
Supplementary Materials 

File 1. Main location-allocation models used in the literature and their implications for use in 
this study 

 

Applied model 
(reference) 

Author (year) Model description Implication for use in this 
study 

P-median  Church (1990) Optimally locates p 
facilities to minimize 
the average travel time 

NP-hard; ignores remote 
demands 

P-center Revelle (1989) Optimally locates p 
facilities to minimize 
the maximum travel 
time 

NP-hard; Not optimize 
the average travel time 

Location Set 
Covering 
Problem 
(LSCP) 

Toregas (1971) to find the minimum 
number of facilities and 
their locations to cover 
all of the demand points 
in a pre-defined 
standard 

Requires a lot of facilities 
to cover all demands 

Maximal 
Covering 
Location 
Problem 
(MCLP) 

Church and 
ReVelle (1974) 

to locate a fixed number 
of facilities to 
maximize the total 
demand covered by at 
least one facility 

The capacity of 
ambulances is ignored.  

Dynamic 
Double 
Standard 
Model 
(DDSM) 

Gendreau et al. 
(2001) 

Relocate ambulances 
optimally at time (t) 
when a request is 
registered 

Real time data is needed. 

Capacitated 
MCLP 

Current and 
Storbeck (1988) 

Adds maximum 
capacity constraint to 
MCLP formulation 

Some remote demands 
could be ignored 

 

  



File 2. Location allocation model script 

 

import pandas as pd 

import numpy as np 

import csv 

 

try: 

    import docplex.mp 

except: 

    raise Exception('Please install docplex. See https://pypi.org/project/docplex/') 

 

#load datasets 

#load excel file of stations with including ID and Number of ambulance vehicles 

def read_candidate_sites(candidates_csv_path): 

    df = pd.read_csv(candidates_csv_path) 

    df["NumberOfAmbulances"] = df["NumberOfAmbulances"].fillna(value=0) 

    return df 

 

#load excel file of demand points including ID, Call frequancy, and location (urban/rural) 

def read_demands(demand_csv_path): 



    df = pd.read_csv(demand_csv_path) 

    df["CallFreq"] = df["CallFreq"].fillna(value=0) 

    return df 

 

#load cost matrix including FacilityID, DemandID, DriveTime 

def create_OD_matrix(OD_csv_path, time_threshold): 

    df = pd.read_csv(OD_csv_path) 

    # determine the cover relationship based on the travel time and the service standard 

    df["Covered"] = np.where(df["DriveTime"] < time_threshold, 1, 0) 

    # create pivot table for OD matrix 

    pivot = df.pivot("StationID", "DemandID", "Covered") 

    return pivot 

 

# Scenario 0: Current distribution 

def calculate_objective_with_current_car_distribution(demand_csv, candidates_csv, 

ODMatrix_csv, time_threshold, 

                                                      unit_car_capacity): 

    # read input data for the model 

    demands = read_demands(demand_csv) 

    candidates = read_candidate_sites(candidates_csv) 



    coverage_matrix = create_OD_matrix(ODMatrix_csv, time_threshold) 

 

    from docplex.mp.environment import Environment 

    env = Environment() 

    env.print_information() 

 

    from docplex.mp.model import Model 

    mdl = Model("EMS vehicles") 

    # Define the decision variables 

    # percentage of demand i covered by facility j 

    y_i_j_vars = mdl.continuous_var_matrix(demands["DemandID"], candidates["StationID"], 

ub=1, name="y") 

 

    # add constraints 

    # ct1: the allocated demand should not exceed the capacity of the facility 

    for j in candidates["StationID"]: 

        mdl.add_constraint(mdl.scal_prod([y_i_j_vars[i, j] for i in demands["DemandID"]], 

demands["CallFreq"]) 

                           <= unit_car_capacity * candidates.loc[ 

                               candidates["StationID"] == j, "NumberOfAmbulances"].item()) 



 

    # ct2: The allocated demand at i should not exceed 100% 

    for i in demands["DemandID"]: 

        mdl.add_constraint(mdl.sum(y_i_j_vars[i, j] for j in candidates["StationID"]) == 1) 

 

    # express the objective 

    total_covered_demand = mdl.sum(y_i_j_vars[i, j] * demands.loc[demands["DemandID"] 

== i, "CallFreq"].item() * 

                                   coverage_matrix.loc[j, i] 

                                   for i in demands["DemandID"] 

                                   for j in candidates["StationID"]) 

    mdl.maximize(total_covered_demand) 

    mdl.print_information() 

    # solve the model 

    mdl.solve() 

    # print the solution 

    print("Total covered demand = %g" % mdl.objective_value) 

     

#Scenaro 1 and 2: Relocatoin and Allocation model 

 



def mcmclp_additive_model(demand_csv, candidates_csv, ODMatrix_csv, time_threshold, 

unit_car_capacity, 

                          maximal_cars_per_site,Output_csv, total_added_cars, additive_mode=0): 

    # read input data for the model 

    demands = read_demands(demand_csv) 

    candidates = read_candidate_sites(candidates_csv) 

    coverage_matrix = create_OD_matrix(ODMatrix_csv, time_threshold) 

    max_matrix_rural = create_OD_matrix(ODMatrix_csv, max_time_rural)   #Create an upper 

bound coverage matrix for rural demands 

    max_matrix_urban = create_OD_matrix(ODMatrix_csv, max_time_urban)   #Create an 

upper bound coverage matrix for urban demands 

 

    from docplex.mp.environment import Environment 

    env = Environment() 

 

    # create a model 

    from docplex.mp.model import Model 

    mdl = Model("EMS vehicles") 

 

    # define the decision variables 



    # dv1: the percentage of demand i covered by facility j 

    y_i_j_vars = mdl.continuous_var_matrix(demands["DemandID"], candidates["StationID"], 

ub=1, name="y") 

 

    # dv2: the number of cars added at a station 

    x_j_vars = mdl.integer_var_dict(candidates["StationID"], name="x") 

 

    # add constraints 

    # ct1: the allocated demand should not exceed the capacity of the facility 

    # ct2: The total number of cars at each site should not exceed maximal_cars_per_site 

    for j in candidates["StationID"]: 

        num_existing_cars = candidates.loc[candidates["StationID"] == j, 

"NumberOfAmbulances"].item() 

        if additive_mode == 0: 

            num_existing_cars = 0 

        num_total_cars = num_existing_cars + x_j_vars[j] 

        mdl.add_constraint(num_total_cars <= maximal_cars_per_site) 

        mdl.add_constraint(mdl.scal_prod([y_i_j_vars[i, j] for i in demands["DemandID"]], 

demands["CallFreq"]) 

                           <= unit_car_capacity * num_total_cars) 



 

    # ct3: the total number of EMS vehicles added should be equal to total_added_cars 

    mdl.add_constraint(mdl.sum(x_j_vars[j] for j in candidates["StationID"]) == 

total_added_cars) 

 

    # ct4: The allocated demand at i should not exceed 100% 

    for i in demands["DemandID"]: 

        mdl.add_constraint(mdl.sum(y_i_j_vars[i, j] for j in candidates["StationID"]) == 1) 

   

    # ct5: Upper bound for urban and rural demands                #NEW 

    for i in demands.loc[demands["Urban"] == 1,"DemandID"]: 

        mdl.add_constraint(mdl.sum(max_matrix_urban.loc[j,i]* x_j_vars[j] for j in 

candidates["StationID"]) >= 1) 

    for i in demands.loc[demands["Urban"] == 0,"DemandID"]: 

        mdl.add_constraint(mdl.sum(max_matrix_rural.loc[j,i]* x_j_vars[j] for j in 

candidates["StationID"]) >= 1) 

 

    # express the objective 

    total_covered_demand = mdl.sum(y_i_j_vars[i, j] * demands.loc[demands["DemandID"] 

== i, "CallFreq"].item() * 

                                   coverage_matrix.loc[j, i] 



                                   for i in demands["DemandID"] 

                                   for j in candidates["StationID"]) 

    mdl.maximize(total_covered_demand) 

    mdl.print_information() 

 

    # solve the model 

    mdl.solve() 

 

    # print the solution 

    print("Total covered demand = %g" % mdl.objective_value) 

    total_cars = 0    

    for j in candidates["StationID"]: 

        num_added_cars = round(x_j_vars[j].solution_value) 

        total_cars += num_added_cars 

        if (num_added_cars>0): 

            print("{0} #vehicles added: {1!s}".format(j, num_added_cars)) 

   #     print([y_i_j_vars[i, j].solution_value for i in demands["DemandID"]]) 

     

    print("total cars added: {0!s}".format(total_cars)) 

 



''' 

Run the models 

''' 

# Model parameters 

input_data_folder = r"Folder_Path" 

demand_csv = input_data_folder + "\Demand.csv" 

candidates_csv = input_data_folder + "\Stations.csv" 

ODMatrix_csv = input_data_folder + "\ODMatrix.csv" 

Output_csv= input_data_folder + "\output.csv" 

time_threshold = 5  # minutes 

unit_car_capacity = 2387  # 224355/94 

maximal_cars_per_site = 3 

 

max_time_rural= 16 #minutes      

max_time_urban= 48 #minutes      

 

# use scenario variable to control which model will run 

# 0 - assess the covered demand based on the current distribution of EMS vehicles 

# 1 - scenario 1 where all cars can be relocated for optimization 

# 2 - scenario 2 where existing cars remain and added cars are optimally located 



scenario = 2 

 

# run the model 

 

if scenario == 1:  # run the model for scenario 1 and 2 

    mcmclp_additive_model(demand_csv, candidates_csv, ODMatrix_csv, time_threshold, 

unit_car_capacity, 

                          maximal_cars_per_site,Output_csv, 

                          total_added_cars=94, additive_mode=0) 

elif scenario == 2:  # run the model for scenario 2  

    for i in range (0,11): #adding zero to 10 new vehicles 

         mcmclp_additive_model(demand_csv, candidates_csv, ODMatrix_csv, time_threshold, 

unit_car_capacity, 

                          maximal_cars_per_site, Output_csv, 

                          total_added_cars=i, additive_mode=1) 

elif scenario == 0:  # assess the covered demand based on the current distribution of EMS 

vehicles 

    calculate_objective_with_current_car_distribution(demand_csv, candidates_csv, 

ODMatrix_csv, time_threshold, 

                                                      unit_car_capacity) 

  



File 3. Comparison of current distribution (scenario 0) vs. relocated distribution (scenario 1) 
of ambulance vehicles in Mashhad, Iran. 

 

Scenario: 0 : Current 
situation 

1 : Relocation 
model 

Total covered demands (%) 155,617 (69.36%) 168,700 (75.19%) 
Number of EMS stations (number of 

ambulance vehicles) 
55(1) + 18(2) + 

1(3) 
12(0) + 37(1) + 

18(2) + 7(3) 
Station ID location (longitude, latitude) No. of vehicles No. of vehicles 

1 Urban (59.5806,36.2919) 2 2 
2 Urban (59.6258,36.2861) 2 0 
3 Urban (59.5819,36.3308) 2 3 
4 Urban (59.5103,36.3300) 3 3 
5 Urban (59.6428,36.3008) 2 3 
6 Urban (59.4944,36.3650) 1 1 
7 Urban (59.5406,36.2842) 1 1 
8 Urban (59.6036,36.2478) 2 3 
9 Urban (59.5481,36.3292) 2 1 
10 Urban (59.6578,36.3150) 1 2 
11 Urban (59.6131,36.3144) 1 2 
12 Urban (59.6628,36.2708) 2 1 
13 Urban (59.5911,36.2747) 1 0 
14 Urban (59.5956,36.3431) 2 1 
15 Urban (59.5150,36.3594) 1 2 
16 Urban (59.6111,36.2864) 1 3 
17 Urban (59.6486,36.3300) 1 1 
18 Urban (59.5908,36.2858) 1 2 
19 Urban (59.5964,36.3042) 1 1 
20 Urban (59.6222,36.2978) 1 0 
21 Urban (59.6033,36.2814) 1 0 
22 Urban (59.6519,36.2642) 1 1 
23 Urban (59.5172,36.3025) 2 2 
24 Urban (59.6072,36.2700) 2 1 
25 Urban (59.5639,36.3167) 1 1 
26 Urban (59.6344,36.2683) 2 2 
27 Urban (59.6172,36.3147) 1 2 
28 Urban (59.6256,36.2197) 2 0 
29 Urban (59.5431,36.3725) 2 1 
30 Urban (59.6194,36.3289) 2 2 
31 Urban (59.4975,36.3150) 2 3 
32 Urban (59.6214,36.2678) 1 2 
33 Urban (59.5917,36.2611) 1 1 
34 Urban (59.6739,36.2997) 1 2 
35 Urban (59.5989,36.2906) 1 2 
36 Urban (59.6519,36.1139) 1 0 
37 Urban (59.5431,36.2869) 1 1 
38 Urban (59.4733,36.3756) 1 1 



39 Urban (59.6789,36.3147) 2 0 
40 Urban (59.5383,36.3583) 1 1 
41 Urban (59.4681,36.3642) 1 1 
42 Urban (59.4981,36.3217) 1 1 
43 Urban (59.6011,36.2944) 1 2 
44 Urban (59.5428,36.34) 1 1 
45 Urban (59.6247,36.3492) 1 1 
46 Urban (59.4858,36.3606) 1 0 
47 Urban (59.6414,36.3156) 1 2 
48 Urban (59.4767,36.3364) 1 2 
49 Urban (59.6781,36.3214) 2 2 
50 Urban (59.5353,36.3153) 1 1 
51 Urban (59.5125,36.3611) 1 1 
52 Urban (59.605,36.3328) 1 2 
53 Urban (59.6417,36.2669) 1 0 
54 Urban (59.5083,36.3964) 1 3 
55 Rural (59.7167,36.4483) 1 1 
56 Urban (59.6425,36.2272) 1 0 
57 Urban (59.6644,36.2133) 1 1 
58 Rural (59.7283,36.2372) 1 1 
59 Rural (59.5136,36.4844) 1 1 
60 Rural (59.6725,36.4328) 1 1 
61 Rural (59.6501,36.4633) 1 0 
62 Urban (59.6939,36.2753) 1 1 
63 Rural (59.4892,36.4189) 2 1 
64 Urban (59.5172,36.37) 1 1 
65 Urban (5961404,362904) 1 2 
66 Rural (59.8375,36.5856) 1 1 
67 Rural (59.5836,36.9889) 1 1 
68 Rural (59.9603,36.0783) 1 1 
69 Rural (59.3911,36.7858) 1 1 
70 Rural (59.7367,36.0947) 1 1 
71 Rural (59.3581,36.985) 1 1 
72 Rural (59.4225,36.8886) 1 1 
73 Rural (59.1278,36.2586) 1 0 
74 Rural (59.6694,36.6539) 1 1 

 

 

 


