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Impacts of sample ratio and size on the performance of random forest
model to predict the potential distribution of snail habitats
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Abstract

Few studies have considered the impacts of sample size and
sample ratio of presence and absence points on the results of ran-
dom forest (RF) testing. We applied this technique for the predic-
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tion of the spatial distribution of snail habitats based on a total of
15,000 sample points (5,000 presence samples and 10,000 control
points). RF models were built using seven different sample ratios
(1:1, 1:2, 1:3, 1:4, 2:1, 3:1, and 4:1) and the optimal ratio was
identified via the Area Under the Curve (AUC) statistic. The
impact of sample size was compared by RF models under the opti-
mal ratio and the optimal sample size. When the sample size was
small, the sampling ratios of 1:1, 1:2 and 1:3 were significantly
better than the sample ratios of 4:1 and 3:1 at all four levels of
sample sizes (p<0.01) and there was no significant difference
among the ratios of 1:1, 1:2 and 1:3 (p>0.05). The sample ratio of
1:2 appeared to be optimal for a relatively large sample size with
the lowest quartile deviation. In addition, increasing the sample
size produced a higher AUC and a smaller slope and the most suit-
able sample size found in this study was 2400 (AUC=0.96). This
study provides a feasible idea to select an appropriate sample size
and sample ratio for ecological niche modelling (ENM) and also
provides a scientific basis for the selection of samples to accurate-
ly identify and predict snail habitat distributions.

Introduction

Schistosomiasis is a neglected parasitic disease caused by
trematode parasites of the genus Schistosoma, which affects at
least 206 million people worldwide according to a recent WHO
report (Colley et al., 2014). In China, Oncomelania hupensis is the
sole intermediate host of Schistosoma japonicum (Zou & Ruan,
2015) and snail control is considered to be the most effective
approach to control this disease (Zhang & Jiang, 2011). Effective
snail control depends largely on how accurately the snail habitats
can be located, however manual snail-searching is labour-inten-
sive, expensive, and time-consuming (Guo et al., 2005; Zhu et al.,
2015). Hence, we need more efficient and effective methods to
identify potential snail habitats.

Ecological niche modelling (ENM), also known as species
distribution modelling (SDM), is a class of methods that can be
used to predict the potential distribution of species. ENM uses
species distribution data and related environmental variables data
to make a correlative model of the environmental conditions that
meet a species’ ecological requirements (Warren & Seifert, 2011).
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ENM has been increasingly used to predict regions of occurrence
of vectors and pathogens, which are frequently associated with
human diseases in new areas where investigations have not been
previously carried out (Sage et al., 2017; Chalghaf et al., 2018).
More specifically, ENM has been used to predict the potential spa-
tial distribution of the intermediate host snails of Schistosoma
(Pedersen et al., 2014; Scholte et al., 2012; Zhu et al., 2017).
Recent studies found that machine-learning models, especially
random forest (RF; a type of ENM), performed better in predicting
potential snail habitats (Xia et al., 2019; Zhang et al., 2020).
However, few RF-based ENM studies have explored the impacts
of sample size and sample ratio (the ratio of positive samples and
control samples) on the results even though both issues have been
frequently addressed in previous studies using traditional ENM,
such as Maxent and GARP (Bean et al., 2012; Hernandez et al.,
2006; Stockwell & Peterson, 2002).

Furthermore, to the best of our knowledge, no studies have
investigated the impact of sample size on ENM that had been
designed to predict the distribution of vectors (such as snails) and
pathogens associated with human diseases. Generally, the larger
the sample size, the greater will be the estimated accuracy of ENM,
but also the higher the sample survey cost (Peterson et al., 2007).
Thus, an optimal sample size and ratio are vital for predictive mod-
els considering cost-effectiveness.

In this study, we attempted to identify an appropriate sample
size and ratio of ENM for predicting snail habitats based on the RF
type of ENM, which was found to perform the best in our previous
researches (Xia et al., 2019; Zhang et al., 2020). We first compared
different sample ratios (presence samples versus absence samples
in the case of the same total sample size) to select an optimal ratio,
and then identified the most appropriate sample size based on the
optimal sample ratio. Finally, we explored the impacts of
sample ratio and sample size on the model performance for pre-
dicting the potential distribution of snail habitats.
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Materials and Methods

Data sources

The snail data used in our study were from a snail survey con-
ducted from March to May 2016, covering the whole Anhui
Province, a traditional schistosomiasis-endemic area in eastern
China (Cao et al., 2018). For the survey, a 0.11m* frame was set in
every 10*20m area selected by systematic sampling in the study
area. The exact snail locations (by geographical coordinates) were
recorded by a handheld global positioning system (GPS) instru-
ment (Garmin GPSMAP 64s). After the survey, parts of the area
where snails were found in the survey were randomly selected as
the sampling point for this study. A total of 5,000 snail sample
points (presence samples) were collected in the lake and marshland
areas, while 10,000 control points were generated by random sam-
pling throughout the entire study area excluding areas within 100
m of presence points, and these control points were used as the
points for which absence of snails in modelling (further details in
Zhang et al., 2020). Figure 1 shows the distribution of the snail
sample points in our study area. To predict potential snail habitats,
19 kinds of environmental factors - including climatic, soil and
geomorphological factors - were screened and selected from 36
environmental factors (Supplementary Table SI1). Among these
environmental variables, the land surface temperature (LST) and
normalized difference vegetation index (NDVI) were calculated
from remotely sensed image data collected by Landsat 7 equipped
with the Enhanced Thematic Mapper Plus (ETM+). The slope ori-
entation (Asp) and slope were extracted from the elevation module
(DEM) in the United States Geological Survey (USGS) Global
Land Information System (GLIS). The climate variables Biol to
Biol9 were obtained from WorldClim. We calculated the distances
to the nearest water body (water) from the water body data

Legend

Snail sample points
I Yangtze River
Epidemic area

Figure 1. The epidemic areas and sample points in Anhui Province: A) location of Anhui Province (in blue shade) in Chaina; B) the
epidemic areas and sample points in Anhui Province shown where traversed by the Yangtze River. Snail habitat sample points are
marked in red. The map was created using the ArcGIS 10.0 software (ESRI Inc., Redlands, CA, USA).
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obtained from conservation science datasets of the World Wildlife
Fund (https://www.worldwildlife.org/pages/conservation-science-
data-and-tools). Climatic variables and data on soil, such as geo-
morphic type (Geo), vegetation type (Veg), ecosystem type (Eco)
and land use type (Lucc) came from the Data Center for Resources
and Environmental Sciences of Chinese Academy of Sciences.

To screen the environmental variables and avoid potential
multi-collinearity, we conducted a correlation analysis for all cli-
matic variables. We excluded one of the variables if the correlation
coefficient of a pair of variables >0.7. The screening process
methodology for environmental factors was based on a previous
study (Escobar & Craft, 2016). The selected raw environmental
data were standardized to be in the same range and rasterized on
the study area using a cell size of 100100 m.

cpress

Modelling and evaluation

The snail location dataset was split randomly into two parts,
80% of the data were used as the training set for model develop-
ment and the remaining 20% served as the test set for model evalu-
ation. To compare the predictive capability of different sample
ratios, we built RF models using 7 different sample ratios of pres-
ence points and absence points (1:1, 1:2, 1:3, 1:4, 2:1, 3:1, 4:1) with
4 total sample sizes (100, 500, 1000, 5000). We chose 4 samples
sizes because we found that different sample ratios behaved better
in the case of different total sample sizes when the models were
built. It is a common practice to use 20% of the total dataset for
evaluating the performance of all models built via AUC (Escobar &
Craft, 2016). Models for each sample ratio were repeated 100 times
with each one of four sample sizes to obtain the distribution of AUC
to address model uncertainty. A higher AUC value indicates better
model performance. The optimal sample ratio was then determined
and used in the RF models with different sample sizes. To accurate-
ly evaluate the impact of sample size on the models, we built mod-
els using different sample sizes from 120 to 12,000 with fixed incre-
ments of 120, which was determined based on the optimal sample
ratio. The impacts of sample size on the model performance were
evaluated using four different indicators: AUC, sensitivity, speci-
ficity, Kappa and percent correctly classified (PCC). AUC, sensitiv-
ity and specificity were used to evaluate the accuracy of the models,
while Kappa and PCC were used to evaluate the accuracy of the
prediction results. We set a threshold of 0.5 for sensitivity and
specificity, in which a value greater than (or equal to) 0.5 represents
the potential positive area (snails are present) and a value less than
0.5 represents the potential negative area (snails are absent) (Liu et
al., 2011). In our study, all RF models were built using the Biomod2
package for R (Thuiller ef al., 2009).

Results

Sample ratio

Figure 2 shows the AUC of models built using 7 sample ratios
at 4 different sample sizes. Figure 2 indicates that models built
using more absence samples were overall better than those with
more presence samples. In addition, the ratio of 1:2 and 1:3 were
better than the other ratios. The results of a pair-wise comparison
(Supplementary Table S2) show that there was no significant sta-
tistical difference between the sample ratio of 1:1, 1:2, and 1:3
(p>0.05) and that these three ratios were significantly better than
the sample ratios of 4:1 and 3:1 at all the four size levels sizes
(p<0.01). The sample ratio of 1:2 appeared to be better in the case
of a large sample size, and there was no significant difference
between 1:1, 1:2 and 1:3 when the sample size was small.

The exact quartile deviations of the 7 sample ratios at the 4
sample sizes were also calculated (Table 1). It was found that the
larger the sample size, the smaller the standard deviation.
Moreover, the quartile deviations of the sample ratio of 1:2 were
generally found to be the lowest among all the ratios
(Supplementary Table S3).

Sample size

According to the quartile deviation of the sample ratios, we
used 1:2 as the fixed (optimal) ratio to evaluate the effect of sample
size on model performance. The effect of sample size is shown in
Figure 3. It is obvious that a larger sample size corresponded to
higher AUC as well as smaller slope (Figure 3 A), and a similar
trend was also found for specificity (Figure 3 C). Moreover, sensi-
tivity increased first and then decreased with increasing sample
size (Figure 3 B). Other indicators showed trends similar to AUC
and specificity (Supplementary Figure S1). The receiver operating
characteristic (ROC) curves were drawn based on three typical
sample sizes, large (12000), median (2400), and small (120)
(Figure 4). The AUC of the models built by using these three sam-
ple sizes were 0.98, 0.96, and 0.92, respectively.

Discussion

ENM has been widely used to predict the distribution of vari-
ous diseases or pathogens but most previous studies just investigat-
ed the impacts of the sample size on ENM, while only few studies
focused on presence-only models, such as Maxent and GARP

Table 1. The quartile deviation of models built with seven sample ratios and four sample sizes.

1:1 0.046 0.006 0.005 0.002
1:2 0.034 0.007 0.004 0.002
1:3 0.040 0.009 0.005 0.002
1:4 0.049 0.011 0.005 0.002
21 0.056 0.009 0.006 0.002
31 0.054 0.012 0.007 0.002
41 0.063 0.013 0.007 0.004

*Sample ratio represents the ratio of presence and absence samples used in the models.
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Figure 4. The ROC curves of the model with three different

sample sizes.

(Hernandez et al., 2006). There is a lack of studies about the sam-
ple size and sample ratio with ENM in disease-related field studies
and we aimed to bridge this gap. If the sample size is not chosen
wisely, ENM can produce incorrect results or cause waste of
resources. In this study we explored both the impacts of sample
size and sample ratio on RF model results built with a presence-
absence schistosomiasis dataset to predict the potential distribution
of snail habits. Study results can help to better predict potential
snail habitats, so that schistosomiasis can be more efficiently and
effectively prevented and controlled.

No significantly statistical difference was found among the
sample ratios of 1:1, 1:2 and 1:3. This could be due to the small
differences between these ratios or that we did not build sufficient-
ly effective models. However, the sample ratios of 1:1, 1:2, and 1:3
were all significantly better than the ratio of 4:1 and 3:1, which
suggests that a sample ratio of approximately 1:2 might produce
better model performance. In addition, the results of the quantile
deviation showed that model prediction at different sample sizes
was most consistent when the sample ratio was either 1:2 or 1:3.
This is in agreement with sensitivity, specificity and AUC results.

Furthermore, we found that 2,400 was the most suitable sam-
ple size in our study area, because the improvement of AUC
became significantly smaller beyond this size and the sensitivity
began to decrease. The decrease of slope of AUC with the increase
in sample size suggests that an excessively large sample size
should be discouraged. The reason is that the increasing survey
costs would add little improvement in model prediction. This argu-
ment is also supported by the decreasing sensitivity beyond a sam-
ple size of 2,400, which may be more important than specificity
when predicting snail habits for schistosomiasis prevention.

Compared with the sample ratio, the sample size appeared to
be more important for RF models in our study. There was no sig-
nificant difference between the sample ratio of 1:1, 1:2, and 1:3 for
a given sample size. However, the optimal sample size is important

OPEN 8ACCE55

because this determines the resources that will need to be invested
in research projects.

In our study, we chose RF to explore the impacts of sample
size and ratio on the prediction of snail habitats. This study pro-
vides a new approach for the selection of sample size and sample
ratio for ENM, especially the models which use both presence data
and absence data. Furthermore, it also provides a scientific basis
for the selection of samples for the identification of snail habitats,
so that resources can be planned and allocated more rationally.
Still. other types of ENM are also worth studying in the future.
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