
Abstract
This research aims to uncover how the association between

social determinants of health and COVID-19 cases and fatality
rate have changed across time and space. To begin to understand
these associations and show the benefits of analysing temporal
and spatial variations in COVID-19, we utilized Geographically
Weighted Regression (GWR). The results emphasize the advan-
tages for using GWR in data with a spatial component, while
showing the changing spatiotemporal magnitude of association
between a given social determinant and cases or fatalities. While
previous research has demonstrated the merits of GWR for spatial
epidemiology, our study fills a gap in the literature, by examining
a suite of variables across time to reveal how the pandemic unfold-
ed across the US at a county-level spatial scale. The results speak

to the importance of understanding the local effects that a social
determinant may have on populations at the county level. From a
public health perspective, these results can be used for an under-
standing of the disproportionate disease burden felt by different
populations, while upholding and building upon trends observed
in epidemiological literature. 

Introduction
The virus responsible for the COVID-19 pandemic is known

as Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-
CoV-2). The first outbreak of COVID-19 was traced to Wuhan,
China, but has since spread to every corner of the world, with
severe outbreaks in most countries (CDC, 2021). As of July 2022,
there have been roughly 1.02 million deaths and over 50% of
America (including 75% of children) have been infected
(Mandavilli, 2022). 

The disease primarily spreads through exposure to infectious
respiratory fluids (CDC, 2021). However, the likelihood of infec-
tion is often dependent on duration of exposure, proximity to the
infected individual and the environmental conditions where an
individual encounters the virus (CDC, 2021). With the emergence
of a vaccination plan in April 2021, unvaccinated individuals are
more likely to experience symptomatic and extreme infections,
while vaccinated individuals are often protected from infection
(CDC, 2021). When COVID-19 first emerged at the epidemic
scale, little was known about the social factors that contribute to
an individual’s likelihood to be infected or die from complica-
tions. However, as the spread of the virus escalated to a global
scale, the social factors associated with virulence became more
apparent. 

Early literature on COVID-19 was primarily focused on ini-
tially determined co-morbidities linked to individual cases of
severe infection and death including chronic lung diseases, heart
conditions, obesity, and smoking (Mouliou et al., 2021). Place-
based studies of co-morbidities highlighted spatial clustering of
counties with high mortality together with high chronic disease
prevalence and high social vulnerability, indicating a positive
association not only between co-morbidities and COVID-19 mor-
tality, but social factors as well (Islam et al., 2021). As the pan-
demic progressed, observers began to identify and focus on the
more place-based social determinants of COVID-19. Social
Determinants of Health (SDH) are “the non-medical factors that
influence health outcomes” (WHO, 2022) and include the condi-
tions in which people live and work, as well as the wider set of
systems surrounding them.

Beyond co-morbidities, the determinants for infection and
death by COVID-19 have been further connected to sociodemo-
graphic and socioeconomic indicators of health. For example,
Fielding-Miller et al. (2020) found that a higher percentage of
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non-English-speaking individuals in the United States (US), indi-
viduals older than 65 years, and those living at or below the pover-
ty level in non-urban areas are at a heightened risk for mortality
due to COVID-19. Perhaps one of the most notable relationships
between COVID-19 infection and SDH has to do with ethnic affil-
iation that can act as an indicator, not only for severe COVID-19
infection, but also for the burden of co-morbidities, crowded living
conditions in urban areas and increased likelihood to work in pub-
lic-facing careers (Hooper et al., 2020). Paul et al. (2021) expand
upon these results, revealing that across the US, the non-white
population is strongly correlated with the rate of both COVID-19
infection and mortality.

Vaccines became available to the US adult population in 2021,
and they were hugely effective at reducing COVID-19 infection
rates – reducing infection rates by 80-88% compared to unvacci-
nated individuals (Bernal et al., 2021). However, the US vaccina-
tion campaign was divisive, leading to further stratifications in dis-
ease spread and virulence, as many demographic groups chose to
remain unvaccinated. According to the Kaiser Family
Foundation’s research into people’s willingness to be vaccinated,
roughly one in five adults still affirm that they will either never get
the vaccine or will only get the vaccine if required. Shmueli
(2021), in a study into the Health Belief Model for COVID-19,
found that certain demographic factors, such as age, ethnicity, gen-
der, educational level, suffering from chronic disease, and receiv-
ing previous vaccinations, were all behaviours associated with the
likelihood of an individual accepting to be vaccinated. With
respect to the wave of COVID-19 Delta-variant, literature has
made it apparent that social factors contribute to an individual’s
willingness to receive the vaccine, with Republicans and those
who mainly consume “conservative news media” being less likely
to become vaccinated (Viswanath et al., 2021). Furthermore, the
Kaiser Family Foundation (2021) reveals that there are large gaps
in vaccination rates between urban (75%), rural (58%), and subur-
ban (73%) areas. As a result of these findings, there has been
increased interest in the social determinants of COVID-19 vacci-
nation, whereas the previous focus was on the interplay of social
determinants and mortality rates.

Some of the social determinants that correlate with dispropor-
tionate disease burden (e.g., individual access to food, population
density, air pollution indices and housing type) relate to the struc-
ture of the physical environment (Singu et al., 2020). For instance,
COVID-19 spreads more rapidly in areas with higher population
density. As reported by Sy et al. (2021) doubling of the population
density increases the index of pathogen’s contagiousness and
transmissibility (R0) by 0.11. Social structures, such as access to
quality medical care stemming from health insurance are another
factor contributing to differences in disease burden in diverse pop-
ulations (Grey II et al., 2020). Health insurance gaps were associ-
ated with 44% of COVID-19 infections and 32% of COVID-19
deaths between January 2020 and the end of August 2020 in the US
(Garber, 2021). Further, community economic indicators, such as
local unemployment rate, are associated both with disproportion-
ately high case rates and CFRs, something which might be due to
the fact that many individuals rely on their employers for health
insurance coverage (Singu et al., 2020). Conversely, increased
median income is associated with increased COVID-19 infection
risk in the US, showing that community economic indicators affect
mortality and infection differently (Abedi et al., 2021). 

Since the spread of COVID-19 is influenced and mediated by
social determinants of health, which have inherent spatial dimen-

sions, many studies have utilized spatial statistical methods to
explore the geography of COVID-19 in relation to existing social,
medical, and environmental conditions. Mollalo, Rivera and
Vahabi (2021), for example, used Local Moran’s I classes to iden-
tify spatial clustering of U.S. counties with high and low pre-exist-
ing mortality rates and COVID-19 fatalities. Mollalo, Vahedi and
Rivera (2020) explored the relationship between various environ-
mental and socio-demographic variables and COVID-19 incidence
at the US county scale, using Geographically Weighted Regression
(GWR) and multiscale GWR (MGWR). This approach has also
been used to model the spatial variation in COVID-19 vaccine hes-
itancy, again at the county level in the US (Mollalo and Tatar,
2021). While these studies demonstrate the advantage of local
models, over global models (e.g., ordinary least square (OLS)
models and spatial lag models), they rely on point-in-time COVID-
19 data and do not account for temporal variation. 

In part due to the COVID-19 outbreak being very recent, stud-
ies using GWR to explore both spatial and temporal infection
trends in association with SDH are still limited in number and
scope. However, Wu and Zhang (2021), identified seasonal pat-
terns in the relationship between disease spread and selected SDH
in the US state of Texas finding that winter was the most sensitive
season for virus spread in certain counties. Chen et al. (2022) uti-
lized GWR to analyse how risk for COVID-19 infection changed
from January to mid-September 2020 at the US county level. Their
results show that even in the first year of the pandemic, there were
temporal variations in the risk for COVID-19 infection.
Nevertheless, there are still few studies to date that have systemat-
ically analysed both the temporal and spatial relationships between
COVID-19 and SDH, especially across the major waves of infec-
tion. Our study aimed to fill this gap by analysing the relationship
between COVID-19 (numbers of cases and fatality) and SDH,
using GWR across all counties in the contiguous US (i.e., exclud-
ing Alaska and Hawaii) between January 2020 and January 2022.
We examined whether the existing understanding of the pandem-
ic’s mobility invariably holds over space and time. 

Materials and Methods

Data 
Four different COVID-19 waves were chosen for analysis,

based on changes in policy response, disease virology or both.
COVID-19 data was pulled from The New York Times GitHub
page, which updates the COVID-19 cases and deaths at the county
level on a daily basis (New York Times, 2022). 

The waves were defined as follows: i) Wave-1: January 1,
2020 – September 30. The end was determined by the US epidemic
curve, by choosing the date where the nation-wide epidemic curve
had fully bottomed; ii) Wave-2: October 1, 2020 – April 19th,
2021. The end was determined by the date where vaccines became
available to all adults; iii) Wave-3: April 20, 2021 – November 30,
2021.The end was determined by the first known case of the
Omicron variant in the US; and iv) Wave-4: December 1, 2021 –
January 18, 2022. The end was determined at the date of data col-
lection. For the case measure, the cumulative number was trans-
formed into cases per 100,000 population and the death rate was
measured by the CFR, which equals the number of deaths of all
confirmed cases. Data for SDH were identified based on existing
accounts of socioeconomic and demographic factors deemed influ-
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ential in the COVID-19 outbreak. Initially 16 candidate variables
were collected from various sources including the US Census and
the US Economic Service. By following several variable reduction
strategies (described below), nine variables were eventually select-
ed: non-white population (Hooper et al., 2020; Paul, 2021), less
than high school education (Shmueli et al., 2020), uninsured pop-
ulation (Gray et al., 2020), age 65+ (Neumann-Podczaska et al.,
2020), population density (Sy et al., 2021), median income (Abedi
et al., 2021; Hawkins, Charles, and Mehaffey, 2020; Quan et al.,
2021; Whittle and Diaz-Artiles 2020), unemployment rate (Singu
et al., 2020), republican population (Kaiser Family Foundation,
2021; Viswanath et al., 2021) and vaccination rate (Bernal et al.,
2021; Table 1). The geometric data of county boundaries were
obtained as shapefiles from the US Census TIGER/Line website.

Models
We used both OLS and GWR modelling in this study. The stan-

dard OLS model specifies the relationship between a set of
explanatory variables and a dependent variable as:

                                              
Eq. 1

where in county i, yi is the COVID-19 case rate (alternatively
CFR); β0 the intercept; xik the ith observation of the kth explanatory
variable; βk the regression coefficient for the kth independent vari-
able; and εi a random error term. The OLS model implicitly
assumes spatial stationarity in the relationship between the
explanatory and dependent variables, even if this assumption does
not always hold in reality. 

GWR extends the OLS model by allowing for locally variable
coefficient estimates (Fotheringham et al. 2003). The difference
between GWR and traditional regressions can be observed by
adding the geographical coordinates (ui, vi) to the model:

                         

Eq. 2

GWR fits a local model of the dependent variable to every fea-
ture in the dataset. These local models are constructed by incorpo-
rating the explanatory variables of features that fall within a
defined neighbourhood (Fotheringham et al., 2003). In our study
all OLS and GWR models were generated using ArcGIS Pro 2.9
software (ESRI, Redlands, CA, USA).

Model calibration
To construct the final models, we used the following strategy

to transform variables and to reduce the number of explanatory
variables. First, explanatory variables that had a skewed distribu-
tion were log-transformed. These variables included population
density, uninsured rate, age 65+ and non-white population.
Furthermore, following Mollalo and Tatar (2021), all dependent
and explanatory variables were converted to standardized z-score
(mean = 0, standard deviation = 1) for both the GWR and the OLS
models. This standardization enabled the comparison of models
across different waves and helped to deal with the issues of local
multicollinearity, as measured in local condition numbers.

In terms of the variable reduction strategy, from the initial 16
candidate variables, we first excluded variables that were highly
correlated (using a 0.7 Pearson correlation coefficient as thresh-
old). An initial OLS regression based on this subset of variables
was run for each of the COVID-19-dependent variables (cases per
100,000 population and CFR). Variance Inflation Factor (VIF) val-
ues were calculated for all explanatory variables, none of which
exceeded 3.0 (with the commonly recommended threshold of 7.5).
Moreover, we examined the local condition number to check for
local multicollinearity in the GWR models and removed additional
variables, resulting in the inclusion of only nine in the final models
as shown in Table 1. As the COVID-19 data for New York City
were not aggregated at the county-level, but at the city level, all the
other social determinants had to be adjusted to the city level for
New York City, resulting in a dataset that combined all social
determinants and COVID-19 data from the following counties:
Bronx, Kings, New York, Richmond, and Queens.

For the neighbourhood definition (bandwidth) of the GWR
models, we used the “golden search” method where the number of
neighbouring counties used for each model was selected to obtain
the lowest corrected Akaike’s information criterion (AICc) for
each model, which is currently a common practice in GWR mod-
elling (Fotheringham et al., 2003). Finally, of the total 3,104 coun-
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Table 1. Variables used.

Social determinant of health                                                              Source                                                                                   Date

COVID-19 Case and CFR                                                                                                  New York Times                                                                                             2022
Population density                                                                                                             US Census                                                                                                       2020
Unemployment rate                                                                                                          US Economic Research Service                                                                2019
Median income                                                                                                                   US Economic Research Service                                                                2019
Population with less than high school education                                                       US Economic Research Service                                                                2019
Percent Republicans (voted for Donald Trump in the 2020 election)                  MIT Election Labs                                                                                         2020
Uninsured population                                                                                                       US Census                                                                                                       2019
Age ≥65                                                                                                                                Administration for Community Living                                                       2019
Non-white population                                                                                                       US Census                                                                                                       2020
Average percent fully vaccinated people                                                                      CDC                                                                                                                  2020-2021
MIT, Massachusetts Institute of Technology; CDC, Center of Disease Control; US Economic Research Service, https://www.ers.usda.gov/; Administration for Community Living, https://acl.gov/ 
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ties, 10 were omitted from the analysis for the case rate and 16 for
the CFR in the fourth wave. This is because the source data for
these counties reported cumulative cases in Wave-4 that were
lower than the cumulative case counts in Wave-3. Thus, the inter-
pretation of these results must be done with care.

Results
The results from each OLS and GWR model are shown in

Table 2 and the list of significant variables from the OLS regres-
sion in Table 3. As expected, the GWR models were able to
account for much more variance compared to the OLS results indi-
cating that there is a spatial component to the relationship between
SDH and COVID-19 infection or death. This suggests that the
SDH variable is more strongly associated with the rates of
COVID-19 infection, while other factors that were not included in
the model (e.g., pre-existing health conditions) strongly affect the
CFR (Tables 2 and 3).

The per capita case GWR models were able to account for a
significant amount of variance as shown in the local adjusted R2
values (Figure 1) in all parts of the country across all waves, except
for parts of central US states and Texas. Although the GWR mod-
els dealing with CFR were able to account for much less variance
than the case models, the GWR model was able to account for vari-
ance in the Northeast, Midwest and along parts of the west coast
(Figure 1). Local condition numbers were also mapped (Figure 1).
Counties that have high local R2 values and low condition numbers
(<30) represent areas where relationships were both meaningful

and reliable. Areas where condition numbers exceeded 30 indicate
potential presence of local multi-collinearity (Brundson et al.,
2012). GWR also computes a separate regression coefficient for
each county based on a function-calculated number of neighbour-
ing counties. These visualized coefficients showed great spa-
tiotemporal variation in the relationship between SDH and
COVID-19 per capita case or CFR (Figures 2 and 3). The variation
told us that a particular SDH may be positively associated with
COVID-19 cases or deaths in some areas of the country (red gra-
dation in the maps), while negatively associated in other areas
(blue gradation in the maps). These associations can be tracked
from wave to wave, illustrating change throughout the pandemic.
In some cases, the direction of the relationship change sign
between waves in the same regions, revealing some of the spa-
tiotemporal complexity. 

Discussion 
The GWR results revealed a few noteworthy trends and pat-

terns that we wish to highlight with special reference to age, eth-
nicity, vaccination status, education level, economy, and general
social factors.

Age
Older adults are more likely to have one (or more) of co-mor-

bidities, such as cardiac disease, diabetes, chronic lung disease and
hypertension, which are particularly linked with CFR due to
COVID-19 (Neumann-Podczaska et al., 2020). Across many coun-
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Table 2. Model comparisons.

                                             OLS                          GWR  
Dependent Variable                            AIC                         Adj. R2                       AIC                        Adj. R2                  Number of neighbours

First Wave Cases                                             7404.59                                0.366                             5941.52                              0.653                                                137
First Wave CFR                                                8497.57                                0.095                             7927.56                              0.285                                                286
Second Wave Cases                                        8449.68                                0.112                             6790.90                              0.547                                                131
Second Wave CFR                                           8224.11                                0.169                             7716.23                              0.346                                                213
Third Wave Cases                                           7727.14                                0.297                             6049.59                              0.597                                                150
Third Wave CFR                                               7959.35                                0.238                             7297.60                              0.426                                                246
Fourth Wave Cases                                         5938.55                                0.234                             4089.11                              0.632                                                147
Fourth Wave CFR                                            8128.62                                0.073                             7578.19                              0.286                                                218
OLS, ordinary least squares; GWR, geographically weighted regression; CFR, case fatality rate; AIC, Akaike’s information criterion.

Table 3. Significant OLS variables by wave.

                Case significant variables (p<0.05)                                                    Fatality significant variables (p<0.05)

Wave-1       Population density, Unemployment rate, Median income,                                       Population density, Unemployment rate, Median income,
                    Age 65+, Non-white, Less than High School education.                                            Uninsured population, Age 65+, Non-white, Less than High
                                                                                                                                                                     School education.
Wave-2       Unemployment rate, Median income, Republican, Uninsured, Age 65+               Median income, Republican, Age 65+, Non-white, 
                                                                                                                                                                     Less than High School education.
Wave-3       Population Density, Unemployment Rate, Median Income, Republican,              Population density, Unemployment rate, Median income, Republican, 
                    Uninsured, Age 65+, Vaccination.                                                                                    Uninsured, Age 65+, Non-white, Vaccination.
Wave-4       Population density, Unemployment rate, Median income, Republican,                Unemployment Rate, Republican, Uninsured, Age 65+, Non-white.
                    Uninsured, Age 65+, Non-white, High School education, Vaccination.                  
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ties, there is a clear positive association between age and COVID-
19 fatality, and predominantly negative association between age
and case rates (Figures 2 and 3). A closer examination of the maps
shows some interesting local trends and patterns. For example,
there is a reversal of association between older populations and
fatality along the south-eastern states, including Florida, from pos-
itive (Waves 1 through 3) to negative (Wave-4) associations. This
may be related to the fact that Wave-4 covered only winter months

(December to January), and older people may engage in outdoor
activities more actively in warmer regions of the country.

In terms of case rates, while negative associations between age
and COVID-19 infection dominated the country during Wave-1,
there was a positive relationship in much of the Northeast, includ-
ing New York City (Figure 2). Much of the early attempts to con-
trol COVID-19 were focused on disease outbreaks among elderly
communities, particularly in nursing homes. New York City, for
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Figure 1. Geographically weighted regression model results – cases and fatalities by wave.
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Figure 2. Weighted regression model coefficients by SDH – cases.
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Figure 3. Weighted regression model coefficients by SDH – fatalities.
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example, struggled to protect residents of its nursing homes, as
cases skyrocketed under Governor Cuomo’s nursing home policy
(Ruiz, 2020). These “local stories” may be reflected in the Wave-1
results, as there was a positive relationship between age and
COVID-19 infection in north-eastern counties, including those
belonging to New York City (Figure 2). On the other hand, areas
around the Florida Panhandle showed a strong and consistent neg-
ative relationship throughout the first three waves. Such “outliers”
offer baseline information and spark productive questions for fur-
ther inquiries and local investigations.

Ethnicity
Many studies have analysed the relationship between non-

white population and COVID-19 infection. In the US state of
California, Hsu and Hayes-Bautista (2021) found that case rates in
individuals across all age groups were 1.5 – 6 times higher in non-
white populations compared to the white non-Hispanic population.
In major US metropolitan areas, counties with high non-white pop-
ulations had COVID-19 infection rates approximately eight times
higher than urban counties with majority white populations
(Adhikari et al., 2020). Our findings showed a strong positive
association between non-white population and infection in large
areas of the country, especially during Wave-1 (Figure 2).
However, we wish point out that there are areas with a negative
relationship between COVID-19 infection and non-white ethnicity
(e.g., the Pacific Northwest during Wave-2, and northern
California during Wave-3); the positive association becomes gen-
erally weaker over time and a strong positive association is not
necessarily prominent in urban counties (Figure 2). These results
show that although existing research has highlighted significant
associations between non-white population and COVID-19 infec-
tion, these associations continue to change across both time and
space, revealing some of the immense complexity of the pandemic
and the mitigation policies instituted. 

In terms of COVID-19-related CFR, Golestaneh et al. (2020),
explain that African American/Black populations have experienced
a disproportionate impact of COVID-19 disease severity potential-
ly because of disparities in co-morbidities, such as asthma, dia-
betes, hypertension, and obesity in addition to unequal access to
healthcare services. In a similar vein, Paul et al. (2021) uncovered
a strong positive relationship between non-white population and
COVID-19 mortality at the national scale. Our results nevertheless
indicate strong regional patterns in this assumed association. Most
broadly in this connection, a strong positive association appears to
hold in the western United States, including the coastal states, the
Rocky Mountain Region, and much of the Southwest, though
Florida was an exception to the pattern during the first two waves
(Figure 3). Few previous studies addressed the potential presence
of such regional contrasts in terms of ethnicity and COVID-19
infection. Furthermore, this positive association increased as the
pandemic evolved and spread to more counties in the western US.
The fact that many of these western US counties (California in par-
ticular) showed a negative association between COVID-19 infec-
tion and the non-white population, but a positive one between CFR
and ethnicity, is a cause for alarm, as non-white populations may
be taking measures to protect themselves from the infection, but
once infected experience more severe symptoms and a dispropor-
tionately high death burden.

Economic status
Various previous studies examined associations between

COVID-19 infections and personal economic conditions such as
employment status (Fielding-Miller 2020), employer-based health
insurance (Dragano et al., 2021) and income (Abedi et al., 2021;
Hawkins, Charles, and Mehaffey, 2020; Quan et al., 2021; Whittle
and Diaz-Artiles 2020). Broadly, our results showed pre-pandemic
local unemployment to be positively associated with a higher num-
ber of infections and CFR with higher income levels negatively
associated these variables, yet distinct spatial and temporal varia-
tions were also visible (Figures 2 and 3). For example, Wave-1
revealed a positive association between COVID-19 CFR and
unemployment rate in most areas of the country (Figure 3), while
this pattern reversed when the fourth wave struck, with the
Northeast showing a negative association between unemployment
rate and COVID-19 CFR (Figure 3). Compared to the other waves,
most counties were negatively associated with the unemployment
rate during Wave-4, making the pre-pandemic unemployment rate
a less clear SDH predictor of CFR as the pandemic progressed. 

Looking at income levels, during Wave-2 and Wave-3, higher
median income was related to higher CFR associated with
COVID-19 in southern California, the Rocky Mountain States, the
Southwest, and parts of the southern US (Figure 3). However, there
was a geographic variation of these trends, as in earlier waves, with
a negative association between increased median income and CFR
observed along the northern and southern border states (Figure 3).
Another interesting insight can be gained by comparing case and
CFR within the same region over time. For example, in much of
the Northeast, New York City included, there was a strong positive
association between increasing median income and an increasing
number of cases, across all the pandemic waves (Figure 2). This
upholds the finding that increased median income was associated
with increased risk of COVID-19 infection (Abedi et al., 2021). In
Wave-1, this positive association between increased median
income and increased cases was also seen with respect to CFR,
meaning that wealthier populations were both more likely not only
to become infected by COVID-19, but also to become severely
infected. However, in later waves, our analysis revealed a reversal
of this trend, as wealthier populations were still more likely to be
infected with COVID-19, but increased income became associated
with decreased CFR (Figure 3). This may be indicative of the abil-
ity of wealthy populations to access emerging COVID-19 treat-
ment, thus decreasing likelihood for severe, fatal infection.

Political orientation
It was reported in October 2021 that only 61% of Republicans

had received one dose of a COVID-19 vaccine, compared to 90%
of Democrats (Kaiser Family Foundation, 2021). For the Delta
variant wave (Wave-3), vaccination was clearly effective at reduc-
ing the number of COVID-19 infections (80% - 88%) compared to
unvaccinated individuals (Bernal et al., 2021). When vaccines
were available (during Wave-3 and Wave-4), there was a signifi-
cant positive association between the percent republican popula-
tion and COVID-19 infection in much of the Midwest, the
Southern States, and the Pacific Northwest (Figure 2). During
Wave-1, when vaccination was not an option and there was less
polarizing rhetoric surrounding COVID-19, there was a negative
association between the percent republican population and the
number of cases in parts of the Midwest and the Southern States.
Therefore, the increasingly positive relationship between percent
republican population and COVID-19 cases in these areas may be
due to the decreased likelihood of Republican populations to com-
plete a full COVID-19 vaccination series or adhere to COVID-19
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mitigation guidelines. Albrecht (2022) reported that people living
in counties with a high percentage of “Trump-voters” were more
likely to die from COVID-19. Our findings do indicate a largely
positive relationship between COVID-19 fatality rate and the
republican population, with some regional exceptions, especially
during Wave-2 and Wave-3 (Figure 3).

Education level
Existing literature highlights a strong connection between edu-

cation attainment and lower COVID-19 mortality (Albrecht,
2022). Shmueli et al. (2020), for example, reason that low educa-
tion level is correlated with low COVID-19 vaccine uptake. Our
Wave-1 data confirm a generally positive relationship between
COVID-19 case rates and low education level in central and north-
eastern US, along with parts of North Carolina and Virginia
(Figure 2). Importantly, this is at the time when vaccines were not
yet available, which hints at the possibility of also other factors
linking low education levels with high infection rates. Moreover,
as the pandemic evolved (e.g., during Wave-2), this relationship
held less strongly and even began to reverse in some areas of the
country. Reaching Wave-4, many of the areas with a previous, pos-
itive association, now either had a weak positive, sometimes neg-
ative association between individuals with less than high school
education and COVID-19 infection (Figure 2). These findings tell
us to pay particular attention when declaring the relationship
between socio-demographic attributes and disease outcomes in
such a rapidly changing pandemic setting as that of COVID-19.

Vaccination
A completed COVID-19 vaccination series is correlated with

decreased likelihood for infection (Bernal et al., 2021). With
regard to Wave-3, our findings support existing research, particu-
larly in the Northeast (where vaccination rates were high), the
Southwest, and the Central States. However, the results for the
Gulf States during Wave-3 and the Rocky Mountain region during
Wave-4, show areas where vaccination had a surprising positive
association with the number of COVID-19 infections (Figure 2).
However, these areas had a negative association between vaccina-
tion and CFR due to COVID-19 highlighting the vaccine’s efficacy
in preventing severe infection, but this might also have been the
result of better prevention of infection in these areas (Figure 3). 

Other social factors
Literature on the early part of the pandemic often pointed out

that areas with higher population densities had higher infection
rates (Sy et al., 2020). In New York City, for example, Whittle and
Diaz-Artiles (2020) found that increasing the population density
by 10,000 people per km2 was associated with a 2.4% increase in
the COVID-19 rate. Our results confirm this result by finding a
strong positive association between the number of COVID-19
cases and the population density in New York City and much of the
Northeast during Wave-1 (Figure 2). In addition, existing research
has highlighted the correlation between lack of health insurance on
the one hand and increased disease burdens, infections, and deaths
on the other (Grey II et al., 2020; Garber 2021). Our study results
agree as we found a positive association between lack of insurance
and the number of infections in the Northeast and Rocky Mountain
states during both Wave-1 and Wave-2. However, in these same
regions, the relationship between uninsured and CFR was negative
during Wave-2 (Figure 3). Furthermore, by Wave-3, most counties
had a negative relationship between uninsured and COVID-19

infection (Figure 2). These findings are surprising, as they point to
a reversal in the previous trends reported by existing research.

Our study provides some context with respect to the spatial
variation with COVID-19 disease burden but did not tease out all
the nuances in the spatial relationships between SDHs and the
COVID-19 pandemic. GWR can reveal spatial patterns where
diverse populations have felt a disproportionate impact of disease
occurrence and severity, in turn leading to more accurate and spe-
cific public health policies that can target the most severely
impacted populations as they change with time. While the GWR
models used in this study significantly improved upon the OLS
models, future studies could aim to replicate these results using
MGWR, which has seen improved accuracy in COVID-19 studies,
compared to standard GWR (Mollalo, Rivera & Vahabi, 2021). 

Conclusions
This analysis was focused on unearthing the broad spatial pat-

terns, considering not only existing literature relating SDH with
cases or fatality rate, but also the cultural and political context sur-
rounding COVID-19 at local levels. From the onset of the pandem-
ic, the on-going spread of COVID-19 was discussed relative to its
various SDHs. However, as the pandemic evolved, it became
apparent that there were regional and local variations in the way
that COVID-19 affected diverse populations. To understand these
variations, applying GWR showed an immense geographic varia-
tion for each variable, across each disease wave and between the
number of cases and the CFR. Further research may be conducted
to understand why certain counties experienced a reversal of their
GWR coefficients between waves, perhaps incorporating changes
in the regional political landscape or changes in the values of inde-
pendent variables not included in the present study. Future studies
may utilize GWR and/or MGWR to analyse the impact of emerg-
ing policy and disease response trends. For example, these
approaches could be used to see how the rollout of the “under-5”
vaccination campaign affects the severity and infectivity for this
younger age group, or how the removal of vaccine mandates can
impact infection rates after the Omicron wave. Considering shift-
ing pandemic response and policies across various geo-political
scales, regression analyses can continue to provide information on
the changing spatiotemporal dimensions of COVID-19 infection
and severity as related to SDH.
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