may be misled by ‘zona-
tion-dependent’ findings that are based on such units (Tuson et al.,
2020). To address these issues, minimal-resolution (e.g., SA1-level
in Australia) data may be smoothed using a variety of available
techniques, e.g., locally weighted average and empirical Bayes
approaches (Waller & Gotway, 2004; Tuson et al., 2020).
Smoothing protects privacy, stabilises rates, preserves general fea-
tures of interest that might otherwise be obscured when using high-
er-scale administrative units, and avoids dependence on any single
set of such units (Devine et al., 1994; Talbot et al., 2000).
However, an inherent assumption underlying smoothing is that
neighbouring areas share similar characteristics, e.g., disease rates
(Tobler, 1970); i.e., that they are spatially auto-correlated. This
assumption reflects W. R. Tobler’s First Law of Geography:
“everything is related to everything else, but near things are more
related than distant things” (Tobler, 1970). Despite the risk of this
Law inducing the ecological fallacy, it is rarely challenged.

To investigate these issues, in this paper, we: i) exemplify the
ability of smoothing to address ‘single-aggregation’ issues (i.e., the
MAUP and the obscuration of fine-resolution features) associated
with an SA2-resolution map of Mental Health-Related Emergency
Department (MHED) presentations in metropolitan Perth, Western
Australia (WA), in 2018/19; and ii) test the assumption that nearby
areas share similar characteristics, through investigating local vari-
ation in rates within high-rate regions identified using both SA2s
and smoothing.

Materials and Methods

Data sources
2016 Australian Census Statistical Area (SA) boundaries for

Perth were obtained from the Australian Bureau of Statistics
(ABS) (ABS, 2016a). Perth was defined to comprise the five
Greater Perth Statistical Areas Level 4 (SA4s): ‘Perth – Inner’,
‘Perth – South East’, Perth – South West’, ‘Perth – North East’,
and ‘Perth – North West’, excluding two single-SA1 islands:
Rottnest Island and Garden Island, which operate primarily as a
tourist and day-trip destination and a naval base, respectively. 

ABS resident population data for the 2011 and 2016 Australian
Censuses, stratified by SA1, were obtained via the ABS
TableBuilder tool (ABS, 2016b). These data were standardised to
2016 SA1 boundaries using geographical correspondence ratios
obtained from the ABS (ABS, 2016a), and SA1-level population
values for the 2018/19 Australian financial year (July 1 2018 to
June 30 2019) were derived via linear extrapolation.

MHED presentations for 2018/19 were extracted from the WA
Emergency Department Data Collection (EDDC; Holman et al.,
1999). These were defined to be presentations with either: i) an
ICD-10-AM (International Classification of Diseases, Tenth
Revision, Australian Modification; National Centre for
Classification in Health, 2010) diagnosis code beginning with “F”
(Mental and behavioural disorders) or ii) a Major Diagnostic
Category (IHPA, 2019) (primarily used in regional WA) of 19
(Mental diseases and disorders) or 20 (Alcohol/drug use and alco-
hol/drug induced organic mental disorders). ED data for Saint John
of God ED, Murdoch were not available; these typically represent
< 1% of presentations to Perth EDs each year (St John of God
Health Care, 2016). All other presentations meeting the above
diagnostic definition within WA were included, if their patient
SA1s of residence fell within the study area. 

Defining instability for individual units
Following Werner and Strosnider (2020), the Residual

Standard Error (RSE) for each SA1 and SA2 was calculated to rep-
resent statistical stability (or instability), with RSEs < 30% consid-
ered to be stable. Specifically, the RSE for each unit i (i.e., each
SA1 and SA2) was calculated as:   

where ei is the expected number of presentations for unit i, which
itself was calculated as: 

where Oi and ni are the presentation count and population size for
unit i, respectively.

Confidence intervals
Byar’s approximation (Breslow & Day, 1987) was used to cal-

culate confidence intervals for non-zero rates.
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Suppression of data to protect privacy
For the purposes of display (i.e., in the figures), rates for units

with either a presentation count or a population size between one
and five, inclusive, were suppressed to protect privacy. The rates for
such units were recalculated based on a presentation count of five.

Smoothing
The Overlay Aggregation Method (OAM) (Tuson et al., 2020)

was used to smooth the SA1-resolution data. Briefly, this method
involves: i) creating multiple, aggregate-level zonations of a given
geographic study area, by repeatedly aggregating a set of fine-res-
olution, or ‘minimal-level’, ‘building block’ spatial units defining
that geography (here, SA1s) into larger, contiguous polygons, or
‘zones’; ii) independently producing disease maps based on these
zonations; and iii) combining, or overlaying these maps to produce
a single, minimal-resolution map (Tuson et al., 2020).

For use in OAM, ten zonations of Perth were created based on
a target population size of 2,000 residents. In step ii above, the
aggregate-scale disease maps represented crude rates of MHED
presentations for each aggregate unit. In step iii, the SA1-level val-
ues calculated were population-weighted mean crude rates. 

Identifying high-rate regions
For both the SA2- and OAM-produced maps, the sets of high-

rate regions were defined to be the sets of areas exhibiting maxi-
mum ‘targeting efficiency’ (Tuson et al., 2020), based on an exem-
plar target presentation percentage of 5%; i.e., the sets of areas
with the smallest population size that also contained at least 5% of

MHED presentations. These areas were delineated through ranking
the relevant geographic areas (i.e., SA2s and SA1s, respectively)
by their rates, from highest to lowest, then identifying the sets of
highest-ranked units that contained at least a cumulative 5% of
presentations. This approach, which has been used to identify high-
rate regions previously (Lessler et al., 2018; Tuson et al., 2020),
was applied before excluding units with unstable rates.

Software
R version 4.0.2 was used for all analyses (R Core Team, 2020).

The publicly available software AZTool (Cockings et al., 2011;
Martin, 2003) was used to create the zonations used within OAM.

Results
25,863 MHED presentations occurred among a population of

approximately 1.95 million people residing within the study area
of Perth in 2018/19. Based on these values and the defined RSE
threshold of 30%, a minimum population size of 840 in any unit
was identified as being required for statistical stability. Only 177
out of 4,248 total SA1s (4.2% of SA1s) and 142 out of 164 total
SA2s (87% of SA2s) had populations greater than this threshold.
The 22 SA2s with unstable rates included all 19 SA2s whose rates
required suppression to protect privacy.

Figure 1a maps the 142 SA2s that had stable rates, and Figure
1b maps the set of two SA2s that were maximally ‘targeting effi-
cient’, based on the specified target of 5% of presentations. The
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Figure 1. a) Crude, SA2-level rates of MHED presentations across Perth; b) High-rate SA2s classified based on the specified target pres-
entation percentage of 5%.
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latter SA2s, which are labelled ‘A’ and ‘B’ in Figure 1b, comprised
5.7% of all MHED presentations and 2.3% of the population; thus,
their targeting efficiency can be expressed as 2.5% of MHED pre-
sentations for every 1% of the population ‘targeted’. 

Figure 2 shows rates and associated 95% confidence intervals
for SA1s comprised within the SA2s identified in Figure 1b.

Specifically, panels a) and b) in Figure 2 correspond to SA2s A and
B in Figure 1b. Within each panel in Figure 2, the SA1s are ordered
from west to east by geographic centroid and are coloured red
unless they required suppression to protect privacy, in which case
they are coloured blue. Horizontal red lines indicate the population
rates for each SA2 (37.1 and 31.9 per 1,000 population, respective-

                   Article

Figure 3. a) Smoothed, SA1-resolution rates computed using OAM; b) High-rate regions identified using OAM, based on the specified
target presentation percentage of 5%, with the boundaries of encompassing SA2s overlaid.

Figure 2. Crude rates of SA1s comprised within high-rate SA2s identified in Figure 1b. A single SA1 with a population less than 6 is
not displayed in Figure 2b due to the y-axis being truncated.
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ly). Within SA2 A in Figure 1b, one SA1 (out of 24) had an excep-
tionally high rate based on an arbitrarily chosen threshold of 100
presentations per 1,000 residents. Within SA2 B, two SA1s (out of
67) had rates greater than that threshold. Thus, while the SA2s in
Figure 1b were classified as being ‘high-rate’, only two SA1s at
most within each region had exceptionally high rates.

Figure 3a shows the smoothed map produced using OAM, and
Figure 3b shows a filtered version of that map with the set of areas
containing 5.1% of MHED presentations delineated. The latter
areas, labelled ‘A’ to ‘E’, respectively, in Figure 3b, were highly
localised. Further, some, e.g., region C, did not overlap the high-
rate SA2s (Figure 1b). In total, five distinct high-rate regions were
identified. As depicted in Figure 4, region A straddled the border of
two neighbouring SA2s; region B was located near the centre of an
SA2; regions C and E were small in size and located at the borders
of two different SA2s; and region D comprised two non-contigu-
ous but nearby areas within neighbouring SA2s. Together, these
regions contained 0.8% of the population; thus, their targeting effi-
ciency can be expressed as 6.4% of MHED presentations for every
1% of the population targeted; i.e., more than double the corre-
sponding value for the set of high-rate SA2s (2.5%). 

Figure 5 shows crude rates and confidence intervals for SA1s
comprised within the SA2s encompassing the high-rate regions
identified using OAM. Its panels are labelled ‘a’ to ‘e’, to match
the labels of the latter regions. In each panel, the bars are coloured
either: green, to represent SA1s that were classified as ‘high-rate’
using OAM; red, to represent SA1s that were not classified as
such; or blue, to represent SA1s whose rates required suppression.

None of the green-coloured SA1s had rates that required suppres-
sion. Horizontal red lines indicate the population rates across SA1s
in each panel. In each of Figures 5a-c and 5e, only a single SA1
had an exceptionally high rate based on the threshold defined pre-
viously. In some cases, these SA1s impacted upon those around
them; in Figure 5b, for example, one SA1 had a rate that was
approximately ten times higher than the population rate for its
panel (394 versus 32 presentations per 1,000 population), and, by
virtue of their proximity to this SA1, several nearby SA1s, despite
having relatively low un-smoothed rates, were classified as being
‘high-rate’. Similar results were observed in Figure 5a and 5c. By
contrast, OAM sometimes did not detect all SA1s with exception-
ally high rates in a panel (e.g., the SA1 marked with an asterisk in
Figure 5d). Finally, in Figure 5e, the smoothing induced by OAM
had relatively little effect in terms of classifying SA1s as ‘high-
rate’ based on their proximity to the one with an exceptionally high
rate. To determine if the rates of exceptionally high-rate SA1s
identified in Figure 5 were transient, corresponding rates for all
SA1s in that figure for the previous two Australian financial years
(i.e., 2016/17 and 2017/18) were examined. As shown in the
Supplementary Material, the SA1s with exceptionally high rates in
Figures 5a-c (i.e., in 2018/19) also had exceptionally high rates in
the two previous years. By contrast, three of the SA1s that had
exceptionally high rates in 2018/19 in Figure 5d did not have cor-
respondingly high rates in the other years. The same was true for
the exceptionally high-rate SA1 in Figure 5e. Interestingly, the
SA1 marked with an asterisk in Figure 5d, which, as noted, was not
classified as being ‘high-rate’ in 2018/19 despite having an excep-
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Figure 4. Magnified versions of high-rate regions identified using OAM (Figure 3b). Black lines indicate the boundaries of SA2s encom-
passing those regions.
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tionally high rate in that year, also had an exceptionally high rate
in the two previous years. 

If only the populations in the three SA1s with both exception-
ally and persistently high rates in Figures 5a-c were targeted with
scale-appropriate interventions, their collective targeting efficien-
cy could be expressed as 20.8% of MHED presentations for each
percentage of population targeted (calculation: 1.6% of MHED
presentations divided by 0.08% of the population in 2018/19).

Discussion
This study has described: i) limitations associated with the use

of single-aggregation administrative units to delineate sets of geo-
graphic target regions for interventions; ii) how smoothing can be
applied to mitigate those limitations; and iii) an investigation of
local variation in rates within high-rate regions delineated using
both aggregate-level administrative units and smoothing. Below

                   Article

Figure 5. Magnified versions of high-rate regions identified using OAM (Figure 3b). Black lines indicate the boundaries of SA2s encom-
passing those regions.
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we expand upon each of these issues. As noted above, a key focus
of this paper has been to reiterate that maps produced using SA2s
(and similar units in other jurisdictions, e.g., ZIP codes in the US)
may be misleading (Tuson et al., 2020). Population sizes vary
widely amongst SA2s (Tuson et al., 2020); consequently, in the
present analysis, many SA2s had statistically unstable rates,
despite MHED presentations being relatively common. Thus, the
use of SA2s to guide the targeting of interventions such as new
clinics or outreach services to SA2-sized populations may lead to
either i) over-servicing of populations that don’t have high need, or
ii) non-consideration of small, specific neighbourhoods that do
have high need. As noted, these problems are not specific to SA2s;
they impact whenever targeting of interventions is undertaken
guided by single-aggregation maps. Further, they will be amplified
when units that are larger than SA2s, e.g., SA3s, which have pre-
viously been used to examine healthcare variation and reductions
in potentially preventable hospitalisations in Australia (ACSQHC,
2017; Queensland Clinical Senate, 2018), are used. Exemplifying
the impact of these issues, the targeting efficiency of the high-rate
SA2s identified in the present study was less than half that of the
OAM-identified regions.

As alluded to above, this paper has demonstrated how smooth-
ing can be utilised to mitigate single-aggregation issues. However,
it has also shown some limitations of smoothing. For example,
several SA1s nearby those with exceptionally high rates were clas-
sified as being ‘high-rate’ only after smoothing, and some SA1s
with exceptionally and persistently high rates that were proximal
to high-rate regions were not classified accordingly. These obser-
vations illustrate the importance of further investigation of local
variation in rates within high-rate regions identified using smooth-
ing. In the present study, undertaking such an investigation, a
select number of SA1s with exceptionally high rates that persisted
over time were revealed. These regions represent regions of inter-
est for localised, geographically targeted MHED interventions.
Their further investigation revealed a variety of plausible risk fac-
tors, including: a high density of short-term accommodation; aged
care facilities; a small residential area surrounded by industrial
zones and liquor stores; public housing; and reports of antisocial
behaviour (data not shown). These factors were readily apparent
when examining relevant street maps. Interestingly, they were
idiosyncratic, rather than systemic; for example, not all SA1s con-
taining liquor stores or aged care facilities had exceptionally high
rates. Such observations allow for nuanced generation of hypothe-
ses; however, before causal inference can be made, further investi-
gation is required into features that may have contributed to the
high presentation rates, e.g., spatial, or socio-demographic factors
(e.g., age, ethnicity, morbidity), and combinations of these fea-
tures. Timely identification of such features may lead to improved
planning of scale-appropriate healthcare responses. It is worth not-
ing that smoothing techniques other than OAM may be used to
achieve similar results to those presented here. Indeed, OAM has
been shown to produce similar results to those of at least one other
smoother in a grid-based simulation (Tuson et al., 2020). Here, we
used OAM for several reasons: first, for its intuitive handling of
edge effects, which is important when dealing with irregularly-
shaped geographical features such as Perth’s rivers; second, for its
population-adaptive smoothing, which ensures statistical stability
of computed rates and facilitates detection of features at scales that
are relevant to planned interventions (Tuson et al., 2020); and
third, for the unique way in which it ensures protection of privacy,
through assigning convolutions of values from many aggregations

to each minimal unit (Tuson et al., 2020). The latter feature pre-
vents back-calculation of minimal unit values, and pre-empts
application of perturbation techniques, which might otherwise be
required to protect privacy (Wieland et al., 2008). However, these
features are not unique to OAM. For example, population-adaptive
smoothing can also be undertaken using some kernel density meth-
ods (e.g., see Carlos et al. 2020). Whichever smoothing technique
is used, it should be applied, and its performance appropriately
examined, in whatever way it is usually used in practice. This
might involve calculating statistics such as Moran’s I (Moran,
1950), for example, to measure the degree of autocorrelation that
remains in the model’s residuals. The choice of smoother should
also consider whether global or local smoothing is appropriate;
here, we have exemplified the application of OAM, which is a
local smoother; however, in other contexts, global smoothing, e.g.,
as achieved through application of Empirical Bayes techniques
(Clayton & Kaldor, 1987), might be preferred. 

While this paper examines MHED presentations, the method-
ology employed could also be applied to other conditions and out-
comes both in health and beyond, e.g., in ecology, criminology,
forestry and mining. However, in each application, the process of
identifying features of interest is the same: first, choose an appro-
priate smoother. If using OAM, this will involve choosing an
appropriate target population (or other denominator) size based on
the desired degree of granularity while accounting for statistical
stability. This choice is related to the choices of kernel and band-
width that are required when applying kernel smoothers. Typically,
the choice of denominator/bandwidth will depend, at least in part,
on the relative rarity of the outcome being examined; here, for
OAM, since MHED presentations are relatively common, a target
population size of 2,000 residents was used. However, for less
common conditions, a larger target population size might be appro-
priate. For example, a previous study examining inpatient admis-
sions for stroke in Perth used a target population size of 10,000 res-
idents (Tuson et al., 2020). One way to determine an appropriate
target might be to use the RSE as a guide. Importantly, if a small
denominator/bandwidth is used, the relative influence of the rates
of individual fine-resolution units (here, SA1s) on the classifica-
tion as either ‘high rate’ or not of surrounding units will increase.
Second, define a threshold percentage of events to identify high-
rate regions. In this study, a threshold of 5% of MHED presenta-
tions was used, to limit the number of geographical features of
interest for further investigation. And finally, visualise street map,
satellite, or other sources of data to generate hypotheses regarding
why particular areas might have exceptionally high rates. 

MHED presentations are frequently used as markers of mental
disease and ill-health for populations. However, in addition to dis-
ease, such presentations are influenced by cultural, educational,
and proximity factors. Thus, while this study cannot describe the
true geographic distribution of mental illness or disease, MHED
presentations arguably represent the most complete population
level data available (as opposed to self-report or survey data, for
example, Althubaiti, 2016; Latkin et al., 2017). It is also possible
that different MHED diagnosis groups have different spatial distri-
butions; this was not investigated here due to the focus being on
the comparison of smoothed and single-aggregation maps, and on
the investigation of localised variation in rates within high-rate
regions identified in those maps. 

In evaluating differences in rates between areas, confidence
intervals were reported but formal significance testing was not
undertaken. Instead, rates were examined over time, and, where
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patterns persisted, specific SA1s were classified as being areas of
interest. This approach was taken partly to pre-empt application of
a multiple testing adjustment, e.g., in order to control the false dis-
covery rate (Catelan & Biggeri, 2010), since such adjustments
could proceed in a variety of ways, e.g., within each region or year
of data or across all years combined, and partly in order not to
detract from the paper’s primary focus (see above).

Some of the parameters specified in this paper, e.g., the choice
of 30% for the RSE threshold in classifying statistical stability, and
the number of zonations created for OAM, could vary. As noted
previously, the former value was chosen guided by previous
research (Werner & Strosnider, 2020); however, other thresholds
could be used. A sensitivity analysis was not conducted; however,
given that many of the units examined had extremely small popu-
lation sizes, it is expected that varying the threshold would mini-
mally affect the conclusions drawn. Similarly, it is expected that
increasing the number of zonations created would minimally
impact results; here, the value 10 was used, based on: i) previous
studies (e.g. see Cockings & Martin, 2005), and ii) preliminary
analyses, which showed minimal variation when using additional
zonations (data not shown).

Conclusions 
Disease maps are widely produced to improve the understand-

ing of the spatial distribution of disease or demand for health ser-
vices, and thereby to inform efforts to prevent and respond to spa-
tial areas of ‘excess’. However, measurement of disease in space
must be undertaken in a manner that allows for fulfilment of that
purpose. Unfortunately, the current standard practice of using a
single set of aggregate-level administrative units to map disease
consistently fails this fundamental objective. Addressing this, this
study has shown that appropriate smoothing of fine-resolution data
can reveal general features of interest while maintaining the desir-
able qualities of privacy and stability that are characteristic of
higher-scale aggregations. However, it has also shown that
smoothing can still compromise the description of important fine-
resolution features. Therefore, to identify such features, detailed
investigation of high-rate regions identified using smoothing is
required. Such investigation can be undertaken using the approach
described here. Employing this approach, in the present study, sev-
eral neighbourhoods with exceptionally and persistently high pre-
sentation rates were revealed. These observations could help social
and health service planners prepare clinical or policy responses
that are tailored to the unique and individual needs of the identified
high-risk neighbourhoods.
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Online supplementary material:
Figure S1. Rates and 95% confidence intervals for the 2017/18 Australian financial year, for SA1s comprised within SA2s encompassing high-rate regions
identified using OAM in 2018/19 (see Figure 5, main text).
Figure S2. Rates and 95% confidence intervals for the 2016/17 Australian financial year, for SA1s comprised within SA2s encompassing high-rate regions
identified using OAM in2018/19 (see Figure 5, main text).
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