
Abstract
This research proposes a ‘temporal attention’ addition for

long-short term memory (LSTM) models for dengue prediction.
The number of monthly dengue cases was collected for each of
five Malaysian states i.e. Selangor, Kelantan, Johor, Pulau Pinang,
and Melaka from 2011 to 2016. Climatic, demographic, geograph-
ic and temporal attributes were used as covariates. The proposed
LSTM models with temporal attention was compared with several
benchmark models including a linear support vector machine
(LSVM), a radial basis function support vector machine
(RBFSVM), a decision tree (DT), a shallow neural network (S-
ANN) and a deep neural network (D-ANN). In addition, experi-
ments were conducted to analyze the impact of look-back settings
on each model performance. The results showed that the attention

LSTM (A-LSTM) model performed best, with the stacked, atten-
tion LSTM (SA-LSTM) one in second place. The LSTM and
stacked LSTM (S-LSTM) models performed almost identically
but with the accuracy improved by the attention mechanism was
added. Indeed, they were both found to be superior to the bench-
mark models mentioned above. The best results were obtained
when all attributes were included in the model. The four models
(LSTM, S-LSTM, A-LSTM and SA-LSTM) were able to accu-
rately predict dengue presence 1-6 months ahead. Our findings
provide a more accurate dengue prediction model than previously
used, with the prospect of also applying this approach in other
geographic areas. 

Introduction
Dengue, a common tropical disease affecting millions of peo-

ple, is heavily influenced by rainfall, temperature, relative humid-
ity and rapid urbanization. The virus that causes infection is
spread by various mosquito species, with the main vector being
Aedes aegypti. According to the World Health Organization
(WHO), dengue infections have increased globally, with 50-100
million new infections occurring each year in more than 70 coun-
tries (WHO, 2023). Malaysia experienced an unprecedented out-
break of dengue infections from 2014 to 2016, with a large
increase in the number of cases (Suppiah et al., 2018). 

Previous research (Appice et al., 2020; Bogado et al., 2020;
Ferdousi et al., 2021; Mussumeci and Coelho, 2020; Nayak and
Narayan, 2019) used statistical and machine learning models, with
varying results for time-series prediction. In general, dengue fever
prediction models make use of covariates to account for the num-
ber of cases forecast. Climate has both direct and indirect effects
on dengue transmission, distribution, vector breeding and estab-
lishment (Gubler et al., 2001; McMichael et al., 2006).
Temperature and rainfall work interdependently influencing vec-
tor dynamics. In addition, temperature influences the relative
humidity indirectly by regulating evaporation. These factors affect
the availability of breeding sites for the Aedes vector. The relation-
ship between rainfall and dengue outbreaks has been shown in
previous studies (Kolivras, 2010; Polwiang, 2020). Many factors,
such as climatology, demography, socioeconomics, vector ecology
and geography have been studied as covariates in dengue predic-
tion systems (Altassan, 2020; Anno et al., 2019; Jain et al., 2019,
Jayaraj et al., 2019; Nan et al., 2018). 

Various statistical and machine learning models have been
used for the prediction of dengue fever outbreaks. Linear regres-
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sion (LR) (Anggraeni et al. 2020) and autoregressive integrated
moving average (ARIMA) (Promprou et al. 2006) are commonly
used, but nonlinear regression models and machine-learning mod-
els, such as Naive Bayes (Fathima et al., 2011), XGBoost
(Methiyothin & Ahn 2022), generalized additive models (Baquero
et al., 2018), random forests (Zhao et al., 2020), neural networks
(Zhao et al., 2020), manifold learning (Souza et al., 2022) and
fuzzy logic (Idris et al., 2018) have also been developed and tested.
These models use different predictors such as climate data, histor-
ical dengue cases, vegetation, rainfall, air temperature, population
counts, income inequality and education level. Researchers have
demonstrated the accuracy and success of modelling for the pre-
diction of dengue fever outbreaks in different regions, e.g.,
Cousien et al. (2019), Yuan et al. (2019), Siregar and Makmur
(2019), Jain et al. (2019), and Zhao et al. (2020). 

Deep learning has emerged as a powerful machine learning
technique for predicting dengue fever outbreaks. Specifically, the
long short-term memory (LSTM) model, a type of recurrent neural
network (RNN), has shown promising results in several studies.
For instance, Bogado et al. (2020), trained LSTM models using
synthetic data generated from model predictions showing that
LSTM models may provide accurate predictions of dengue cases.
However, the authors suggested that additional parameters such as
demographic, geographic, and environmental variables should be
included to better characterize potential epidemic’s behaviour
across regions. Similarly, Xu et al. (2020) developed a LSTM-
based dengue fever prediction model using monthly dengue cases
and climate data and showed that the LSTM model outperformed
previously published forecast models, while Mussumeci and
Coelho (2020) compared different machine-learning models,
including LSTM, for predicting weekly dengue incidence in 790
Brazilian cities revealing that LSTM outperformed other models,
such as the least absolute shrinkage and selection operator
(LASSO) and random forest. However, Xu et al. (2019) developed
an LSTM-based dengue fever prediction model for 20 important
Chinese cities using dengue cases and local meteorological data
from 2005 to 2018 that showed that the LSTM model with only
local data performed worse than the use of susceptible infected
recovered (SIR) data. 

Transfer learning techniques can be used to improve the LSTM
model for monthly dengue case prediction. Although deep learn-
ing, particularly the LSTM model, has shown promise in predict-
ing dengue fever outbreaks, incorporating additional parameters
such as demographic, geographic, and environmental variables
could further improve the accuracy of these models. Importantly,
the underlying processes of dengue fever occurrences are neither
purely linear nor purely nonlinear in nature. They typically include
both linear and nonlinear patterns. As a result, a robust prediction
model is needed to accurately model such complex structures.
Furthermore, predicting dengue cases is difficult due to the multi-
faceted interplay of epidemiological and environmental determi-
nants. This intricate, causal scenario manifests itself in the varia-
tion of incidence patterns across geographic areas. The frequent
absence of long-term historical records of disease incidence, as
well as environmental risk factors, further complicates statistical
analysis. Existing models for dengue prediction based on time-
series are still limited. Although most of the models (both statisti-
cal and deep learning ones) are ‘user friendly’ and have good inter-
pretability by limited data and low training cost, they lack the abil-
ity to process long sequences (Mussumeci & Coelho, 2020; Men et
al., 2021). While no single solution exists to address all of these

issues, deep learning models have recently proven effective for
computer vision tasks (convolutional neural networks) and time-
series data (such as RNN). However, deep learning models with
standard architectures generally fail to remember information in
long time-series data. Deep learning with attention, according to
studies (Lim & Zohren 2021), can provide a compelling case for
time-series prediction. Attention is a method of selecting variables
that are useful for forecasting. The aim of attention is to select use-
ful information from among the various feature time-series data in
order to predict the target time-series.

This research aimed to design, develop and validate a dengue
prediction model based on LSTM with a novel attention mecha-
nism. The specific objectives were to: i) develop a model based on
LSTM for the prediction of monthly dengue cases; ii) design an
attention mechanism for the LSTM that can boost the performance
of dengue prediction; iii) validate the models and evaluate their
predictive capability for 1-6 months ahead; and iv) evaluate the
performance of the prediction models with different attribute
groups i.e. climatic, geographic and temporal ones.

Materials and Methods
This research developed a temporal attention mechanism for

LSTM models to predict dengue cases in five Malaysian states.
The attention mechanism was tested using a single LSTM layer as
well as stacked LSTM layers. The models were compared to other
benchmark models such as LSVM, RBFSVM, DT, S-ANN, and D-
ANN. The effects of attribute selection were also tested for the pro-
posed models in the sensitivity analysis. Various look-back values
were used to demonstrate the models’ ability to predict dengue
cases several months in advance and the findings validated the pro-
posed models’ ability to predict dengue cases.

Study area
Malaysia is a Southeast Asian country located between 1° to 7°

N and 99° to 105° E. It has a total area of 131,587 km2 and is divid-
ed into two regions by the South China Sea: Peninsular Malaysia
and East Malaysia (Sabah, Sarawak and Labuan or Malaysian
Borneo). Figure 1 shows the study area that included the five
Malaysian states Selangor, Kelantan, Johor, Pulau Pinang and
Melaka.

Malaysia’s geographical location makes it prone to tropical
diseases. Its floodplains, hills and coastline zones have a humid
tropical environment with temperatures ranging from 21°C to
32°C. The two rainy seasons are caused by the Northeast Monsoon
(NEM) from October to March (Moten et al., 2014) and the
Southwest Monsoon (SWM) from May to September (Diong et al.,
2015). The month of April is a transitional time with significant
rains (Wong et al., 2009). Dengue fever is more common in
Selangor, Kelantan, Johor, Pulau Pinang and Melaka than in other
states. According to the Malaysian Ministry of Health (MoH),
Selangor is responsible for 90% of the national number of dengue
cases (MoH, 2015). 

The first cases of dengue fever in the country were reported in
1902. In the 1970s, dengue became a public health concern with
the first major outbreak in 1973 (Mohd-Zaki et al., 2014; Shepard
et al., 2013). Between 2000 and 2014, the number of cases per
100,000 increased from 32 to 361. The majority of dengue patients
are between the ages of 15 and 49 and 80 % occur in urban areas
(MoH, 2015, Figure 1).

                   Article
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Data sources

Dengue cases
The MoH, Malaysia is the original source of the dengue data

but the weekly, state-level data from January 2010 to December
2016 were acquired from the Malaysia Open Data
(http://www.data.gov.my) for the five states under study (Figure 2).
We focused on the number of deaths due to dengue. The total mor-
tality within each state, given by week, were aggregated into
monthly numbers. 

Meteorological and geographic attributes
In this research, the explanatory variables were extracted from

three sources: climate data (rainfall and land surface temperature),
demographic data (population density) and geographic data (digi-
tal elevation model (DEM), vegetation index, road network, water
bodies and type of land cover) (Table 1). These variables have been
used in various dengue prediction studies around the world and
shown to have a positive or negative impact on the number of
dengue cases within a geographic region. 

Data pre-processing 
The data were acquired in different formats and needed prepa-

ration that included transformation from one format to another, fil-
tering and cleaning, pre-processing for tabular, raster and vector
datasets. The preparation also included data registration to match
the datasets geographically and temporally. 

Prediction of the number of dengue cases 

LSTM 
Traditional feed-forward neural networks are effective with

regard to learning (Lim & Zohren, 2021). However, they are less
useful for modelling. RNNs were thus built with feedback connec-
tions to explicitly include model sequences (Hochreiter and
Schmidhuber, 1997) and are indeed more biologically plausible
than feed-forward neural networks. The advantage of using feed-
back connections in RNNs is that they provide the model with a
memory of previous activations. As a result, such models can learn
the temporal dynamics of sequential data, but they continue to
have drawbacks, such as vanishing or exploding gradients. To

address this problem, Hochreiter and Schmidhuber (1997) pro-
posed LSTM. Memory blocks, which consist of self-connected
memory cells and three multiplicative units replace hidden units in
LSTM (input, output and forget gates). The gates allow reading
writing and resetting operations in the memory block and control
its behaviour. Figure 3 depicts a diagram of a single LSTM unit. 
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Figure 1. Geographic location of the study area in Peninsular
Malaysia.

Table 1. Data sources and details used to extract attributes for the dengue prediction models.

Variable                          Data                          Period       Spatial resolution            Temporal resolution                       Source

Dependent                              Dengue (no. cases)      2011-2016                State-level                                        Monthly                                  Malaysia Open Data
                                                                                                                                                                                                                                        (http://www.data.gov.my)
Climate                                     Rainfall (mm)                2011-2016                0.25 degree                                          Daily                          CMORPH Climate Data Record*
                                                   LST (°C)                          2011-2016                0.05 degree                                       Monthly                                              MODIS 
                                                                                                                                                                                                                                        (https://www.modis.com)
Geographic                              Vegetation index            2011-2016                0.05 degree                                       16-days                      MODIS (https://www.modis.com) 
                                                   DEM                                        na                   30 arc-seconds                                         na                                 Diva GIS** (CGIAR SRTM)
                                                   Land cover                             na                   30 arc-seconds                                         na                                     Diva GIS** (GLC2000)
                                                   Road networks                      na                               na                                                     na                     Diva GIS** (Digital Chart of the World)
                                                   Water bodies                         na                               na                                                     na                     Diva GIS** (Digital Chart of the World)
Demographic                          Population (no.)            2011-2016                State-level                                          Yearly                                    Malaysia Open Data 
                                                                                                                                                                                                                                        (http://www.data.gov.my)
LST, land surface temperature; DEM, digital elevation model; na, not applicable; *Satellite-generated precipitation data from the U.S. National Oceanic and Atmospheric Administration (NOAA)
(https://www.ncei.noaa.gov/products/climate-data-records/precipitation-cmorph); **Diva GIS (https://diva-gis.org/).
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Let ct be the sum of inputs at time step t and its previous time
step activations, the LSTM updates for time step i given inputs xt,
ht-1 and ct-1 (Donahue et al., 2015):

it = σ(Wxi. xt + Whi. ht−1 + Wci. ct−1 + bi)                              (Eq. 1)

ft = σ(Wxf. xt + Whf. ht−1 + Wcf. ct−1 + bf)                               (Eq. 2)

ct = it. tanh(Wxc. xt + Whc. ht−1 + bc) + ft. ct−1                                       (Eq. 3)

ot = σ(Wxo. xt + Who. ht−1 + Wco. ct + bo)                               (Eq. 4)

ht = ot. tanh(ct)                                                                      (Eq. 5)

where i signifies the input gate; f the forget gate; c the sum of
inputs; o the output gate; σ is an element-wised nonlinearity such
as a sigmoid function; W the weight matrix; bi the input bias vector;
xt the input (all attributes) at time step t; ht-1 the hidden state vector
of the previous time step (target variable - dengue cases); and tanh
the activation function based on the hyperbolic tangent function. 

In these equations, xt is the input at time t; ht−1 the hidden state
at time t-1; and ct−1 the cell state at time t-1. The LSTM cell has sev-
eral gates, which are responsible for controlling the flow of infor-
mation. The input gate it controls how much of the input is let into
the cell state; the forget gate ft controls how much of the previous
cell state is retained; output gate ot controls how much of the cell
state is used to compute the output; and the cell state ct is updated
based on the input and previous cell state. Finally, the hidden state
ht is computed using the updated cell state and the output gate.

The ‘attention’ mechanism 
Attention is a relatively new approach to improve deep learn-

ing models for better modelling of long-term dependencies.
Attention mechanisms allow for a more direct dependence
between the state of the model at different points in time (Raffel &
Ellis, 2015). Figure 4 illustrates the concept of the temporal atten-
tion used in this research. Let a model produces a hidden state ht at
each time step, attention models compute a “context” vector ct as
the weighted mean of the state sequence h by:

                                                                (Eq. 6)

where T is the total number of time steps in the input sequence and
atj a weight computed at each time step t for each state hj. These
context vectors are then used to compute a new state sequence s,
where st depends on st-1, ct and the model’s output at t-1. The
weightings atj are then computed by:

                                      (Eq. 7)

                   Article

Figure 2. Number of dengue cases observed in five Malaysian
states studied during January 2011 and December 2016.

Figure 3. Basic single-cell LSTM.

Figure 4. The proposed temporal attention: the basic working
concept. The module represented by the green box is an LSTM
cell; x is the multiplication operator, xt the input vector; ct the cell
state vector at time t, ht hidden state vector at time t. ct-1 the cell
state vector at time t-1, ht-1 the hidden state vector at time t-1;
tanh the activation function based on the hyperbolic tangent
function; σ the LSTM gates including input, forget and output
gates; αt the attention-focused hidden state representation at
time t, T the number of lookback data points; and C the comput-
ed attention-based cell state vector.
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where a is a learned function which can be thought of as computing
a scalar importance value for hj given the value of hj and the previ-
ous state st-1. This formulation allows the new state sequence s to
have more direct access to the entire state sequence h. Attention-
based RNNs have proven effective in a variety of sequence trans-
duction tasks, including disease prediction (Men et al., 2021), flood
forecasting (Ding et al., 2020), traffic flow prediction (Zheng et al.,
2020) and time series prediction (Li et al., 2019).

Proposed LSTM models
In this study, four LSTM models were developed and tested for

dengue fever forecasting including one-layer LSTM, stacked
LSTM (S-LSTM), attention-based LSTM (A-LSTM) and stacked,
attention-based LSTM (SA-LSTM). The one-layer LSTM lacks
the temporal attention module as does S-LSTM that is constructed
by stacking two LSTM layers in a single model. A-LSTM and SA-
LSTM models, on the other hand, are constructed by including a
temporal attention mechanism in each of a one-layer LSTM model
and a two-layer S-LSTM model. Naturally, stacking multiple
LSTM layers in an attempt to improve the model’s capability of
learning hierarchical feature representation increases its complexi-
ty. However, the inclusion of a temporal attention module in a
LSTM model makes it model the temporal structures of the input
data more effectively. 

Benchmark models
A number of machine learning models including linear support

vector machine (LSVM), radial basis function support vector
machine (RBFSVM), Decision Tree (DT), Shallow artificial neu-
ronal network (S-ANN) and deep artificial neuronal network (D-
ANN) were used for dengue prediction. The models were imple-
mented in Python (https://www.python.org/) using the scikit-learn
package (Kramer, 2016). Hyperparameters were optimized using
the grid search method to avoid overfitting and improve the predic-
tive performance as shown in Table 2. 

Validation 
The standard root mean square error (RMSE) was used to mea-

sure the performance and prediction accuracy of the proposed
models. RMSE is a well-known measure used to evaluate continu-
ous variables by measuring the differences between predicted and
observed values.  RMSE is estimated as follows,

                                   (Eq. 8)

where Yt is the dengue cases of observation for time t, and Yt the
number of cases predicted by the model at time t. Smaller RMSE
values indicate a smaller difference between the predicted and
observed values and indicates a higher prediction performance.

The training and test splits were based on 75% and 25% of all
the available samples, respectively. For example, the available
samples were for one year time period and the data temporal reso-
lution were monthly. The data split would be the first nine months
for training the model, with the remaining three months kept for
testing the model. 

Results 

LSTM performance
Four LSTM model variants were tested for the prediction of

monthly dengue cases in five Malaysian states. Table 3 summa-
rizes their average performance. To train and test the models in this
experiment, entire samples from all five states were used. The
results are shown with various look-back values ranging from one
to six months, which indicate that A-LSTM optimally, with SA-
LSTM second best. LSTM and S-LSTM, performed almost identi-

                                                                                                                                Article

Table 2. Configuration of benchmark model hyperparameters.

Model          Hyperparameter              Description                                                                                                                     Optimal value* 

LSVM                C                                                    Determines how much misclassification error is allowed in the SVM training process.                                10
RBFSVM          C                                                    Determines how much misclassification error is allowed in the SVM training process.                                10
                          Gamma                                        Controls the shape of the kernel function, which affects how the decision boundary is formed.             Scale
DT                     Best split criterion                   Criterion in decision trees typically chosen based on the measure of impurity or information gain.       MSE
                          Splitter                                        Algorithm that determines how to split a node into child nodes based on a selected split criterion.      Best
                          Maximum tree depth               A parameter that controls the maximum depth of the tree.                                                                                    4
S-ANN              Hidden layer sizes                    Refer to the number of neurons or nodes in each hidden layer of the neural network.                              (128)
                          Activation function                    A mathematical function applied to the output of each neuron in a neural network,
                                                                                which determines whether a neuron is activated or not based on the weighted sum of inputs.              ReLU
                          Optimizer                                    Algorithm used to update the weights of a neural network during the training process.                            Adam
                          Learning rate                             Determines the step size at which the optimizer adjusts the weights of the network 
                                                                                during the training process.                                                                                                                                         0.001
                          Epochs                                         Refers to a single pass through the entire training dataset during the training process.                              200
D-ANN             Hidden layer sizes                    Refer to the number of neurons or nodes in each hidden layer of the neural network.                       (128, 64, 32)
                          Activation function                    A mathematical function applied to the output of each neuron in a neural network, 
                                                                                which determines whether a neuron is activated or not based on the weighted sum of inputs.               ReLU
                          Optimizer                                    Algorithm used to update the weights of a neural network during the training process.                            Adam
                          Learning rate                             Determines the step size at which the optimizer adjusts the weights of the network 
                                                                                during the training process.                                                                                                                                         0.001
                          Epochs                                         Refers to a single pass through the entire training dataset during the training process.                              200
LVSM, linear support vector machine; RBFSVM,  radial basis function support vector machine; DT, decision tree; ANN,  artificial neuronal network; S-, Shallow; D-, Deep; MSE, mean square error; C, penalty parameter;
ReLU, rectified linear unit; Adam, adaptive moment estimation. *by grid search.
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cally. The findings show that adding the attention module to LSTM
enhances its accuracy.

Comparison of LSTM and benchmark models
For the purpose of evaluating the proposed LSTM models, the

five benchmark forecast models were used. Table 4 summarizes
their average performance for the five Malaysian states. As can be
seen in the figure, RBFSVM performed best. The D-ANN, on the
other hand, outperformed both S-ANN and the DT. The fact that
the RBFSVM outperformed the LSVM suggests that the dengue
data were nonlinear. Figure 5 shows the comparison between the
LSTM models and the benchmark ones. 

Model selection and analysis 

Impact on LSTM by attribute selection 
For the prediction of the number of dengue cases, this study

examined three types of attributes: climatic, geographic and tem-
poral. Rainfall and land surface temperature were included in the

                   Article

Table 3. Summary results of LSTM model performance with different look-back values based on test samples.               

Look-back                                              Performance (RMSE)
(no. of months)                   LSTM                                        S-LSTM                                 A-LSTM                                       SA-LSTM

1                                                             3.75                                                            3.72                                                     3.27                                                              3.26
2                                                             3.57                                                            3.62                                                     3.10                                                              3.12
3                                                             5.06                                                            5.11                                                     4.58                                                              4.55
4                                                             3.74                                                            3.85                                                     3.23                                                              3.42
5                                                             3.99                                                            3.85                                                     3.42                                                              3.36
6                                                             4.78                                                            4.62                                                     4.34                                                              4.31
Minimum                                             3.57                                                            3.62                                                     3.10                                                              3.12
Maximum                                            5.06                                                            5.11                                                     4.58                                                              4.55
Average                                                4.15                                                            4.13                                                     3.66                                                              3.67
SD                                                         0.61                                                            0.59                                                     0.63                                                              0.60
RMSE,  standard root mean square error; LSTM, long-short term memory; S-, Stacked; A-, Attention; SA-, Stacked and Attention; SD, standard deviation.

Table 4. Summary results of benchmark model performance with different look-back values.                

Look-back                                       Performance (RMSE)
(no. of months)                         LSVM                           RBFSVM                              DT                               S-ANN                           D-ANN

1                                                                   4.98                                            4.44                                             4.82                                           5.47                                          4.66
2                                                                    4.91                                            4.37                                             5.58                                           5.32                                          4.42
3                                                                    5.04                                            4.76                                             5.60                                           5.43                                          4.53
4                                                                    4.64                                            4.44                                             5.93                                           5.13                                          4.42
5                                                                    4.76                                            4.67                                             5.69                                           5.17                                          4.76
6                                                                    5.11                                            4.86                                             4.96                                           5.58                                          5.00
Minimum                                                    4.64                                            4.37                                             4.82                                           5.13                                          4.42
Maximum                                                   5.11                                            4.86                                             5.93                                           5.58                                          5.00
Average                                                       4.91                                            4.59                                             5.43                                           5.35                                          4.63
SD                                                                0.17                                            0.20                                             0.43                                           0.17                                          0.22
RMSE, standard root mean square error; VSM,  support vector machine; LVSM, Linear VSM; RBFSVM,  radial basis function VSM; DT,  decision tree; ANN, artificial neuronal network; S-, shallow; D-, deep; SD, standard
deviation.

Figure 5. Comparison of LSTM models and benchmark models.
LVSM, linear; RBFSVM, radial basis function support vector
machine; DT, decision tree; S-ANN, shallow artificial neuronal
network; D-, Deep artificial neuronal network; LSTM, long-
short term memory; S-, stacked; A-, attention; SA-, stacked and
attention; SD, standard deviation.
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climatic category. Vegetation index, elevation, land cover, road
networks and water bodies were all part of the geography group.
Population density was also included in this group, while the lag
time of the attributes indicated was included in the temporal group.
Table 5 compares the performance of the LSTM models with
respect to the various groups of attributes. The findings show that
almost all of the models performed well across all attribute groups.
All of the 1–6-month look-backs yielded similar results. In addi-
tion to the climatic attributes, the results show that the models per-
form better with more attributes. Furthermore, the findings reveal
that the geographic variables are more important the for dengue
prediction than the temporal attributes (year and month).

Impact of attribute selection on the benchmark models
Benchmark models were used to examine the importance of

several attribute groupings for predicting dengue cases (Table 6).
When the climatic and geographic data were merged, both the
LSVM and RBFSVM models performed well. With all of the
attributes combined DT, S-ANN and D-ANN performed best.
LSVM worked best when all attributes were paired with some
look-back values. 

Modelling performance with regard to look-back settings
The graphs in Figure 6 show the performance of the proposed

LSTM and benchmark models for predicting dengue cases with
various look-back settings. With 1, 2 and 4 months of look-back
values, the LSTM models performed best for predicting dengue
cases. With 6 and 3 months of look-back data, the LSTM models
performed worst.  With a 1-month look-back, DT performed best,
whereas the other benchmark models (LSVM, RBFSVM, S-ANN,
and D-ANN) performed best with a 4-month look-back.  With a 6-
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Table 5. Summary results of LSTM model performance with different attribute selection and look-back values.                     

Look-back                        Group attributes added                                   Performance (RMSE)
(no. of months)                                                                                    LSTM                    S-LSTM                A-LSTM                   SA-LSTM

1                                                    Climate                                                                             5.478                                5.721                             5.589                                  6.766
                                                     Climate/time                                                                   3.849                                3.919                             3.950                                  4.970
                                                     Climate/geography                                                         3.841                                3.769                             6.000                                  3.993
                                                     Climate/time/geography                                               3.759                                3.729                             3.278                                  3.266
2                                                    Climate                                                                             4.504                                4.023                             4.129                                  3.593
                                                     Climate/time                                                                   5.010                                4.580                             4.443                                  4.001
                                                     Climate/geography                                                         4.176                                4.364                             4.047                                  3.478
                                                     Climate/time/geography                                               3.575                                3.620                             3.100                                  3.124
3                                                    Climate                                                                             5.238                                5.914                             5.322                                  5.987
                                                     Climate/time                                                                   5.361                                6.311                             5.584                                  6.031
                                                     Climate/geography                                                         5.304                                6.051                             4.975                                  5.040
                                                     Climate/time/geography                                               5.061                                5.113                             4.589                                  4.557
4                                                    Climate                                                                             4.237                                4.280                             3.474                                  3.008
                                                     Climate/time                                                                   4.546                                4.878                             3.857                                  3.736
                                                     Climate/geography                                                         4.328                                4.574                             3.414                                  3.495
                                                     Climate/time/geography                                               3.748                                3.856                             3.237                                  3.421
5                                                    Climate                                                                             6.684                                5.646                             5.385                                  5.971
                                                     Climate/time                                                                   5.895                                5.357                             4.527                                  4.743
                                                     Climate/geography                                                         4.942                                4.835                             4.277                                  4.354
                                                     Climate/time/geography                                               3.991                                3.853                             3.423                                  3.364
6                                                    Climate                                                                             6.981                                7.435                             6.354                                  6.986
                                                     Climate/time                                                                   5.879                                5.598                             5.141                                  6.207
                                                     Climate/geography                                                         5.044                                5.016                             4.437                                  5.251
                                                     Climate/time/geography                                               4.789                                4.629                             4.349                                  4.313
RMSE, standard root mean square error; LSTM, long-short term memory; S-, stacked; A-, attention; SA-, stacked and attention; SD, standard deviation.
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Figure 6. Radar charts of prediction performance of the proposed
and benchmark models with different look-back values. LVSM,
Linear support vector machine; RBFSVM, radial basis function
support vector machine; DT, Decision Tree; S-ANN, Shallow arti-
ficial neuronal network; D-ANN, Deep artificial neuronal net-
work; LSTM, long-short term memory; S-, Stacked; A-, Attention;
SA-, Stacked and Attention.
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month look-back, non-LSTM models performed the worst. Thus
long look-back values are important for a full understanding of the
capabilities of the different models. The detailed results of this
experiment are summarized in the supplementary data (Tables S1
and S2). 

Modelling performance in the different states
With regard to the Malaysian states Selangor, Kelantan, Johor,

Pulau Pinang and Melaka, the LSTM models performed best in
Kelantan and Pulau Pinang (Figures 7 and 8). They performed
moderately in Johor and Melaka, but did not do well in Selangor.

                   Article

Table 6. Summary results of benchmark models’ performance with different attribute selection and look-back values.           

Look-back                     Group attributes added                              Performance (RMSE)
(no. of months)                                                                            LSVM              RBFSVM                     DT               S-ANN            D-ANN

1                                                Climatic                                                                      5.057                        4.544                              5.297                     5.901                     4.933
                                                 Climatic/temporal                                                    5.431                        4.708                              4.854                     5.801                     4.900
                                                 Climatic/geographic                                                 4.979                        4.359                              5.294                     5.593                     4.766
                                                 Climatic/temporal/geographic                               4.984                        4.448                              4.824                     5.474                     4.661
2                                                Climatic                                                                      5.655                        4.427                              6.294                     6.070                     4.704
                                                 Climatic/temporal                                                    5.625                        4.697                              5.601                     5.910                     4.649
                                                 Climatic/geographic                                                 4.949                        4.292                              6.291                     5.416                     4.530
                                                 Climatic/temporal/geographic                               4.911                        4.375                              5.581                     5.324                     4.427
3                                                Climatic                                                                      5.938                        4.855                              5.910                     6.569                     4.902
                                                 Climatic/temporal                                                    5.928                        5.113                              5.623                     6.405                     4.801
                                                 Climatic/geographic                                                 5.049                        4.657                              5.883                     5.599                     4.741
                                                 Climatic/temporal/geographic                               5.041                        4.767                              5.603                     5.432                     4.536
4                                                Climatic                                                                      5.644                        4.508                              5.965                     6.256                     4.638
                                                 Climatic/temporal                                                    5.579                        4.739                              5.964                     5.931                     4.488
                                                 Climatic/geographic                                                 4.648                        4.349                              5.944                     5.197                     4.508
                                                 Climatic/temporal/geographic                               4.643                        4.449                              5.934                     5.131                     4.429
5                                                Climatic                                                                      5.538                        4.715                              5.712                     6.248                     4.946
                                                 Climatic/temporal                                                    5.492                        4.946                              5.709                     6.059                     4.747
                                                 Climatic/geographic                                                 4.755                        4.612                              5.699                     5.199                     4.798
                                                 Climatic/temporal/geographic                               4.763                        4.674                              5.699                     5.177                     4.762
6                                                Climatic                                                                      5.943                        4.940                              4.971                     6.538                     5.287
                                                 Climatic/temporal                                                    5.929                        5.205                              4.963                     6.402                     5.122
                                                 Climatic/geographic                                                 5.134                        4.837                              4.963                     5.599                     5.126
                                                 Climatic/temporal/geographic                               5.119                        4.869                              4.963                     5.587                     5.003
RMSE, standard root mean square error; LSTM, long-short term memory; S-, Stacked; A-, Attention; SA-, Stacked and Attention; SD, standard deviation.
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Figure 7. Comparison of LSTM model performance in different
Malaysian states.

Figure 8. Performance comparison of the benchmark models in
different Malaysian states. Each box represents the various look-
back experiments.
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Discussion
LSTM is one of the most commonly used models for time

series prediction due to its capability in modelling long dependen-
cies (Hochreiter & Schmidhuber, 1997). LSTM and variants show
a considerable amount of success in predicting sequential data and
have frequently outperformed other classical and machine learning
methods (Hua et al., 2019; Laptev et al., 2017; Zhu & Laptev,
2017). LSTM-based models can identify periodic patterns span-
ning multiple time steps in non-linear time-series (Xu et al., 2020).
Moreover, Anno et al. (2019) showed that while it is possible to
predict dengue outbreaks with a climate-based model, it is neces-
sary to use models with memory capability like convolutional
LSTM (ConvLSTM) to achieve accurate prediction of outbreak
distributions needed to develop a proper early warning system.

In this study, a temporal attention mechanism was developed
for LSTM models, with the effectiveness evaluated using both sin-
gle and stacked LSTM layers. The resulting models were then
compared to several benchmark models, including LSVM,
RBFSVM, DT, S-ANN and D-ANN. According to the findings of
this study, the attention module enhances model memory for long
dependencies and improves the prediction accuracy of both LSTM
and S-LSTM. However, the results also show that the LSTM
model benefitted more from the attention module than the S-
LSTM as the ability of the former to model complex dengue data
was typically accompanied by overfitting due to the larger number
of model parameters. However, our study revealed that this prob-
lem can be overcome utilizing the attention mechanism and allow-
ing the model to focus on critical sequences of the input data.

The complexity of dengue dynamics challenges the develop-
ment of predicting models. Previous studies have confirmed that a
series of socioeconomic, environmental and climatic factors are
closely related with dengue transmission by either facilitating virus
amplification or favouring vector survival (Zhu et al., 2018).
Human movement was recognized as an important driver of trans-
mission dynamics, which can introduce dengue viruses into previ-
ously low-transmission or dengue-free areas (Zhu et al., 2018).
This research used the most common attributes applied in previous
prediction studies. In addition, an experiment was designed and
tested to evaluate the performance of the prediction models with
different attribute groups, i.e. climatic, geographic and temporal
ones. Data availability and type of model were both found to be
important while designing the attributes in dengue case prediction
research. It is more logical to use and analyse additional attributes
if such data are available. On the other hand, models perform dif-
ferently according to the complexity of the input attributes. Some
models can perform well with a larger number of attributes, while
others cannot. 

The models proposed in this work were based on LSTM as this
kind of deep learning model is designed for dealing with sequential
data and capable of learning spatial-temporal features automatical-
ly. These models suppress less useful features by their internal
structure and discover feature trends in massive data scenarios that
can be exploited to empower the accuracy of the considered pre-
diction task (Appice et al., 2020). However, the models construct-
ed in this study only utilised temporal attention mechanisms. In
contemporary models created for other prediction tasks, spatial
attention is also an essential module. The model’s spatial attention
allows it to focus on important parts of images or array-ordered
data. This helps the model to produce more accurate predictions by
improving the features derived from the raw input. Thus, future

research dengue fever prediction should focus on both temporal
and spatial considerations in order to develop the most accurate
model. In addition, future research can focus on developing mod-
els that can account for the temporal order of outbreaks and iden-
tify leading or lagging regions. These models can incorporate long-
term dependencies in the data and use climate variables to predict
the occurrence of dengue fever on large space-time scales.

Conclusions
Both A-LSTM and SA-LSTM were found to be superior to the

benchmark models. Thus, the attention mechanism assisted the
LSTM models in improving their ability to learn long dependen-
cies and, as a result, their accuracy in predicting dengue cases.
Furthermore, it was discovered that the inclusion all of attributes
tested (climatic, geographic and temporal) was required for achiev-
ing the best results. The proposed models could be used to predict
dengue cases on a large scale and aid the identification of high-risk
areas for dengue viruses.
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Online supplementary material:
Table S1. Summary results of LSTM models’ performance in different Malaysian states and different look-back values.
Table S2. Summary results of the benchmark model performance in different Malaysian states and different look-back values.
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