
Abstract
Melioidosis, a bacterial, infectious disease contracted from

contaminated soil or water, is a public health problem identified in
tropical regions and endemic several regions of Thailand.
Surveillance and prevention are important for determining its dis-
tribution patterns and mapping its risk, which have been analysed

in the present study. Case reports in Thailand were collected from
1 January 2016 to 31 December 2020. Spatial autocorrelation was
analyzed using Moran’s I and univariate local Moran’s I. Spatial
point data of melioidosis incidence were calculated, with risk-
mapping interpolation performed by Kriging. It was highest in
2016, at 32.37 cases per 100,000 people, and lowest in 2020, at
10.83 cases per 100,000 people. General observations revealed
that its incidence decreased slightly from 2016 to 2018 and dras-
tically in 2019 and 2020. The Moran’s I values for melioidosis
incidence exhibited a random spatial pattern in 2016 and clustered
distribution from 2017 to 2020. The risk and variance maps show
interval values. These findings may contribute to the monitoring
and surveillance of melioidosis outbreaks.

Introduction
Melioidosis is an infectious disease contracted from soil or

water contaminated by the bacterium Burkholderia pseudomallei.
These bacteria have been identified in various water resources,
including public tap water, as well as in soil within the depth range
of 0-90 cm (Limmathurotsakul et al., 2013; Thaipadungpanit et
al., 2014). Apart from infection via drinking infected water, the
bacteria can enter the human body through the skin or wounds or
via inhalation of dust particles. High fever, mucus cough, chest
pain, with pus in the lungs, liver or spleen are common symptoms
of melioidosis. Severe cases can lead to organ failure and death.
Several studies have performed experiments and analyzed factors
influencing the environmental sustainability of B. pseudomallei
growth, such as soil moisture, low soil pH, clay-loam soil and
temperatures of 37-42°C (Kaestli et al., 2009; Limmathurotsakul
et al., 2013; Paksanont et al., 2018; Palasatien et al., 2008). These
are reveal key factors for B. pseudomallei survival and tolerance
in the environment, which may increase the opportunity of melioi-
dosis infection in humans. 

Melioidosis has been identified in tropical regions and partic-
ularly in Thailand, where it is endemic, with reported incidences
of 4.07, 4.24, and 4.21 cases per 100,000 people in 2018, 2019 and
2020, respectively (Bureau of Epidemiology, 2023). The bacteri-
um has been identified in paddy soil, disused land and water sup-
plies (Finkelstein et al., 2000; Limmathurotsakul et al., 2013;
Saengnill et al., 2020; Wang-Ngarm et al., 2014). Several studies
on its clinical epidemiology and increasing incidence in humans in
north-eastern Thailand and neighbouring countries, e.g., Laos
have provided an important basis of knowledge for future research
(Chen et al., 2012; Dance et al., 2018; Hantrakun et al., 2019;
Limmathurotsakul et al., 2010). However, melioidosis prevention
and control may necessitate the application of spatial and temporal
information to identify the disease and to map its distribution
accurately. Most medical reports have not yet integrated spatial
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data. Therefore, methods based on geographic information systems
(GIS) are essential for the collection, management, analysis and
visualization of spatial data at specific locations. GIS, a powerful
tool for spatial statistical analysis, has been successfully applied in
spatial epidemiology and public health, for instance via space-time
scanning to detect emerging clusters and for spatiotemporal moni-
toring (Kulldorff, 1997). Importantly though, small-cluster zones
can be hidden when particularly large maximum scanning win-
dows are used (Han et al., 2016). The most popular spatial
approaches use the global or local Moran’s I statistic for the anal-
ysis of spatial autocorrelation. This method focuses on cluster and
outlier locations to reveal differences in spatial dependence,
assuming that points are most similar to their neighbors. It has
been applied to analyze spatial dependence in order to identify the
distribution of B. pseudomallei (Rachlin et al., 2020). Spatial auto-
correlation analysis has been used to interpret the melioidosis inci-
dence in Taiwan and suburban Australia (Corkeron et al., 2010;
Dai et al., 2012). However, because few studies have focussed on
its spatiotemporal distribution and spatial autocorrelation, infor-
mation on its disease transmission is still lacking. 

This study aimed to analyse the spatial autocorrelation and
spatial pattern of melioidosis risk, and to create incidence risk
maps by applying geostatistics, a quantitative field within GIS, an
approach that can analyse variance in distance from sampling
points and also calculate spatial correlations for single variables,
where closer points are considered more similar. Geostatistical
tools have been used to map the probability of disease occurrence
by determining the lag distances between sites (paddy fields) pos-
itive for B. pseudomallei (Limmathurotsakul et al., 2010; Saengnill
et al., 2020). We used a semivariograms to determine the spatial
autocorrelation of the lag distances, and indicator Kriging interpo-
lation to generate the risk map of melioidosis incidence.

Materials and Methods

Design and study site
The study area was Ubon Ratchathani Province, with its 

25 districts and 219 sub-districts. It partly borders Laos and
Cambodia in lower, north-eastern Thailand. A retrospective study
of secondary data was designed to monitor the temporal dynamics
of melioidosis incidence over the five-year period from 2016 to
2020. Medical data such as case reports do not provide sufficient
information for disease prevention and control. We therefore used
GIS to collect, manipulate and visualize the spatiotemporal data to
assist analyses of spatial autocorrelation to reveal melioidosis dis-
tribution in terms of clustering, dispersion and random patterns.

This was done to identify high-risk areas based on the relationship
between spatial and attribute data and to develop a geostatistical
model of melioidosis distribution. Semivariogram and indicator
Kriging was applied to map the melioidosis risk and determine the
lag distances between cases. The protocol for research on humans
was approved by the Ubon Ratchathani University Human
Research Ethics Committee (Approval ID: UBU-REC-128/2563).

Data collection
This study used melioidosis cases reported from 1 January

2016 to 31 December 2020 at Sunpasitthiprasong Hospital (Ubon
Ratchathani Province). The 1,901 cases reported showed a lower-
ing trend over the study period (Table 1). The cases in each sub-
district were aggregated by subdistrict code. The population data
for 2016–2020 were obtained from the official statistical registra-
tion system of the Department of Local Administration. The coor-
dinate reference system was the spheroid datum of WGS 1948 and
UTM zone 48N. 

Data preparation and analysis
The data were recorded, manipulated, processed, and convert-

ed into comma-separated value (CSV) format using a Microsoft
Excel Worksheet (.xlsx format). QGIS was used to generate the
spatial data and to join the attribute tables via a one-to-one rela-
tionship between the spatial data and attribute data, using sub-dis-
trict code as the primary key. For each sub-district, the melioidosis
incidence was calculated by dividing the number of cases by that
of the population and multiplying the result by 10,000. 

Spatial autocorrelation was analyzed using Moran’s I and uni-
variate local Moran’s I by GEODA software. Feature point cen-
troids, indicating the centres of the sub-district boundaries, were
created from the X and Y coordinates, with incidence spatial point
data for each year transformed from ratio data into binary data. For
melioidosis incidence >0,1 was assigned; for incidence = 0,0 was
assigned. The R gstat package was used for spatial and geostatisti-
cal modelling and prediction. Spatial autocorrelation was deter-
mined using a semivariogram and interpolated the mapping of
melioidosis risk was done by indicator Kriging.

Spatial autocorrelation
Spatial autocorrelation concerns the similarity between two or

more observation values. The correlations of the objects are mea-
sured using a set of locations dependent on values of the nearest
variable at other locations. Objects that are not correlated or are
more distant are considered dissimilar. Spatial autocorrelation
often reveals distribution patterns such as clustering, dispersion
and random distribution.

We used global Moran’s I statistic to estimate the potential cor-
relation of melioidosis incidence considering queen contiguity-

                   Article

Table 1. Global Moran’s I of melioidosis incidence during 2016-2020.

Year               Case (no.)                Moran’s I                     z-score                            SD                                p                               Pattern

2016                              577                                  −0.011                                 −0.223                                    0.034                                    0.462                                     Random
2017                              523                                   0.059                                    1.706                                      0.039                                    0.058                                      Cluster
2018                              402                                   0.156                                    3.763                                      0.042                                    0.002                                      Cluster
2019                              210                                   0.135                                    3.344                                      0.041                                    0.003                                      Cluster
2020                              189                                   0.091                                    2.283                                      0.041                                    0.023                                      Cluster
SD, standard deviation; Spatial significance at pseudo p<0.05.
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base weights, which share a common boundary edge between two
spatial units. Therefore, the spatial weight of the neighbouring
relationship was assigned values of 1or 0. Moran’s I ranges from
−1 to 1. A positive value indicates a clustered pattern and negative
autocorrelation implies dispersion. Zero (no autocorrelation) indi-
cates a random distribution. Findings were considered statistically
significant at p<0.05. Moran’s I was calculated as:

                              
Eq. 1

where N is the number of observations; xi and xj the observed values
for features i and j; and wij the spatial weight at locations i and j.

We used local Moran’s I to identify hotspots, coldspots and
spatial outliers. Using local Moran’s I, features that have neigh-
bours with high or low values are given positive values; if the
neighbour’s I value indicates dissimilarity, the feature is given a
negative value. The z-score and p-value reveal the null hypothesis
used to accept significance and the output feature class for spatial
dependency. Cluster and outlier detection were performed based
on four types of autocorrelation: i) hotspots that signify neighbour-
ing zones with high I values (HH); ii) coldspots that signify neigh-
bouring zones with low I values (LL); iii) a zone with a high I
value surrounded by zones with low I values (HL); and iv) a zone
with low I value surrounded by zones with high values (LH). The
equations used were:

                             
Eq. 2

where si2 is the variance:

                              
Eq. 3

Geostatistics
Geostatistics is a powerful tool for describing spatial depen-

dency based on the spatial autocorrelation of neighbouring obser-
vation points. A continuous surface can be interpolated from the
measured locations to obtain probability predictions for each loca-
tion. The sub-district centroids therefore represent similar
attributes of melioidosis distribution. The lag distance, the distance
in statistical space in the variogram cloud (Eq. 4) represents half
the mean squared difference between each pair of sub-district
melioidosis values (the output of each sample of matching data
points). A semivariogram function was fit according to three
parameters: i) the sill, which represents the total variance at which
the spatial autocorrelation appears to level off; ii) the nugget,
which represents the small separation distance or measurement
error during sampling; and iii) the range, which defines the dis-
tance within which points are considered to be spatially correlated.
The empirical semivariogram was used to examine the spatial rela-
tionships using spherical, exponential and Gaussian models. To
select the best-fit model, it was necessary to evaluate the melioido-
sis predictions. Therefore, we evaluated model fit based on the
mean absolute error and root mean square error (RMSE).

                                            

                          
Eq. 4

where N (h) is the number of sample pairs at location h and z(xi)
with z(xi + h) the values of the variables at location xi and at the
location separated by distance h, respectively.

Spatial autocorrelation, the weight that relates each point and
distance, is determined by a semivariogram. We interpolated the
unknown values to achieve continuous mapping of the melioidosis
distribution via indicator Kriging to map the probabilities of the
presence and absence of melioidosis. Incidence was classified as
binary (presence = 1, absence = 0); an incidence >0 was assigned
1, and an incidence of 0 was assigned 0. Indicator Kriging was
used to predict the risk distribution and uncertainty surfaces, where
higher values than 0-1indicate the potential of a melioidosis out-
break. Calculations were done by the equation:

                                                                                                 

                     
Eq. 5

where z(x) is the melioidosis incidence and zk the threshold based
on from this incidence.

Validation
To examine the error association between the predicted and

actual values and thus evaluate the model’s accuracy, the melioido-
sis prediction map was cross-validated to. Leave-one-out cross val-
idation (LOOCV) was used to evaluate model performance. This
involves the use of all values to estimate the test error; one value
is left out of the data set for testing, and the remaining values make
up the training data for the prediction model. The mean absolute
error (MAE) is the absolute difference between the observation
and prediction values, while the RMSE measures the prediction
quality, providing the average of the squared differences between
observations and predictions. MAE and RMSE were calculated as
follows:

                          
Eq. 6

                          
Eq. 7

where n is the sample size; yi the observed value at location I; and
the predicted value of observation i.

Results
At 32.37 cases of melioidosis per 100,000 people, the inci-

dence in Ubon Ratchathani Province was the highest in 2016 and
reached the lowest value in 2020 (10.83 cases per 100,000 people).
Overall, the incidence decreased slightly from 2016 to 2018 and
drastically so in 2019 and 2020 (Figure 1). The monthly incidence
trend for the study period gives the outbreak frequency and reveals
that melioidosis is an endemic disease (Figure 2). Incidence
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decreased slightly over the period, and no cases were observed in
November 2019; however, as can be seen in Figure 2, the trend was
not comprehensive. The cumulative number of cases for each year
did does not differ monthly. These findings indicate that melioido-
sis is reported in all seasons in Thailand.

Spatial and temporal distributions of the melioidosis incidence
per 10,000 people in each sub-district were generated via quantile
classification (Figure 3). The highest incidence was 66.89 cases
per 10,000 people in 2016, while all other years had >10 cases per
10,000 people. Figure 3 reveals that outbreaks were frequent in the
northern regions and occasional in the southern regions. Spatial
autocorrelation was determined by identifying the pattern in the
distribution. Table 1 presents the Moran’s I values for melioidosis
incidence: the spatial distribution for 2016 exhibits a random dis-
tribution (I=−0.011, p=0.462), whereas clustering was revealed for
2017–2020. The maps of melioidosis incidence in the study area
show spatial hotspots and significance (Figures 4 and 5). They
reveal clusters of sub-districts and also sub-district outliers. For
2018, the hotspots (HH zones) occurred mostly in the northern and
central parts of the study area. For the years 2016, 2017, 2018,
2019 and 2020, the numbers of sub-districts classified as hotspots
were 6, 8, 12, 13, and 10, respectively. Based on the spatial auto-
correlation, determined using the empirical semivariogram, loca-
tions closer locations exhibited higher similarity in terms of melioi-
dosis incidence. The minimum ranges were 38.03 and 44.69 km
for 2017 and 2019, respectively; the highest range (116.91 km)
was obtained for 2020. The nugget and sill values and the values
used for cross-validation are shown in Table 2. 

Figures 6 and 7 provide the probability and variance maps of
melioidosis incidence. 

Melioidosis occurred often in the northern region, and rarely in
the central and southern regions, of the Ubon Ratchathani Province
(Figures 6 and 7). Disease outbreak monitoring and evaluation
often depends on prevalence and incidence values during the same
time-period. Here, we visualized melioidosis incidence spatially,
revealing spatial autocorrelation with both clustered and random
distributions (Table 1). In 2016, the distribution of melioidosis was
random, indicating a non-uniform distribution and reflecting
uncertainty in the numbers of melioidosis cases. 

                   Article

Table 2. Semivariogram model and cross validation.

Year                       Expression                        Nugget                        Sill                        Range (km)                         MAE                      RMSE

2016                                   Spherical                                     0.159                                 0.038                                       62.42                                         0.361                              0.427
2017                                Exponential                                   0.224                                 0.014                                       38.03                                         0.461                              0.482
2018                                   Spherical                                     0.214                                 0.038                                       61.47                                         0.460                              0.480
2019                                   Gaussian                                      0.236                                 0.018                                       44.69                                         0.482                              0.489
2020                                Exponential                                   0.224                                 0.009                                      116.91                                        0.463                              0.479
Nugget, the value at which the semi-variogram (almost) intercepts the y-value; Sill, the value at which the model first flattens out; Range, the distance at which the model first flattens out; MAE, mean absolute error;
RMSE, root mean square error.

Figure 1. Melioidosis incidence in 2016-2020.

Figure 2. Trend of monthly melioidosis outbreaks in 2016-2020.
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Figure 3. Spatial distribution of melioidosis incidence. A) 2016; B) 2017; C) 2018; D) 2019; E) 2020.
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Figure 4. Spatial autocorrelation of melioidosis incidence in 2016-2018. Left: Hotspots of melioidosis incidence. Right: Significance of
melioidosis incidence. A) 2016; B) 2017; C) 2018.
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Discussion
Melioidosis outbreaks persist in Thailand’s Ubon Ratchathani

Province, where the incidence of culture-confirmed melioidosis
exceeded 5 cases per 100 000 people from 2012 to 2015
(Hantrakun et al., 2019). Our study presents the trend and spa-
tiotemporal data for 2016-2020. Although the incidence peaked in
2016, there was only a slight decrease and outbreaks continue to
occur in the study area. Melioidosis incidence is related to meteo-
rological factors including rainfall, temperature and humidity;
80% of the cases are correlated with rainfall and occur particularly
during the rainy season (Currie et al., 2021). Indeed, rainfall con-
tributes to the presence of melioidosis in several tropical countries
(Bulterys et al., 2018; Liu et al., 2015; Mu et al., 2014). However,
no associations between melioidosis incidence and meteorological
factors have been detected in our study area or in Kuala Lumpur,
Malaysia (Sam et al., 2007; Wongbutdee et al., 2021). 

The strategy for monitoring and preventing melioidosis
remains unclear, which is the reason we applied local Moran’s I to
statistically identify hotspots, coldspots and spatial outliers. This
tool effectively identifies clustered distributions among locations

revealing that hotspots were clustered mostly in the northern
region, with outliers sparely distributed in the central one and close
to other groups. The hotspot clustering may reflect the distribution
of geographic features such as soil texture and drainage. Sandy
loam, clay, and clay loam soil are habitats of B. pseudomallei,
which is consistent with observations made in agricultural field
soils such as rice paddies (Kaestli et al., 2009; Nachiangmai et al.,
1985; Paksanont et al., 2018; Palasatien et al., 2008). Our findings
reveal that melioidosis incidence is heterogeneous and unstable.
People who are at risk can be infected with B. pseudomallei during
all seasons. Groups at risk should therefore avoid direct contact
with the bacteria and use protective equipment such as gloves and
boots during activities and wash immediately after exposure to
reduce the risk of melioidosis. Various lifestyle factors may
increase the risk of exposure to B. pseudomallei. This study
revealed the location of high-risk areas for monitoring and can be
used as reference for melioidosis prevention. Understanding its
spatial clustering makes surveillance and control easier than if the
infection were randomly distributed and dispersed. Armed with
knowledge of which sub-districts exhibit highly clustered melioi-
dosis distributions, the Tambon Health Promoting Hospital (the

                                                                                                                                Article

Figure 5. Spatial autocorrelation of melioidosis incidence in 2019-2020. Left: Hotspots of melioidosis incidence. Right: Significance of
melioidosis incidence. A) 2019; B) 2020.
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Figure 6. Maps of melioidosis incidence risk zonesin2016-2018. Left: Spatial predictions. Right: Variance. A) 2016; B) 2017; C) 2018.
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primary health care provider for communities in each sub-district in
Thailand) can now better address this issue. Health workers should be
asked to promote activities to reduce risky perceptions and
behaviours, creating healthy lifestyles that would minimize the inci-
dence of this infection. Mapping of the melioidosis risk revealed the
locations of melioidosis outbreaks each year. Although the northern
region exhibits the highest risk of melioidosis outbreaks, indicating
an increased risk of contracting B. pseudomallei from contaminated
soil and water, the status of this bacterium in this area has not eluci-
dated. It has been identified in the soil of rice fields in both Lao Suea
Kok and Don Mod Deang districts (central region, Ubon
Ratchathani), with positive spatial lag distances of 7.6 m (625 m2)
and 90.51 m (9.24 km2), respectively (Limmathurotsakul et al., 2010;
Saengnill et al., 2020). Here, however, we focused on a region where
there is a high risk of B. pseudomallei contamination in both soil and
water, which should improve the identification of high-risk zones and
account for uncertainty regarding their distribution and size as well as
reveal incidence clusters. They can thus be used by health workers for
planning, prevention, disease control and resource allocation.

This research used sub-district level data that does not include the
village level. Using village-level data weighting would generate dif-
ferent results. Adjacent regions are given more weight (and therefore
influence) than more distant regions. As an alternative, space-time
scanning can be applied to monitor disease outbreaks over time and
obtain trends. Further, we used indicator Kriging, based on case
reports to estimate the probability of melioidosis. Methods that
account for environmental and climatic factors (including co-
Kriging, regression Kriging, autoregressive and kernel density esti-
mation) could also be used for spatial modelling of this disease risk.

Conclusions
Melioidosis severely and frequently affects the Ubon

Ratchathani Province. Here, we used GIS to analyse the spatial
distribution of melioidosis incidence and performed geostatistical
prediction of the risk area. Melioidosis incidence was randomly
distributed in 2016 but clustered in 2017–2020. The spatial distri-

                                                                                                                                Article
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Figure 7. Maps of melioidosis incidence risk zones in 2019-2020. Left: Spatial predictions. Right: Variance. A) 2019; B) 2020.
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bution reveals the annual locations of incidence, revealing high-
risk areas and outliers adjacent to other groups. The northern
region remains the highest risk area for melioidosis outbreaks,
while outbreaks were sparse in the middle and southern regions.
These findings provide a reference for reporting and decision-mak-
ing for melioidosis surveillance and mitigation planning.
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