
Supplementary Materials

File 1. Main location-allocation models used in the literature and their implications for use in
this study

Applied model
(reference)

Author (year) Model description Implication for use in this
study

P-median Church (1990) Optimally locates p
facilities to minimize
the average travel time

NP-hard; ignores remote
demands

P-center Revelle (1989) Optimally locates p
facilities to minimize
the maximum travel
time

NP-hard; Not optimize
the average travel time

Location Set
Covering
Problem
(LSCP)

Toregas (1971) to find the minimum
number of facilities and
their locations to cover
all of the demand points
in a pre-defined
standard

Requires a lot of facilities
to cover all demands

Maximal
Covering
Location
Problem
(MCLP)

Church and
ReVelle (1974)

to locate a fixed number
of facilities to
maximize the total
demand covered by at
least one facility

The capacity of
ambulances is ignored.

Dynamic
Double
Standard
Model
(DDSM)

Gendreau et al.
(2001)

Relocate ambulances
optimally at time (t)
when a request is
registered

Real time data is needed.

Capacitated
MCLP

Current and
Storbeck (1988)

Adds maximum
capacity constraint to
MCLP formulation

Some remote demands
could be ignored

File 2. Location allocation model script

import pandas as pd

import numpy as np

import csv

try:

 import docplex.mp

except:

 raise Exception('Please install docplex. See https://pypi.org/project/docplex/')

#load datasets

#load excel file of stations with including ID and Number of ambulance vehicles

def read_candidate_sites(candidates_csv_path):

 df = pd.read_csv(candidates_csv_path)

 df["NumberOfAmbulances"] = df["NumberOfAmbulances"].fillna(value=0)

 return df

#load excel file of demand points including ID, Call frequancy, and location (urban/rural)

def read_demands(demand_csv_path):

 df = pd.read_csv(demand_csv_path)

 df["CallFreq"] = df["CallFreq"].fillna(value=0)

 return df

#load cost matrix including FacilityID, DemandID, DriveTime

def create_OD_matrix(OD_csv_path, time_threshold):

 df = pd.read_csv(OD_csv_path)

 # determine the cover relationship based on the travel time and the service standard

 df["Covered"] = np.where(df["DriveTime"] < time_threshold, 1, 0)

 # create pivot table for OD matrix

 pivot = df.pivot("StationID", "DemandID", "Covered")

 return pivot

Scenario 0: Current distribution

def calculate_objective_with_current_car_distribution(demand_csv, candidates_csv,

ODMatrix_csv, time_threshold,

 unit_car_capacity):

 # read input data for the model

 demands = read_demands(demand_csv)

 candidates = read_candidate_sites(candidates_csv)

 coverage_matrix = create_OD_matrix(ODMatrix_csv, time_threshold)

 from docplex.mp.environment import Environment

 env = Environment()

 env.print_information()

 from docplex.mp.model import Model

 mdl = Model("EMS vehicles")

 # Define the decision variables

 # percentage of demand i covered by facility j

 y_i_j_vars = mdl.continuous_var_matrix(demands["DemandID"], candidates["StationID"],

ub=1, name="y")

 # add constraints

 # ct1: the allocated demand should not exceed the capacity of the facility

 for j in candidates["StationID"]:

 mdl.add_constraint(mdl.scal_prod([y_i_j_vars[i, j] for i in demands["DemandID"]],

demands["CallFreq"])

 <= unit_car_capacity * candidates.loc[

 candidates["StationID"] == j, "NumberOfAmbulances"].item())

 # ct2: The allocated demand at i should not exceed 100%

 for i in demands["DemandID"]:

 mdl.add_constraint(mdl.sum(y_i_j_vars[i, j] for j in candidates["StationID"]) == 1)

 # express the objective

 total_covered_demand = mdl.sum(y_i_j_vars[i, j] * demands.loc[demands["DemandID"]

== i, "CallFreq"].item() *

 coverage_matrix.loc[j, i]

 for i in demands["DemandID"]

 for j in candidates["StationID"])

 mdl.maximize(total_covered_demand)

 mdl.print_information()

 # solve the model

 mdl.solve()

 # print the solution

 print("Total covered demand = %g" % mdl.objective_value)

#Scenaro 1 and 2: Relocatoin and Allocation model

def mcmclp_additive_model(demand_csv, candidates_csv, ODMatrix_csv, time_threshold,

unit_car_capacity,

 maximal_cars_per_site,Output_csv, total_added_cars, additive_mode=0):

 # read input data for the model

 demands = read_demands(demand_csv)

 candidates = read_candidate_sites(candidates_csv)

 coverage_matrix = create_OD_matrix(ODMatrix_csv, time_threshold)

 max_matrix_rural = create_OD_matrix(ODMatrix_csv, max_time_rural) #Create an upper

bound coverage matrix for rural demands

 max_matrix_urban = create_OD_matrix(ODMatrix_csv, max_time_urban) #Create an

upper bound coverage matrix for urban demands

 from docplex.mp.environment import Environment

 env = Environment()

 # create a model

 from docplex.mp.model import Model

 mdl = Model("EMS vehicles")

 # define the decision variables

 # dv1: the percentage of demand i covered by facility j

 y_i_j_vars = mdl.continuous_var_matrix(demands["DemandID"], candidates["StationID"],

ub=1, name="y")

 # dv2: the number of cars added at a station

 x_j_vars = mdl.integer_var_dict(candidates["StationID"], name="x")

 # add constraints

 # ct1: the allocated demand should not exceed the capacity of the facility

 # ct2: The total number of cars at each site should not exceed maximal_cars_per_site

 for j in candidates["StationID"]:

 num_existing_cars = candidates.loc[candidates["StationID"] == j,

"NumberOfAmbulances"].item()

 if additive_mode == 0:

 num_existing_cars = 0

 num_total_cars = num_existing_cars + x_j_vars[j]

 mdl.add_constraint(num_total_cars <= maximal_cars_per_site)

 mdl.add_constraint(mdl.scal_prod([y_i_j_vars[i, j] for i in demands["DemandID"]],

demands["CallFreq"])

 <= unit_car_capacity * num_total_cars)

 # ct3: the total number of EMS vehicles added should be equal to total_added_cars

 mdl.add_constraint(mdl.sum(x_j_vars[j] for j in candidates["StationID"]) ==

total_added_cars)

 # ct4: The allocated demand at i should not exceed 100%

 for i in demands["DemandID"]:

 mdl.add_constraint(mdl.sum(y_i_j_vars[i, j] for j in candidates["StationID"]) == 1)

 # ct5: Upper bound for urban and rural demands #NEW

 for i in demands.loc[demands["Urban"] == 1,"DemandID"]:

 mdl.add_constraint(mdl.sum(max_matrix_urban.loc[j,i]* x_j_vars[j] for j in

candidates["StationID"]) >= 1)

 for i in demands.loc[demands["Urban"] == 0,"DemandID"]:

 mdl.add_constraint(mdl.sum(max_matrix_rural.loc[j,i]* x_j_vars[j] for j in

candidates["StationID"]) >= 1)

 # express the objective

 total_covered_demand = mdl.sum(y_i_j_vars[i, j] * demands.loc[demands["DemandID"]

== i, "CallFreq"].item() *

 coverage_matrix.loc[j, i]

 for i in demands["DemandID"]

 for j in candidates["StationID"])

 mdl.maximize(total_covered_demand)

 mdl.print_information()

 # solve the model

 mdl.solve()

 # print the solution

 print("Total covered demand = %g" % mdl.objective_value)

 total_cars = 0

 for j in candidates["StationID"]:

 num_added_cars = round(x_j_vars[j].solution_value)

 total_cars += num_added_cars

 if (num_added_cars>0):

 print("{0} #vehicles added: {1!s}".format(j, num_added_cars))

 # print([y_i_j_vars[i, j].solution_value for i in demands["DemandID"]])

 print("total cars added: {0!s}".format(total_cars))

'''

Run the models

'''

Model parameters

input_data_folder = r"Folder_Path"

demand_csv = input_data_folder + "\Demand.csv"

candidates_csv = input_data_folder + "\Stations.csv"

ODMatrix_csv = input_data_folder + "\ODMatrix.csv"

Output_csv= input_data_folder + "\output.csv"

time_threshold = 5 # minutes

unit_car_capacity = 2387 # 224355/94

maximal_cars_per_site = 3

max_time_rural= 16 #minutes

max_time_urban= 48 #minutes

use scenario variable to control which model will run

0 - assess the covered demand based on the current distribution of EMS vehicles

1 - scenario 1 where all cars can be relocated for optimization

2 - scenario 2 where existing cars remain and added cars are optimally located

scenario = 2

run the model

if scenario == 1: # run the model for scenario 1 and 2

 mcmclp_additive_model(demand_csv, candidates_csv, ODMatrix_csv, time_threshold,

unit_car_capacity,

 maximal_cars_per_site,Output_csv,

 total_added_cars=94, additive_mode=0)

elif scenario == 2: # run the model for scenario 2

 for i in range (0,11): #adding zero to 10 new vehicles

 mcmclp_additive_model(demand_csv, candidates_csv, ODMatrix_csv, time_threshold,

unit_car_capacity,

 maximal_cars_per_site, Output_csv,

 total_added_cars=i, additive_mode=1)

elif scenario == 0: # assess the covered demand based on the current distribution of EMS

vehicles

 calculate_objective_with_current_car_distribution(demand_csv, candidates_csv,

ODMatrix_csv, time_threshold,

 unit_car_capacity)

File 3. Comparison of current distribution (scenario 0) vs. relocated distribution (scenario 1)
of ambulance vehicles in Mashhad, Iran.

Scenario: 0 : Current
situation

1 : Relocation
model

Total covered demands (%) 155,617 (69.36%) 168,700 (75.19%)
Number of EMS stations (number of

ambulance vehicles)
55(1) + 18(2) +

1(3)
12(0) + 37(1) +

18(2) + 7(3)
Station ID location (longitude, latitude) No. of vehicles No. of vehicles

1 Urban (59.5806,36.2919) 2 2
2 Urban (59.6258,36.2861) 2 0
3 Urban (59.5819,36.3308) 2 3
4 Urban (59.5103,36.3300) 3 3
5 Urban (59.6428,36.3008) 2 3
6 Urban (59.4944,36.3650) 1 1
7 Urban (59.5406,36.2842) 1 1
8 Urban (59.6036,36.2478) 2 3
9 Urban (59.5481,36.3292) 2 1
10 Urban (59.6578,36.3150) 1 2
11 Urban (59.6131,36.3144) 1 2
12 Urban (59.6628,36.2708) 2 1
13 Urban (59.5911,36.2747) 1 0
14 Urban (59.5956,36.3431) 2 1
15 Urban (59.5150,36.3594) 1 2
16 Urban (59.6111,36.2864) 1 3
17 Urban (59.6486,36.3300) 1 1
18 Urban (59.5908,36.2858) 1 2
19 Urban (59.5964,36.3042) 1 1
20 Urban (59.6222,36.2978) 1 0
21 Urban (59.6033,36.2814) 1 0
22 Urban (59.6519,36.2642) 1 1
23 Urban (59.5172,36.3025) 2 2
24 Urban (59.6072,36.2700) 2 1
25 Urban (59.5639,36.3167) 1 1
26 Urban (59.6344,36.2683) 2 2
27 Urban (59.6172,36.3147) 1 2
28 Urban (59.6256,36.2197) 2 0
29 Urban (59.5431,36.3725) 2 1
30 Urban (59.6194,36.3289) 2 2
31 Urban (59.4975,36.3150) 2 3
32 Urban (59.6214,36.2678) 1 2
33 Urban (59.5917,36.2611) 1 1
34 Urban (59.6739,36.2997) 1 2
35 Urban (59.5989,36.2906) 1 2
36 Urban (59.6519,36.1139) 1 0
37 Urban (59.5431,36.2869) 1 1
38 Urban (59.4733,36.3756) 1 1

39 Urban (59.6789,36.3147) 2 0
40 Urban (59.5383,36.3583) 1 1
41 Urban (59.4681,36.3642) 1 1
42 Urban (59.4981,36.3217) 1 1
43 Urban (59.6011,36.2944) 1 2
44 Urban (59.5428,36.34) 1 1
45 Urban (59.6247,36.3492) 1 1
46 Urban (59.4858,36.3606) 1 0
47 Urban (59.6414,36.3156) 1 2
48 Urban (59.4767,36.3364) 1 2
49 Urban (59.6781,36.3214) 2 2
50 Urban (59.5353,36.3153) 1 1
51 Urban (59.5125,36.3611) 1 1
52 Urban (59.605,36.3328) 1 2
53 Urban (59.6417,36.2669) 1 0
54 Urban (59.5083,36.3964) 1 3
55 Rural (59.7167,36.4483) 1 1
56 Urban (59.6425,36.2272) 1 0
57 Urban (59.6644,36.2133) 1 1
58 Rural (59.7283,36.2372) 1 1
59 Rural (59.5136,36.4844) 1 1
60 Rural (59.6725,36.4328) 1 1
61 Rural (59.6501,36.4633) 1 0
62 Urban (59.6939,36.2753) 1 1
63 Rural (59.4892,36.4189) 2 1
64 Urban (59.5172,36.37) 1 1
65 Urban (5961404,362904) 1 2
66 Rural (59.8375,36.5856) 1 1
67 Rural (59.5836,36.9889) 1 1
68 Rural (59.9603,36.0783) 1 1
69 Rural (59.3911,36.7858) 1 1
70 Rural (59.7367,36.0947) 1 1
71 Rural (59.3581,36.985) 1 1
72 Rural (59.4225,36.8886) 1 1
73 Rural (59.1278,36.2586) 1 0
74 Rural (59.6694,36.6539) 1 1

