
Abstract
Antimicrobial resistance (AMR) is a global major health con-

cern. Spatial analysis is considered an invaluable method in health
studies. Therefore, we explored the usage of spatial analysis in
Geographic Information Systems (GIS) in studies on AMR in the
environment. This systematic review is based on database search-
es, a content analysis, ranking of the included studies according to
the preference ranking organization method for enrichment evalu-
ations (PROMETHEE) and estimation of data points per km2.
Initial database searches resulted in 524 records after removal of
duplicates. After the last stage of full text screening, 13 greatly
heterogeneous articles with diverse study origins, methods and
design remained. In the majority of studies, the data density was
considerably less than one sampling site per km2 but exceeded
1,000 sites per km2 in one study. The results of the content analysis
and ranking showed a variation between studies that primarily
used spatial analysis and those that used spatial analysis as a sec

ondary method. We identified two distinct groups of GIS methods.
The first was focused on sample collection and laboratory testing,
with GIS as supporting method. The second group used overlay
analysis as the primary method to combine datasets in a map. In
one case, both methods were combined. The low number of arti-
cles that met our inclusion criteria highlights a research gap.
Based on the findings of this study we encourage application of
GIS to its full potential in studies of AMR in the environment.

Introduction
Compared to other recent large-scale problems, such as the

COVID-19 pandemic, antimicrobial resistance (AMR) is regarded
a long-term issue, with more severe effects (Harring et al., 2021).
The modern use of antibiotics was developed during the last
decades of the nineteenth century and the first half of the twentieth
(Gould, 2016; Nicolaou and Rigol, 2018). From 1937 and
onwards the development of natural and synthetic antibiotics
exploded. The enormous benefits from the ability to cure bacterial
infections resulted in the paramount use of antibiotics, not only for
treatment, but also as a prophylactic tool in both medicine and ani-
mal husbandry. At the same time, high concentrations of antibi-
otics released from anthropogenic and agricultural activities can
also act as drivers for the development of antibiotic resistant
microbial populations (Martinez, 2009; Davies & Davies, 2010;
Holmes et al., 2016).

Transmission and dissemination of antibiotic resistance (AR)
in the environment can occur over large geographical areas
(Singer et al., 2006). A common route for antibiotics and for
antibiotic resistant bacteria to enter the environment is through
wastewater contaminations from hospitals or intense farming
(Baquero et al., 2008). Knowledge of the association between
anthropogenic AR in natural ecosystems and possible sources is
still scarce (Bueno et al., 2017), and there is a need for multidis-
ciplinary collaboration to find ways to mitigate antibiotic contam-
ination in natural environments (Bueno et al., 2021). Recent AR-
research has rather focused on resistant phenotypes than on trans-
mission routes that could explain the influence of anthropogenic
activity on natural ecosystems (Miller et al., 2020).

Spatial methods, especially Geographic Information Systems
(GIS), have been described as an “invaluable resource for epi-
demiological research” (Galvin et al., 2013), aiding the under-
standing of the dynamics of pollution and the development of AR
in natural ecosystems (Arya et al., 2013). Spatial statistics, GIS
and mathematical modelling can help to determine AR-patterns
and high-risk areas (Singer et al., 2006). The burden of AMR is
expected to be unevenly distributed geographically. Therefore,
there is a need for development of efficient spatial analysis-tools
to study its development (Chique et al., 2019; Luz et al., 2022).
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The aim of this systematic review is to document how spatial
methods have been used to study AMR in the environment, identi-
fy commonalities and discuss how the use of GIS methods can be
further developed to gain better understanding of AR in natural and
semi-natural ecosystems.

Materials and Methods
We conducted a systematic review with focus on the use of spa-

tial methods for studies of AMR in natural ecosystems. Our formu-
lation of the inclusion criteria based on population, exposure, com-
parator, outcome and study design (PECOS) (Morgan et al., 2018)
was the following items: Scientific studies with spatial analysis as
an essential research method (S) on the occurrence (E) of AMR (O)
in the environment (P) investigating location as a factor (C). An ini-
tial database search was performed on 4 January 2021, comple-
mented by updated searches on 21 September 2021, 14 January
2022 and 26 October 2022. All searches followed the same proce-
dure. The databases searched were ProQuest©, PubMed©, Scopus©
and Web of Science©. The search terms were the following.

ProQuest©

TI (“antibiotic” OR “antimicrobial” OR “AMR” OR “resistant
bacteria”) AND (TI (“GIS” OR “geographic information system”
OR “geographical” OR “spatial analysis” OR “spatio-temporal”
OR “point-source”) OR AB (“GIS” OR “geographic information
system” OR “geographical” OR “spatial analysis” OR “spatio-
temporal” OR “point-source”) OR IF (“GIS” OR “geographic
information system” OR “geographical” OR “spatial analysis” OR
“spatio-temporal” OR “point-source”)) AND (TI ( “environment*”
OR “natur*” OR “ecolog*” ) OR AB ( “environment*” OR
“natur*” OR “ecolog*”) OR IF (“environment*” OR “natur*” OR
“ecolog*”)).

PubMed©

(“antibiotic” [Title] OR “antimicrobial” [Title] OR “resistant
bacteria” [Title]) AND (“GIS” [Title/Abstract] OR “geographic
information system” Title/Abstract] OR “geographical”
[Title/Abstract] OR “spatial analysis” [Title/Abstract] OR “spatio-
temporal” [Title/Abstract] OR “point-source” [Title/Abstract] OR
“GIS” [Text Word] OR “geographic information system” [Text
Word] OR “geographical” [Text Word] OR “spatial analysis” [Text
Word] OR “spatio-temporal” [Text Word] OR “point-source” [Text
Word]) AND (“environment*” [Title/Abstract] OR “natur*”
[Title/Abstract] OR “ecolog*” [Title/Abstract] OR “environ-
ment*” [Text Word] OR “natur*” [Text Word] OR “ecolog*” [Text
Word]).

Scopus©

TITLE (“antibiotic” OR “antimicrobial” OR “AMR” OR
“resistant bacteria”) AND TITLE-ABS-KEY ((“GIS” OR “geo-
graphic information system” OR “geographical” OR “spatial anal-
ysis” OR “spatio-temporal” OR “point-source”) AND (“environ-
ment*” OR “natur*” OR “ecolog*” )).

Web of Science©

TI=(“antibiotic” OR “antimicrobial” OR “AMR” OR “resis-
tant bacteria”) AND TS=(“GIS” OR “geographic information sys-
tem” OR “geographical” OR “spatialanalysis” OR” spatio-tempo-

ral” OR “point-source”) AND TS=(“environment*” OR “natur*”
OR “ecolog*”).

We also manually searched Google Scholar© to find grey liter-
ature. The search results were exported in “.ris”-format from each
database and imported into Zotero 6.0.15 (Digital Scholar, 2022)
to remove duplicates and label according to inclusion and exclu-
sion at each stage.

The first step was title screening, followed by abstract screen-
ing and finally full text inspection. All included records were
required to be peer-reviewed, primary research articles. Our defi-
nition of search terms was based on previous manual searches and
references from primary research articles and systematic reviews.
Supplementary information (Supplementary Materials, Table S1)
provides an overview of all included studies, summarizing the spa-
tial aspects of their studies.

The spatial aspect was the primary focus of this systematic
review. Therefore, we did not examine aspects of sample collection
or microbiological analysis in the individual studies. The spatial
aspect increased the comparability between studies regardless of
whether they were based on sample collection or on secondary
data. As the sampling effort in relation to the size of the study area
is an important feature in spatial research, we estimated the num-
ber of samples per km2 for each study included in the systematic
review (Table 1). If not otherwise stated the size of the study area
was estimated by drawing polygons in ArcGIS Pro 2.8.2 (ESRI,
2021). For general evaluation, we found approximate values to be
sufficient for comparison. To analyse to what degree GIS and spa-
tial analyses had been used we performed a basic content analysis
and defined three quality aspects of spatial analyses: spatial design,
spatial content and spatial implications. For each aspect we speci-
fied two content criteria. The aspect of spatial design is to analyse
if individual studies include descriptions of the two criteria: spatial
methods and study area. The aspect spatial content is describing if
the research output in individual studies includes the two criteria:
maps and spatial results, and the aspect spatial implications
describes if the study is discussing spatial content in the form of
the two criteria: generalisations and recommendations.

All spatial criteria were analysed using an evaluation rubric
where we graded all criteria for all the included studies. The grades
were defined as 1 = criteria mentioned, 2 = criteria mentioned and
explained, and 3 = criteria mentioned, explained and discussed.
The sum of all grades from all six criteria resulted in an overall
score for each study ranging from 0 to 18 (3 aspects with 2 criteria
each equal 6 criteria with a max score of 6×3 = 18). The data from
the evaluation rubric was further analysed with the preference
ranking organization method for enrichment evaluations
(PROMETHEE) as described by Behzadian et al., 2010.
PROMETHEE is a decision-making tool establishing a preferen-
tial structure between alternatives, where a preference function is
used for each criterion. The alternatives are ranked based on the
total score in combination with pair-wise comparisons within each
category. We used this method to establish a ranking among the
included studies based on the individual criterion values for them.
The analysis was performed in R v. 4.1.2 (R Core Team, 2021) and
R Studio v. 2022.07.2 Build 576 (R Studio Team, 2020) using the
package “promethee123” (Angelo Lellis Moreira et al., 2020). To
further address possible differences among the included studies the
ranking of all studies with the PROMETHEE II method was per-
formed in three different scenarios (S) with different weightings
for criteria from the different spatial aspects as follows: (S1) equal
weights for all spatial aspects; (S2) spatial design - weight = 0.15
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& spatial content - weight = 0.15 & spatial implications - weight =
0.20; and (S3) spatial design - weight = 0.10 & spatial content -
weight = 0.15 & spatial implications - weight = 0.25. With this we
wanted to see if it was possible to make stronger disseminations
among the studies based on the level of progress of their spatial
analyses. We regard S1 as a basic GIS analysis with 33.3% of our
evaluation based on each of all three aspects. S2 is a more devel-
oped GIS analysis with 40% emphasis on the possibility to develop
spatial implications, and S3 is most developed with 50% of our
evaluation based on spatial implications.

All included articles were peer-reviewed, high quality studies.
The overall scores and rankings in our systematic review were
used to compare the different studies based on their inclusion and
development of the special aspects of problems with AMR in nat-
ural environments. They are not intended to be used for a qualita-
tive evaluation of the studies as such, but as an attempt to show to
what extent spatial analysis is used at the present research front.

Results
We wanted to find out how spatial methods have been applied

in studies on AMR in the environment with a systematic review
and content analysis of relevant studies. Although spatial methods
have shown useful, these are often not declared as such, or added
only as supplements. Only 13 studies fulfilled the review criteria,
highlighting a research gap for GIS as a tool for analysing spatial
patterns of AMR in the environment. The database searches result-
ed in 524 records after removal of duplicates (Figure 1). The first
two screening stages of titles and abstracts retrieved 45 records for
full text appreciation. After full text screening, 13 articles were
included in the review. Of the 32 articles that were excluded at the
last stage, 22 studies were excluded because they did not include
spatial methods as the primary method in their study design. For
the remaining 10, a spatial component was included in the study,
but was not used as an essential part of the study design  (Figure 1).

For example Yang et al. (2019) included a map for sampled loca-
tions, but they did not spatially modify any data. Servais and
Passerat’s (2009) use of spatial methods was limited to a map on
land use. Hu et al. (2020) referred to land use as a factor but did
not present a map. Yi et al. (2019) included maps added as supple-
ments only, indicating lower significance to the study outcome. In
one instance antimicrobial resistance served as an indicator for
human faecal pollution in natural environments (Kelsey et al.,
2003) while Rousham et al. (2018) described spatial methods but
only as a study protocol and were not included in the final study.

                                                                                                                               Review

Figure 1. Selection process applied for the systematic review on spa-
tial analysis of antimicrobial resistance in the environment. Searching
and screening scheme modified after Haddaway et al. (2018).
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Table 1. Geographical area and sampling sites for 13 articles included in the systematic review on spatial analysis of antimicrobial resist-
ance in the environment.

Authors                                 Geographical location                         Study area                     Sample                     Sampling   Sampling sites 
(Year)                                                                                                       (km2)                            type                       sites (no.)      (per km2)

Agga et al. (2019)                                    Agricultural research facility, Kentucky, USA                   0.02                                              Soil                                              26                         1,069.96
Bueno et al. (2021)                                Minnesota, USA                                                                 i/ii225 180                          Water and sediment                             iii32                        0.00014
Bueno et al. (2022)                                Minnesota, USA                                                                 i/ii225 180                     Study based on estimates
Chique et al. (2019)                               Four counties in Ireland                                                   i/ii14 000                      Study based on estimates
Czekalksi et al. (2014)                           Lake Geneva, Switzerland                                                     i15                                          Sediment                                        22                             1.47
de la Torre et al. (2012)                        European Union                                                                i4 232 040                    Study based on estimates
Ginn et al. (2021)                                   Urban/peri-urban area in La Paz, Bolivia                          i140                                          Aerosol                                          23                             0.16
Kucukdogan et al. (2015)                     Marmara Region, Turkey                                                    67 000        Secondary sample data of manure and soil          10                         0.00015
Miller et al. (2020)                                 Various areas in Minnesota, USA                                    i400 000                              Faecal, wild owls                                 78                         0.00019
Sacristán et al. (2020)                           Parts of Chile                                                                       i600 000                             Faecal, wild felids                                51                         0.00008
Xiang et al. (2018)                                  Peri-urban area outside of Ningbo City, China                 85                                                Soil                                              32                             0.38
Yopasa-Arenas and Fostier (2018)     Brazil                                                                                     i 515 767                     Study based on estimates
Zhao et al. (2020)                                   Peri-urban area outside of Ningbo City, China                 92                                                Soil                                              80                             0.87
iStudy area approximated as it was not stated in the article; iiLarger (macro-level) of two scales. Smaller, micro-level not approximated; iiiHighest number chosen independent of sample type.

INTERO pagine.qxp_Hrev_master  24/05/23  11:27  Pagina 141

Non
-co

mmerc
ial

 us
e o

nly



[page 142]                                                           [Geospatial Health 2023; 18:1168]                                         

Heterogeneous study areas
All included studies were published after 2011. This final set

was heterogeneous with diverse study origins where the United
States of America (USA) (n = 4) and China (n = 2) were the only
countries represented more than once (Table 1). The authors of two
of the included articles used the term “macro” to describe the study
area: Chique et al. (2019) who included four counties in Ireland
and Bueno et al. (2021), whose study covered the State of
Minnesota. Five additional studies fitted the macro-scale defini-
tion: Brazil (Yopasa-Arenas and Fostier, 2018), the European
Union (de la Torre et al., 2012), the Marmara Region of Turkey
(Kucukdogan et al., 2015), different areas in Chile (Sacristán et al.,
2020) and (again) the State of Minnesota (Miller et al., 2020).
Three author groups also studied smaller areas within a larger
“macro” extent: Bueno et al., 2021, 2022 and Chique et al., 2019.
The remaining five articles used considerably smaller study areas.

The type of natural media sampled varied among the included
studies. Three studies sampled soil, two wild animal excrement,
two sediments, one aerosols and one water (Table 1). One of the
studies included data on manure and soil contamination
(Kucukdogan et al., 2015). The number of sampling sites per km2

was mostly below one km2 (Table 1). The largest number of sam-
pling sites per km2 was found in the smallest study area, monitor-
ing an agricultural research facility (Agga et al., 2019). The lowest
number of sampling sites per km2 was in a mid-sized study of water
bodies in Minnesota (Bueno et al., 2021). Several authors collected
multiple samples per sampling site; e.g., Zhao et al. (2020) collect-
ed 5-8 sub-samples per site. Four publications did not include sam-
ple collection (Bueno et al., 2022; Chique et al., 2019; de la Torre
et al., 2012; Yopasa-Arenas and Fostier, 2018).

Variation of spatial methods
The methodology of the studies varied considerably (Table

S1). Seven studies spatially analysed data from sample collection.
Of these, Bueno et al. (2021) guided sampling by spatial analysis.
Three studies were based on estimates of livestock-related pollu-
tion and one publication used various datasets in an exploratory
study (Chique et al., 2019). Kucukdogan et al. (2015) used sec-
ondary sample data and estimated variables. The study locations at
the smaller scales were peri-urban (n=3), urban (n=1), situated in
the vicinity of urban surface waters (n=1), in a setting of wild ani-
mal sanctuaries (n=1) and an enclosed agricultural research facility
(n=1). Several articles described possible influencing factors with
risk for confounders, such as currents and hydrodynamic transport
in a lake, which are difficult to predict (Czekalski et al., 2014),
water flow dynamics differing between water bodies (Bueno et al.,
2021) and the transport of aerosols that fluctuates depending on
local variations (Ginn et al., 2021). Kucukdogan et al. (2015)
argue that subjective decisions on ranking criteria for risk models
have an uncertain effect. 

Insufficient data were often mentioned as a study limitation
(Bueno et al., 2021, 2022; Chique et al., 2019; Czekalski et al.,
2014; de la Torre et al., 2012; Ginn et al., 2021; Kucukdogan et al.,
2015; Yopasa-Arenas and Fostier, 2018; Zhao et al., 2020). In
absence of nation-wide data on antimicrobial use, estimates were
commonly based on assumptions, (de la Torre et al., 2012), while
in one case there was a lack of accurate data for every parameter
used in a calculation model (Kucukdogan et al., 2015). Further, in
some papers, there was not sufficient access to livestock data
(Yopasa-Arenas and Fostier, 2018) or on the use of fertilizer in
each field patch (Zhao et al., 2020). Results at the macro-scale

were considered descriptive (Bueno et al., 2021) or limited and in
need of further validation with field data (Bueno et al., 2022). de
la Torre et al. (2012) concluded that their study allowed for quali-
tative assessment due to limited data for the whole European
Union, while Ginn et al. (2021) regarded their results observation-
al and Miller et al. (2020) saw the low sample size as a hindrance
for detecting spatial patterns.

The main reason for applying a spatial GIS-method was often
to give a visual impression of the spatial distribution of sample
sites and landscape features of a study area. In one case, the
overview map was based on satellite imagery (Zhao et al., 2020).
When the spatial distribution was analysed, the aim was to identify
spatial patterns using heat or cluster maps identifying point-density
(Miller et al., 2020). Weighted overlay analyses were often used to
combine reclassified parameters in a map (Bueno et al., 2022; de
la Torre et al., 2012; Kucukdogan et al., 2015; Yopasa-Arenas and
Fostier, 2018). There were also common attempts to use interpola-
tion methods to fill in value gaps between sampling sites with the
aim to make a model of the spatial distribution of AMR in an entire
study area (Agga et al., 2019; Bueno et al., 2021; Czekalski et al.,
2014; Xiang et al., 2018). Buffer zones around sampling sites were
used for descriptions of landscape features in the study area
(Sacristán et al., 2020) or to generate an input layer for an overlay
analysis (Zhao et al., 2020).

Antimicrobial pollution and the environment
The general result emerging from the included studies was that

there existed significant positive associations between anthro-
pogenic activities, antimicrobial pollution and the presences of
antimicrobial genes in natural ecosystems (Table S1). This was
true both for studies relying on empirical data on antimicrobial
pollution from soil, faecal or water samples as well as for studies
estimating concentrations of antimicrobials based on register data
(Table S1). Three studies focused on continuous pollution gradi-
ents based on large-scale land use patterns. Ten studies assessed
the effects from antimicrobial pollution from point sources. Those
that not referred to watershed pollution connected to human activ-
ities (Xiang et al., 2018; Zhao et al., 2020) and non-point manure
pollution from livestock (de la Torre et al., 2012). Selective expo-
sure in nature due to antibiotic pollution was mentioned in all arti-
cles, among these were increasing stress on ecosystem safety (de
la Torre et al., 2012), toxic effects and degradation of soil and
water quality (Kucukdogan et al., 2015) and risk for worsened soil
security (Zhao et al., 2020).

The result of the content analysis was analogous with above
findings for each study. Of all spatial categories “Study Area” and
“Maps” were the only ones where no study reached the highest
grade. The totals by category confirmed that “Generalisation” and
“Recommendations” were the least mentioned while “Methods”
and “Results” scored the highest. The categories “Generalisation”
and “Recommendations” were also the only ones that registered
zero points. Five studies with the highest score in the content anal-
ysis reached above 13 out of the18 possible points (Table 2).

Discussion
“GIS” or “spatial analysis” in the title or abstract were strong

indicators for inclusion in this systematic review, but they were
rarely found. The selection process resulted in a large proportion of
exclusions in the last step of full text screening. However, four arti-
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cles allowed for certain inclusion already at the “title and abstract”-
stage (Chique et al., 2019; de la Torre et al., 2012; Kucukdogan et
al., 2015; Yopasa-Arenas and Fostier, 2018). Our first finding was
that only a few studies, compared to the overall number of environ-
mental studies on AMR, applied GIS as the main research method.
As only 13 studies met our inclusion criteria, we considered it dif-
ficult to assess the publication bias. Nevertheless, we have confi-
dence in the outcome based on a thorough manual search for grey
literature in Google Scholar with the same search terms, which did
not show any unpublished studies on preprint servers.

Application of GIS
Results from our content analysis revealed a large gap between

the highest and lowest ranked studies in the PROMETHEE-analy-
sis. Our attempt was to determine to what degree GIS was applied
in each study. The ranking order remained similar independent of
how we weighted the three categories: Design, Content and
Implications. We found it fair to expect formulation of explanation
and discussion of the spatial design, for example in the form of
considerations related to the size of the study area, but the included
studies neither discussed these aspects nor the spatial content and
the sub-group “maps” in detail. Implications as spatial category
had the lowest summed score suggesting that spatial methods are
rarely the main research method with none or only brief attempts
at formulating any generalisations or recommendations. However,
the spatial implications category was also the one with the largest
variation among the included studies indicating large differences in
competence in spatial analysis among different researchers. 

In general, with only 13 included articles in this systematic
review, the diverse application of spatial analyses indicates a great
potential for GIS in studies of AR in natural and semi-natural
ecosystems. We found two distinctive groups among the included
studies, i) laboratory detection of antibiotics and AR complement-

ed with GIS-methods (Agga et al., 2019; Bueno et al., 2021;
Czekalski et al., 2014; Ginn et al., 2021; Miller et al., 2020;
Sacristán et al., 2020; Xiang et al., 2018; Zhao et al., 2020), and ii)
GIS as the main method by means of areal overlay analysis (Bueno
et al., 2022; Chique et al., 2019; de la Torre et al., 2012;
Kucukdogan et al., 2015; Yopasa-Arenas and Fostier, 2018). In the
first group, GIS was used to visualize laboratory results, in maps
and point distributions used for interpolation (Agga et al., 2019;
Bueno et al., 2021; Czekalski et al., 2014; Xiang et al., 2018) and
in point-density methods (Bueno et al., 2021; Zhao et al., 2020). In
general, data cannot cover each point in a geographic area, espe-
cially not in large areas. While values at the exact sample location
were confirmed, interpolation values returned estimates based on
known data. When interpolation was applied in the studies above,
it was not described in any detail. Interpolation maps were often
found in supplementary material, again suggesting that spatial
methods were not considered as the primary method.

The second group used overlay analyses combining several
data layers to generate risk-estimates or probability maps for accu-
mulation of antibiotic resistance bacteria. Input data came from
secondary sources, such as cattle density, soil types or water flow
direction. Overlay analysis in these studies was conducted to gen-
eralise findings for medium to large geographical areas. Bueno et
al. (2021) combined the approaches of both groups by designing
sampling at the micro-level based on information from the larger
macro-level. In their discussion, Bueno et al. (2021) described
results from the “macro”-level as descriptive, owing to the uncer-
tainty of sample data in comparison to the extent of the study area.
In practice, probability maps could be created based on estimates
to be verified or falsified by control-sampling in the field. This
procedure would allow for calibration of the input data for overlay
analysis and lead to improved probability maps, but this approach
is also time-consuming.
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Table 2. Content analysis of the 13 included articles in the systematic review based on six different criteria categorized under one of
three spatial aspects.

Article                                    Methods   Study area    Maps     Results     Gen.      Rec.   Total score     Design        Content     Implication
                                                                                                                                                                         (S1)             (S2)              (S3)

Bueno et al., 2021                                     3                       2                     2                  3                  3                2                  15                  0,9445                0,9585                  0,9585
Kucukdogan et al., 2015                           3                       2                     2                  3                  2                3                  15                  0,9445                0,9585                  0,9583
Zhao et al., 2020                                        2                       2                     2                  3                  3                3                  15                  0,8332                0,9168                  1,0665
Bueno et al., 2022                                     2                       2                     2                  3                  3                2                  14                  0,6388                0,6835                  0,7750
Yopasa-Arenas and Fostier, 2018          3                       1                     2                  3                  3                2                  14                  0,5831                0,6335                  0,7416
Chique et al., 2019                                    3                       2                     2                  1                  2                2                  12                  0,2776                0,3002                  0,2417
Miller et al., 2020                                      2                       2                     2                  2                  1                2                  11                  -0,0555              -0,0583                -0,0832
Czekalski et al., 2014                                2                       2                     2                  2                  2                0                  10                  -0,2222              -0,2585                -0,3332
de la Torre et al., 2012                             2                       2                     2                  1                  1                1                   9                   -0,4167              -0,4419                -0,5249
Ginn et al., 2021                                        2                       2                     2                  2                  0                1                   9                   -0,4167               0,4919                 -0,6250
Agga et al., 2019                                         1                       1                     2                  3                  0                0                   7                   -0,8886              -0,9668                -0,9669
Xiang et al., 2018                                       1                       1                     1                  3                  1                0                   7                   -1,0832              -1,0918                -1,0418
Sacristán et al., 2020                                2                       1                     1                  2                  1                0                   7                   -1,1388              -1,1418                -1,1666
Sum of grades                                          28                     22                   24                31                22             18                                                                                                     
Gen=generalization; Rec=recommendations. Grading of criteria are based on three levels (from basic to comprehensive).The Total Score is equal to the sum of all grades for each study. Ranking is based on the
PROMETHEE method using three different scenarios. S1 equal weights for all spatial aspects including methods and study area; S2 = spatial design including. maps and results - weight = 0.15, spatial content - weight
= 0.15; spatial implications - weight = 0.20; S3 spatial design - weight = 0.10, spatial content - weight = 0.15; spatial implications - weight = 0.25. The combined grades of all studies are summed up for each category.
The highest possible sum is 39 for every category.
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Complexity and confounding factors
Environmental studies of AMR have been described as com-

plex, with a risk of flawed study design by not taking into account
possible confounders (Singer et al., 2006) especially at moderate
to larger scales (Bueno et al., 2017). The examined environmental
media also has spatial implications (Bueno et al., 2017, 2018; Luz
et al., 2022) adding further complexity. Concentration of bacteria
is influenced by the environmental media in which they reside,
where water and soil have different characteristics. Dilution in
combination with predation and antibiotic degradation in aquatic
environments possess a natural resilience capacity (Goulas et al.,
2020). The density of bacteria, and therefore the detection by mea-
surement, is higher in soils and sediments bacterial movement is
lower. Density is also higher in sewage water compared to other
types of water (Kümmerer, 2009). The study of Bueno et al. (2021)
sampled both soil and water to document long-term effects in soil
samples and the expected short-term contamination in water sam-
ples. Beyond the scope of this study, factors that influence spatial
analyses, e.g., buffer size and distances of sample location to the
point source of contamination need to be examined with regard to
possible confounding.

Suitable data density and recommendations
Even if data density varied greatly among the included studies,

estimates of data points per km2 (Table 1) should bring about
reflections on data density. However, data density must not have a
direct connection to study quality as methods and study settings
differed in the papers. Two out of four articles with the highest
ranking for content (Table 2) were also among the articles with
lowest data density. If generalisation is the preferred outcome, rep-
resentative sample data that merit this scope are crucial. It is
always important to reflect on whether or not data are suitable in
relation to the study area, e.g., obtainable data should be tested sta-
tistically in relation to the hypothesised outcome. An article by
Young et al. (2018) can pose as such an example from studies on
blue carbon ecosystem by analysing the statistical power at differ-
ent sample sizes associated with landscape variables. The power of
association of sample values to landscape use should preferably be
tested at different geographical scales. Of the included studies in
this systematic review, only one used a statistical test to compare
associations between variables based on data estimated from
buffers of different sizes (Zhao et al., 2020).

A set of recommendations based on this review are sum-
marised in Table 3. We feel that maps and considerations regarding
the size of the study area are central components of any spatial
analysis that need to be satisfyingly represented both in the meth-

ods section and as spatial results. Maps can present data in many
ways (although at times misleading). Decision on study area size is
a conscious geographical delimitation that ought to be based on the
data intended to be used. We think that a study design that a priori
relates the data available to the study area, may guide decisions
towards appropriate spatial methods and tools.

Conclusions
We identified two distinctive groups of spatial analysis. One

using areal overlay analysis of relevant data layers to generate risk
maps and one focusing on detection of AMR and antimicrobial
pollution in environmental samples. In the latter group we identi-
fied GIS as a secondary method to analyse patterns of point values
estimated from environmental samples. A combination of both
approaches, demonstrated by one of the included studies, allows
for a synthesis of distributional knowledge of AMR. Initial GIS
analysis based on distributions of risk factors can guide sample
collection or AMR-surveillance, which in turn can lead to further
calibration of risk maps. Spatial methods are important, but still
underexplored in the studies of AMR. With our set of recommen-
dations based on a synthesis of studies in this field (Table 3) and
our content analysis, we encourage application of GIS in studies of
AMR in the environment.
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ronment, published between 2012-2022.
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