
Abstract
This study integrates geographical information systems (GIS)

with a mathematical optimization technique to enhance emergen-
cy medical services (EMS) coverage in a county in the northeast
of Iran. EMS demand locations were determined through one-year
EMS call data analysis. We formulated a maximal covering loca-
tion problem (MCLP) as a mixed-integer linear programming
model with a capacity threshold for vehicles using the CPLEX
optimizer, an optimization software package from IBM. To ensure
applicability to the EMS setting, we incorporated a constraint that
maintains an acceptable level of service for all EMS calls.
Specifically, we implemented two scenarios: a relocation model
for existing ambulances and an allocation model for new ambu-
lances, both using a list of candidate locations. The relocation
model increased the proportion of calls within the 5-minute cov-
erage standard from 69% to 75%. With the allocation model, we
found that the coverage proportion could rise to 84% of total calls
by adding ten vehicles and eight new stations. The incorporation
of GIS techniques into optimization modelling holds promise for
the efficient management of scarce healthcare resources, particu-
larly in situations where time is of the essence.

Introduction
A foundational goal of emergency medical services (EMS) is

to provide timely and life-saving care to individuals who are
experiencing a medical emergency (Aringhieri et al., 2017, Martinez,
1998).The patients’ survival rate in pre-hospital care is mainly
associated with response time, which refers to the time from call
for service received to arrival at the scene of a medical emergency
(Ong et al., 2009). According to Haddadi et al. (2017) over 50%
of individuals who lost their lives in emergency events died at the
scene and about 16% died on their way to the hospital. In EMS, an
8-minute response time is widely regarded as a generally accepted
standard in many regions (Pons et al., 2002, Rhodes et al., 2023).

Thus, the distribution of EMS plays an influential role in
timely pre-hospital service delivery (Sasaki et al., 2010).

Geographical information systems (GIS) are used in the public
health domain in a variety of applications. GIS and related spatial
techniques have been used for a variety of investigations, including
analysis of the spatial patterns of diseases resource allocations
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and planning (Hashtarkhani et al., 2020; Kiani et al., 2018;
Nykiforuk & Flaman, 2011; Tabari et al., 2020). For EMS, GIS
provides a powerful tool to capture and analyze call for service
data, call location, and responding vehicle locations (Azimi et al.,
2021). The call for service data contains timestamps such as the
time when the call was received, the time when the call was
assigned to an ambulance, the time when the ambulance departed,
etc. (Thi Nguyen, 2015). With network analysis functionalities and
online navigation tools, GIS assists in decision-making, e.g.,
through optimization modelling that can be used by EMS planners
to explore resource allocation (Chuvieco, 1993).

Location-allocation problems deal with identifying optimal
facility locations for addressing specific demands on service use
(Vafaeinejad et al., 2020). Due to the importance and sensitivity of
the EMS settings, a large portion of the location-allocation litera-
ture is devoted to this domain (Sher et al., 2008). These models are
typically adopted from three types of classic models, p-median
models, p-centre models and the location-covering models, which
optimally locate facilities in order to minimize the total or average
travel time from the demand location to their nearest facility
(Daskin & Maass, 2015). The p-centre problem minimizes the
maximum service distance from all facilities location covering
operation by considering a demand point covered when receiving
service from a facility within the specified threshold of travel time
or distance (Daskin & Maass, 2015; Farahani et al., 2012). The
location set cover problem (LSCP), introduced by Toregas et al.
(1971) and the maximum cover location problem (MCLP) intro-
duced by Church and ReVelle (1974), have received considerable
attention in the literature on location covering (Farahani et al.,
2012). The objective of the LSCP is to find the minimum number
of facilities and their locations to cover all of the demand points in
a pre-defined standard (Toregas et al., 1971). The MCLP, on the
other hand, aims to locate a fixed number of facilities in order to
maximize the total demand covered by at least one facility (Church
& ReVelle, 1974). The first is a planning tool to determine the
appropriate number of facilities needed to cover all service
demands, while the second attempts to make the best possible use
of all available resources (Brotcorne et al., 2003). 

A basic underlying assumption of the different versions of the
MCLP model is that a facility can deliver service to unlimited ser-
vice demands inside the coverage area. In reality, however, many
service facilities cannot ensure an acceptable level of service due
to limited capacity. For example, an ambulance station can only
respond to all emergency calls within a given time frame.
Therefore, the capacity limit is a crucial consideration in location
problems, especially in the placement of EMS facilities. Efforts
have been made to solve this constraint through probabilistic mod-
elling approaches (Daskin, 1983; de Assis Corrêa et al., 2009;
Marianov & Serra, 1998). These models assign a probability of
unavailability to facilities that reduce or prevent unlimited service
delivery (Galvão et al., 2005). Another approach, introduced by
Current and Storbeck (1988) and applied by researchers in various
fields (Gazani & Niaki, 2021; Liao & Guo, 2008; Vafaeinejad et
al., 2020 Yin & Mu, 2012), is to develop the capacitated version of
the MCLP. This model adds a maximum capacity constraint into
the mathematical formulations of the MCLP to ensure that the
demands allocated to a facility should not exceed the maximum
capacity of that facility (Gazani & Niaki, 2021). However, the clas-
sic capacitated MCLP only considers the demands within the ser-
vice coverage standard and ignores remote uncovered demands.
This issue may be acceptable in many contexts, such as allocating

retail stores, where the aim is to cover the maximum customers in
a short time even by losing a portion of them due to long distance
(Cazabat et al., 2017). However, in settings that deal with emer-
gency response and saving lives, every demand must receive a
minimum of acceptable care in a reasonable time, even in remote
and low-population areas. Accordingly, some researchers have
applied multi-objective models that target more than one aim
including, such as minimizing response times, reducing vehicle
operating costs and improving overall system performance.
However, the complexity of these models and the practical con-
straints on the resources available for allocation is challenging
(Yin & Mu, 2012; Haghani, 1996). Supplementary Materials, file
no. 1 summarizes some of the famous location-allocation models
and outlines their limitations in relation to the present study.

This study aimed to find the best locations for existing and new
ambulance vehicles using a modified version of the capacitated
MCLP that maintains an acceptable level of service for all EMS
calls. The objectives of the study were to i) relocate existing vehi-
cles optimally within the existing facilities in a way that all of the
demand points have acceptable access; and ii) allocate new vehicles
in optimum locations, including existing facilities and new candi-
date facility sites. These objectives were tested in two different sce-
narios by using them as baseline compared to the current situation.

Materials and Methods

Study area
This study was conducted in county of Mashhad, including

Mashhad City, the capital of Razavi Khorasan Province, located
in the north-eastern region of Iran. In 2016, Mashhad had an esti-
mated population of almost 3.8 million, with over 3 million in the
urban areas (www.amar.org.ir/english). This is the second most
populous city in Iran, and also the number-one tourist destination
in the country, with over 20 million visitors per annum
(Kafashpor et al., 2018). Mashhad county has one EMS call cen-
tre, which dispatches ambulances.

Data and design
To perform a location-allocation model, three input datasets

are necessary. To that end a set of potential service facilities; a set
of demand points; and a cost matrix that shows the travel cost (e.g.,
drive time) between any pair of EMS stations and demand point
(Schietzelt & Densham, 2003) were used. Using GIS, these com-
ponents were prepared as follows.

i) Potential EMS stations
Mashhad County has 94 ambulance vehicles distributed across

74 stations. Most of these resources are allocated to the urban area
of Mashhad (79 ambulances in 59 stations). Figure 1 shows the
study area and the current EMS station locations. Each station
includes one, two or three ambulances. Moreover, our assessment
has identified 233 potential new candidate locations, including
existing hospitals and other public health-related facilities, where
new EMS stations could be established. Figure 2A provides an
overview of the distribution of these candidate locations within
Mashhad County.
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Figure 2. Required datasets for EMS location-allocation. A) 233 candidate locations for new EMS stations; B) road network dataset
with two example routes.

Figure 1. Distribution of existing stations and demand polygons. A) whole study area; B) urban area.
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ii) Demand points
This study used historical EMS calls to represent the spatial

distribution of the demand in the study area. We extracted 224,355
anonymized EMS request data from 1 June 2019 to 31 May 2020
from the EMS call centre of Mashhad. All of the records contained
the geographical location of the emergency event expressed in dec-
imal degrees. To reduce the computational intensity while keeping
high locational accuracy of demand in the location-allocation mod-
elling, we created a hexagonal tessellation network covering the
emergency call points in the study area (Figure 1B). To this end,
hexagonal polygons equivalent to the two km2 average area of
neighbourhoods in Mashhad (Hashtarkhani et al., 2020) were used.
After removing polygons with zero calls for service 990 polygons
remained out of 7,200, with a minimum of one call and a maxi-
mum of 6,144 calls for service over the year (Figure 1B). Out of
990 demand polygons, 231 were urban and 759 rural. Centroids of
these 990 polygons were used as the location of demand points,
while the number of calls within each polygon represented the
demand weight. The spatio-temporal characteristics of the EMS
callers have been described in a recent research article
(Hashtarkhani et al., 2021). This study revealed that the Holy
Shrine in the downtown area of Mashhad is an influencing factor
with regard to EMS requests.

iii) Cost matrix
Network distance was used to estimate the travel times of facil-

ity-to-demand routes. To this end, the digital road network of the
study area was downloaded from the OpenStreetMap (OSM)
database, a free and editable geographical database covering the
whole world. The OSM speed limit for Iran were used for different
types of road types, including motorway (120 km/h), trunk (100
km/h), primary (80 km/h), secondary (60 km/h), tertiary (40 km/h),
unclassified (30 km/h), and residential roads (20 km/h)
(OpenStreetMap, 2021. We performed pre-processing on the digi-
tal road network of the study area to correct digitizing errors. We
manually corrected errors where possible and used automated
algorithms to remove any remaining errors. Then the Origin-
Destination cost matrix tool of ArcGISTM, v.10.5 (ESRI, Redlands
Ca, USA) was used to create the cost matrix of travel times mea-
sured in minutes. Figure 2B shows two examples of routing in the
road network dataset as well as the estimated travel times.

The ocation-allocation model
The basic model of capacitated MCLP was adopted from

Haghani (1996) and implemented with IBM ILOG CPLEX
Optimization Studio v. 20.1 with the Python3 interface. CPLEX is
a prescriptive analytics solution that enables rapid development
and deployment of decision optimization models using mathemat-
ical and constraint programming (Nickel et al., 2022). The capaci-
tated MCLP is a mathematical optimization problem that aims to
determine the best locations to place facilities or vehicles to cover
a set of demand points while considering constraints on facility
capacity and travel time. In the context of EMS, it refers to the
problem of locating ambulance vehicles or stations to ensure that
all demand points are covered within a certain travel distance,
while considering the capacity of the ambulance vehicles and the

number of vehicles that can be stationed at each facility. The objec-
tive is to maximize the number of covered demand points while
considering the capacity constraints. To address the drawback of
ignoring demands that cannot be reached within the service stan-
dard, we modified the formulation by adding a constraint ensuring
that all demand points must have at least one ambulance vehicle
within a given travel time threshold. We defined this threshold as
the target travel time.  As urban and rural areas naturally have dif-
ferent spatial configurations of demands and EMS stations, we
applied two target time thresholds, with the shorter one used for
the urban demand points and the longer one for the rural demand
points. 

Sets/parameters
Iu = the set of urban demand points;
Ir = the set of rural demand points;
I = the set of all demand points {1, …,i, …, m}; I = {IuUIr};
J = the set of potential facility sites {1, …, j, …, n}; 
s = the service coverage standard for optimisation (minute); 
dij= the travel time from potential facility site i to demand point j;

ai = the amount of service demands at demand point i; 
p = the total number of ambulance vehicles to be located;
c = the capacity of one ambulance vehicle (i.e., the maximum num-
ber of demands that a vehicle can cover);
k = the maximum number of ambulance vehicles that can be sta-
tioned on each potential facility site
qu = the maximum service distance within which each urban
demand point has at least one ambulance;

qr = the maximum service distance within which each rural
demand point has at least one ambulance;

bj = the number of existing ambulance vehicles stationed at poten-
tial facility site j;
xj = the number of ambulance vehicles newly added to potential
facility site j; an EMS station is located on potential site j when bj

+ xj> 0;
yij = the percentage of demands at demand point i that is allocated
to the facility on site j.

Model formulation

Maximize                                                        (1)
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where (1) is the objective function, which  seeks to maximize the
number of covered demands; (2) the constraint ensuring that the
total allocated demands to any facility cannot exceed the total
capacity of ambulance vehicles stationed there; (3) the constraint
specifying the total number of ambulance vehicles to be located;
(4) the constraint ensuring that the summation of demand ratios
allocated to facilities should be one for any demand point; (5) the
constraint restricting the discrete decision variable xj, which ranges
from 0 to k; (6) the constraint restricting the continuous decision
variable yij, which ranges from 0 to 1; and (7) and (8) two con-
straints added in this study to ensure that all of the demand points
would have at least one ambulance vehicle within the travel time
of qu and qr for urban and rural locations, respectively. It should be
noted that the model in the current format was designed to optimal-
ly locate newly added vehicles, while keeping the current distribu-
tion of the existing vehicles. However, when the existing vehicles
at all stations were set to 0 (i.e., bj=0, ∀ j ∊ J), the model converted
to a model capable of optimally locating all vehicles without any
existing vehicles already located. The Python script related to this
model is available in Supplementary Materials, file no. 2.

Scenarios
The location-allocation problem was studied within the context

of different scenarios: the current situation, named scenario 0, and
the two main ones under study: 1 and 2. The results of these sce-
narios were visualized in GIS maps.

Scenario 0: the current situation
This scenario aims to calculate the covered demand in the cur-

rent situation without modifying the location of stations or ambu-
lances. In fact, this scenario does not include any optimization
techniques and serves only as a baseline for our study providing
reference for comparisons. The parameters were set to calculate
the coverage of 990 call-for-service demand locations (m) based
on 94 existing ambulances (p) in 74 existing stations (n) using a 5-
minute coverage standard. The recommended ideal response time,
which refers to the duration from the moment of an emergency call
to the arrival of EMS personnel at the scene, is typically set at less
than eight minutes in various EMS systems (Cabral et al., 2018;
Pons & Markovchick, 2002; Thi Nguyen, 2015). According to cal-
culations from our recent study (Hashtarkhani et al., 2021), the

average preparation time (from call to starting the mission/jour-
ney) is almost 2.3 minutes; thus, we adjusted the specified cover-
age standard to a 5-minute travel time. The capacity of each ambu-
lance vehicle (c) was set to 2,387, which represents the average
number of emergency missions per year and vehicle.

Scenario 1: relocation of existing vehicles
This scenario aims to maximize the covered demand by relo-

cating the current ambulances with the existing stations (without
adding any new facilities). It inherits all parameters from scenario
0 plus k=3, qu=18min, and qr=48min. These values were set
according to our current practice data according to which there is
no station with more than three ambulances present, and all of the
demand points are serviceable either at ≤18 minutes within the
urban area or <48 minutes within the rural areas of Mashhad
County. We forced the suggested model to preserve thresholds
while maximizing the 5-minute coverage standard.

Scenario 2: allocation of new vehicles and stations
Scenario 2 aims at adding new ambulances to existing or

newly proposed locations to maximize coverage of demand. To do
so, we added one to ten new ambulance vehicles, iteratively, in two
ways: i) by keeping the current distribution of 94 existing vehicles
from scenario 0 and optimally locating new vehicles (p=1 to 10) to
the current stations (n=74) (scenario 2.1); or ii) by keeping the
optimal distribution of 94 existing vehicles from scenario 1 and
optimally locating the new vehicles (p=1 to 10) to the expanded
list of facilities (m=307) that included the 74 existing stations and
233 candidate sites (scenario 2.2). 

Results

Scenario 1: relocation of existing vehicles
Figure 3 shows the distribution of ambulance vehicles in

Scenario 1 (the relocation model) comparing it with Scenario 0
(the current situation). The relocation model removed 12 existing
stations and relocated their vehicles to the remaining 62 stations,
resulting in 37 stations with one vehicle, 18 stations with two vehi-
cles and seven stations with three vehicles. It is notable that using
the relocation model increased the proportion of covered demands
(from 69.4% to 75.2%) in comparison to the current distribution.
The nearly 6% increase in the coverage without adding any vehi-
cles or stations is significant, as it can potentially save more lives.
It is worth noting that all of the stations with more than one vehicle
were located in the urban area in both scenarios. This could be
result of the high number of demands from urban population in our
dataset. The changes in the number of ambulances within each sta-
tion ranged from -2 to 2 vehicles. The strongest variation was seen
in the eastern part of the city, including the downtown area.
Supplementary Materials, file no. 3 includes a detailed comparison
between scenario 1 and scenario 0. 

Scenario 2: allocation of new vehicles
Table 1 shows the optimum locations of new ambulances

according to Scenarios 2.1 and 2.2. Most of the selected locations
in Scenario 2.2 were among new candidate locations (Station IDs
of 75 and higher are new stations). Indeed, only stations 5 and 65
received new ambulance vehicles among the existing stations. The
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difference in the amount of in the amount of demand covered by
the two versions of the scenario is noticeable. This is even more
obvious in Figure 4, which visualizes the trend of demand cover-
age for scenario 2. The proportion of covered demand for Scenario
2.1 was about 69% in the initial specification (equal to Scenario 0).
The increasing trend remained almost steady at 75% after adding

six vehicles. In contrast, Scenario 2.2 showed a steady increase
from the initial point of 75% (equal to Scenario 1) rising to almost
85% after adding ten new vehicles. 

The proposed spatial locations of the new ambulance vehicles
added by Scenarios 2.1 and 2.2 are shown in Figures 5 and 6,
respectively. All of the allocated, additional ambulances by

                   Article

Figure 3. Proposed relocation of ambulance vehicles based on Scenario 1.

Table 1. Locations with total covered demand for 1 to 10 new ambulances.

                                      Scenario 2.1                                               Scenario 2.2
No. of new vehicles      Added vehicles                            Total covered                    Added vehicles                                       Total covered
                                      (Station ID)                                 demands (%)                   (station ID)                                          demands (%)

0                                                -                                                                     155,617 (69.3)                              -                                                                                 168,700 (75.1)
1                                                11                                                                  158,004 (70.4)                              75                                                                              171,087 (76.2)
2                                                11, 65                                                            160,391 (71.4)                              153,195                                                                     173,474 (77.3)
3                                                10, 11, 65                                                      162,355 (72.3)                              65,182,283                                                                175,861 (78.3)
4                                                10, 11, 24, 65                                               164,055 (73.1)                              75,80,93,93                                                               178,248 (79.4)
5                                                10,11, 16, 21, 65                                          165,694 (73.8)                              75, 80, 91, 91, 91                                                      180,635 (80.5)
6                                                10, 11, 24, 31, 52, 65                                   167,249 (74.5)                              75, 80, 91, 91, 91, 102                                             182,974 (81.5)
7                                                10, 11, 24, 31, 48, 52, 65                             168,270 (75.0)                              5, 65, 75, 80, 92, 181, 283                                       184,960 (82.4)
8                                                3, 10, 11, 24, 31, 48, 52, 65                         168,492 (75.0)                              5, 65, 75, 80, 91, 92, 181, 283                                 186,884 (83.3)
9                                                3, 10, 11,16, 19, 31, 48, 52, 65                   168,606 (75.1)                              5, 65, 75, 80, 91, 92, 178, 181, 283                         188,591 (84.0)
10                                              3, 10, 11, 16, 19, 31, 34, 48, 52, 65            168,700 (75.1)                              5, 65, 75, 80, 91, 92, 94, 178, 181, 283                   190,257 (84.8)
Scenario 2.1, existing facility distribution without adding a new station; Scenario 2.2, relocated facility distribution with the addition of new stations; ID, identification.
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Scenario 2.1 were connected with the urban stations, which could
be due to the higher number of emergency requests from urban
population in the dataset. The first five vehicles were added to the
eastern part of the city, but additional vehicles were added to cover
the western part of the city as well. No station received more than
one vehicle in this scenario.

In scenario 2.2, once again, most of the vehicles were assigned
to the stations in urban areas (Figure 6) leading to more of a bal-
ance between East and West of the city with respect to the alloca-
tion of vehicles compared to Scenario 2.1. After adding seven
vehicles, one location outside the city (a north-eastern suburb)
received one ambulance (Figure 6G to H). This station was added
in the third (Figure 6C) but did not reappear as a permanent new
site until a seventh vehicle was added. In Scenario 2.2, up to three
vehicles were added to a single facility location. The station
changes in each step shows how the number of available vehicles
changes the location of stations. For instance, the addition of four
ambulance vehicles resulted in a completely different situation
compared to adding three vehicles as the model recalculates the
covered demands and redistribute the new vehicles for optimum
coverage. 

                                                                                                                                Article

Figure 5. Visualized depiction of scenario 2.1 results.

Figure 4. Percent of covered demands in scenario 2.1 v. scenario
2.2 for each added ambulance vehicle.
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Discussion
Optimizing the location of ambulance vehicles has the poten-

tial to improve EMS service delivery. Response time is a crucial
determinant of patients’ survival in emergency events. Our previ-
ous study (Hashtarkhani et al., 2021) showed that the average
response time is 10.1 and 12.2 minutes for urban and rural events,
respectively, in Mashhad County, which exceed the 8-minute uni-
versal standard (Pons & Markovchick, 2002). Part of this total
response time is related to preparations in the dispatch centre and
the EMS station facility. Therefore, the allocation of ambulances
vehicles capable of reaching potential emergency cases within a 5-
minutes catchment area is of great importance for the final care
outcome. In our study, the proportion of demands within the 5-
minute coverage standard increased from 69% in the current situ-
ation to 75% using the proposed relocation model based on exist-
ing vehicles. Our suggested allocation models also revealed that
this figure could rise to almost 84% by adding up to ten vehicles in
different scenarios. 

At the first stage, we used GIS tools to extract data on facili-
ties, demands and cost matrix. In addition to the existing stations,

we used 233 candidate locations for establishing potentially new
stations. Most of the studies in the location-allocation context used
residential population and administrative divisions to obtain
demand points. However, the residential population does not
include visitors/tourists, while resident characteristics, such as age
distribution and comorbidities needed for weighting the demand
points. Moreover, for studies at a bigger scale than the city level,
there are no population data for roads and remote areas, which are
potential areas for road traffic emergencies (Tabari et al., 2020). To
address these limitations, we utilized EMS call data (and a tessel-
lation network covering the study area) as representative for all
year-around fluctuation of population-based demands. Although
the overall pattern of calls may change every year, the geographi-
cal distribution is likely to be mostly stable, and as such the year
of call data leveraged in this study is a useful proxy for the actual
demand. Online web mapping databases, such as OpenStreetMap
enabled us to calculate network distances from facilities to
demands which would be the better proxy for real travel time data
compared to the Euclidean distance (Buczkowska et al., 2019).

Although the development of location-allocation theories was
independent of GIS development, commercial GIS software (e.g.,
ArcGIS) have started to provide functionalities to solve location

                   Article

Figure 6. Visualized depiction of scenario 2.2 results.
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problems. For example, ArcGIS provides a toolbox capable of
solving six different types of location-allocation problems by min-
imising impedance; maximising coverage; minimising facilities;
maximising attendance; maximising market share; and targeting
market share (Tomintz et al., 2015). However, these tools provide
mostly basic functions and are not flexible enough to catch the
characteristics of various real-world problems. For example, in the
maximized capacity coverage problem type, which is almost simi-
lar to the model we used in this study, a demand node can only
receive service from one facility. If the demand weight exceeds the
service capacity of facilities, the demand point would not be cov-
ered (Tomintz et al., 2015). In 2002, Church published (2002) a
review study on GIS applications in the location-allocation domain
where he mentioned the capabilities of GIS such as storage,
retrieval, analysis, visualization and mapping geospatial data and
stated that it is hard to believe that GIS in the future would just
play a supporting role in location science. However, after almost
two decades, GIS still plays a supporting role in location-allocation
literature and only few studies have employed tools embedded
within a GIS to solve location-allocation optimization models
(Alifi et al., 2017; Ferguson et al., 2016; Mindahun & Asefa,
2019). Using mathematical modelling, we were able to modify the
capacitated MCLP in a way to fit our study context. The modifica-
tions involved adding new constraints to the model to prevent the
removal of stations in rural areas that provide service to a lower
number of calls for service. Without these modifications, the relo-
cation model would have resulted in the closure of some stations,
which would have negatively impacted the delivery of emergency
services in these areas.

Scenario 1 revealed how much a proper relocation plan could
potentially improve the final outcome of an EMS system. Such an
improvement was equal to adding ten vehicles to the existing sta-
tions. Furthermore, the relocation model allowed the evacuation of
12 out of 74 stations and proposed a new efficient distribution
resulting in better service accessibility. Most of the proposed
changes in the station capacities by Scenario 1 were related to the
eastern part of the city, near downtown and the Holy Shrine area
(Figure 3). This area, with a large number of proposed changes,
overlaps with the hotspot cluster of EMS requests we identified ear-
lier using the spatio-temporal scan statistics method (Hashtarkhani
et al., 2021). Downtown Mashhad is an area with a high concentra-
tion of hotels, residential complexes, and shopping malls. Changes
in ambulance deployment in this area show greater effects in the
coverage performance measure. Meanwhile, Scenario 2.2 high-
lights the importance of incorporating new locations into the EMS
resource management plan. Our analysis revealed that establishing
new stations at optimal locations can significantly improve demand
coverage efficiency. Specifically, we found that while the perfor-
mance measure becomes saturated after adding six vehicles in
Scenario 2.1, the addition of new stations in strategic locations
expands opportunities for better demand coverage.

The limitations in this study concern the fact that we used one-
year call data as a proxy of demand points. The analysis would
have been more accurate or realistic if we have had data for multi-
ple years. For instance, with the emergence of COVID-19, the pat-
tern of EMS requests were probably different compared to our
study period. In addition, the severity of reported medical emer-
gencies in EMS calls was not recorded in the database. It is evident
that most severe cases have priority for EMS service delivery, and
if available, we would be able to weigh our demand points accord-
ing to the level of severity. Finally, the issue of modifiable areal

unit problem (Openshaw, 1981) remains inherent to all studies that
focus on aggregated spatial data. Changing the demand polygons,
making them bigger or smaller, could affect the results of the loca-
tion-allocation analysis. 

Conclusions
Integrating GIS and optimization modelling has a great potential

to improve the accessibility and equity in the distribution of EMS
resources. The modified version of the capacitated MCLP model
proposed and evaluated in this study is generalizable to any resource
management problem where the aim is to maintain an acceptable
service coverage level for all demands while maximizing the cover-
age as much as possible. We strongly believe that our model also has
the potential to be used in prospective health service planning
according to current and future patterns of service demands, espe-
cially when the equity of service delivered is essential.
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