
Abstract 
Environmental factors are known to affect outbreak patterns

of infectious disease but their impact on the spread of COVID-19
along with the evolution of this relationship over time and in dif-
ferent regions is unclear. This study utilized three years of data on
COVID-19 cases in the continental United States (US) from 2020
to 2022 together with the corresponding weather data. We used
regression analysis to investigate the weather impact on COVID-
19 spread in mainland US and estimated the change over space
and time. It was found that temperature exhibited a significant and
negative correlation for most of the US while relative humidity
and precipitation showed either positive or negative relationships.
By regressing temperature factors with the spreading rate of
COVID-19 waves, we found the temperature change can explain

over 20% of the spatial-temporal variation, with a significant and
negative response between temperature change and the rate of
spread. The pandemic in continental US during the 2020-2022
period was characterized by seven waves, with different transmis-
sion rates and wave peaks concentrated in seven time periods.
When repeating the analysis for waves in the seven periods and
nine climate zones, we found that the temperature impact changed
over time and space, possibly due to virus mutation, changes in
population susceptibility, social behaviour and control measures.
This impact became weaker in 6 of 9 climate zones from the
beginning of the pandemic to the end of 2022, suggesting that
COVID-19 increasingly adapted to weather conditions.   

Introduction 
A severe acute respiratory syndrome coronavirus (SARS-

CoV-2), known as COVID-19, was declared as a global public
health emergency by the World Health Organization (WHO) on 30
January 2020 (WHO 2020). During the growth phase of the pan-
demic, the virus’ fast spread disrupted daily lives, health systems
and economies, receiving global concern, with countries applying
various interventions, such as public health and social measures.
The first COVID-19 patient reported in the United States (US)
was occurred in Washington State on 15 January, 2020. Soon after,
the virus spread quickly throughout the country (Davis et al.,
2021). This rapid transmission was captured in a large dataset,
enabling researchers to conduct analyses to develop suitable poli-
cies. 

Similar to other commonly circulating human coronaviruses
(Nickbakhsh et al., 2020) and influenza viruses (Petrova &
Russell 2020; Shamn et al., 2010), the transmission of COVID-19
exhibits plausible dependence on seasonal and geographic climate
variations. Laboratory observations support the epidemiological
hypothesis that weather patterns may affect the survival and
spread of viruses (van Doremalen et al., 2020). Empirical studies
reported close relationships between meteorology factors and con-
firmed cases of COVID-19 (Chien & Chen 2020; Chin et al.,
2020). Prior studies suggested that cold, dry conditions may
increase the transmission of the virus, in which temperature and
relative and specific humidity appear to be the key climatic factors
affecting the transmission of SARS-CoV-2 (Baker et al., 2020;
Bashir et al., 2020; Liu et al., 2020; Runkle et al., 2020).
However, with limited data on the current pandemic, these early-
state results are inevitably inconclusive. Furthermore, it is espe-
cially important to understand how COVID-19 spread changes
with weather considering the high volume of cases in the US
(WHO Coronavirus Dashboard, 2022). The relative importance of
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climate drivers and how they may evolve over time and regions
due to changes in virus mutation, human intervention, and social
behaviour adjustment have also not been fully investigated. With
the three years long COVID-19 time-series data spanning from
2020 to 2022 and the corresponding environmental dataset, we
used a simple statistical approach to investigate the importance of
temperature and precipitation on COVID-19 transmission, particu-
larly its evolution over time and space. The analysis examined the
climate drivers from a temporal and geospatial perspective. The
results of this study could help inform and strengthen the manage-
ment of the COVID-19 pandemic as well as other similar diseases
in the future.  

Materials and Methods 

COVID-19 dataset 
A time series of confirmed COVID-19 cases was downloaded

from a unified global dataset that integrates and implements qual-
ity checks of the data from numerous leading sources of COVID-
19 epidemiological and environmental data (Badr et al., 2023).
The dataset is disseminated through the Center of Systems Science
and Engineering (CSSE) at Johns Hopkins University (JHU), the
source of the widely accessed JHU Coronavirus Dashboard

(https://github.com/CSSEGISandData/COVID-19/) (Dong et al.,
2020). It contains daily COVID-19 case data since 22 January
2020, hydro-meteorological, air quality, information on COVID-
19 control policies and key demographic characteristics, all
aligned to a global consistent hierarchy of administrative units.
From this dataset, we selected data for the continental US in which
local outbreaks were detected up to 31 December 2022.  

Data processing 
The multi-step methodological approach applied to different

sources of data was illustrated in Figure 1. We only considered
counties in the continental US in this study. Because of the recur-
rent low reported case count each weekend, we first aggregated the
daily new confirmed COVID-19 cases to the weekly sum. To avoid
the biases arising because of the incomplete spread of the
pathogen, such as a limited number of records due to connections
with other affected areas, we only included counties experiencing
local COVID-19 outbreaks. By adopting the method used by
Ficetola and Rubolini (2021), the onset of a local COVID-19 out-
break event was defined as the week when a minimum of 50 con-
firmed cases were reported in a county. This allowed us to exclude
the cases that did not reflect local transmission of the pathogen.
Then, we applied a moving average for the time series with a 5-
week interval by the function:

                   Article

Figure 1. Dataset, data process, analysis method and workflow of the study. 
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week(i)=sum(week(i-2, i-1, i, i+1, i+2))/5 Eq.1 
This simple smoothing technique eliminated the effects of tem-

poral fluctuation caused by factors like changes in containment
policies and testing facilities, making it easier to uncover potential
underlying trends of the evolution of the COVID-19 spread. For
each county, the spreading trajectory was plotted with the weekly
confirmed cases against week. The waves were identified by local
valleys and peaks of the curve with a publicly available R script
(https://gist.github.com/sixtenbe/1178136). A full wave was
defined as a period from one local valley to the following local val-
ley. We estimated the COVID-19 transmission for each wave by
considering the rate of spread from the onset of the wave to the
peak of the same wave. This rate was computed by regressing the
weekly case against time (slope) and then normalized and harmo-
nized by dividing with the county population. 

Environmental variables 
Environmental data were downloaded from the Johns Hopkins

University CSSE repository. We only considered three climatic
variables for which significant impacts on the spreading dynamics
have been reported (Briz-Redon & Serrano-Aroca, 2020), namely
temperature (T), relative humidity (RH) and precipitation (P). The
original weather data in the dataset was derived from the fifth-gen-
eration European Centre for Medium-Range Weather Forecasts
(ECMWF) atmospheric reanalysis of the global climate (ERA5)
(Hersbach et al., 2020). ERA5 provides reanalysis data of meteo-
rological datasets at a global scale at the horizontal resolution of
0.25°x0.25° and the temporal resolution of an hour. This dataset
has been extensively tested against observations and found to
accurately capture the main observed weather quantities (Bell et
al., 2021; Herbach et al., 2020). To match the COVID-19 time
series, all weather variables were averaged at a weekly time-step
from their initial daily temporal resolution. Prior studies reported
various latency periods of the infection (Li et al., 2020). We
accounted for this by creating five weather series for each of the
three weather variables, namely using the weather data  0~4 weeks
before the onset of the COVID-19 curves and identified the weath-
er series that exhibited the highest correlation to the weekly report-
ed cases. 

Statistical analysis 
We used simple but powerful Pearson correlation analysis to

investigate the importance of climate drivers on the transmission
of COVID-19. The association between COVID-19 confirmed
cases and climate factors allowed us to understand how climate
affects the trajectory of COVID-19 in each region. This was done
by correlating the weekly COVID-19 cases against specific mete-
orological factors for each county, with various times lags (0~4
weeks). The coefficient of determination and the significance,
which used an alpha level of 0.05, were then recorded. The median
latency period was derived by finding the median of the latency
period for each county that produced the strongest correlation. The
weather variable with the highest correlation coefficient was
retained for further analysis. The importance of the meteorological
driver on COVID-19 was measured by two indicators – the propor-
tion of counties that exhibited significant correlation and the medi-
an correlation coefficient (R) across these counties. 

To investigate the evolution of the climate driver importance,
we compared the transmission-weather relationship over waves
and climate zones. The pandemic in the US experienced a clear
seasonal pattern (Sen et al., 2021), therefore we clustered the

waves into several periods according to the peak times (Figure 2).
We further categorized all counties into nine climate zones (NE:
Northeast, UM: Upper Midwest, OV: Ohio Valley, NR: North
Rockies and Plains, NW: Northwest, SE: Southeast, ST: South,
SW: Southwest, WS: West) based on the definition set by the
National Oceanic and Atmospheric Administration (NOAA) as
given by Karl and Koss (1984) (Figure 3). Transmission-weather
responses were estimated for each combination of the time period
and climate zone by regressing the rate of spread against corre-
sponding weather variables across each county. These responses
were compared between periods and climate zones to explore the
changes in climate impacts on COVID-19 transmission. 

Results 

Temporal and spatial variations of COVID-19 
transmission 

At the national level, pandemic waves in the US were evident
during summer (around June to August) and autumn to winter
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Figure 2. Changes in the relationship between the COVID-19
rate of spread and temperature. a) histogram of the wave peak
times from all U.S. counties; b) changes in relationship between
COVID-19 and temperature change - each dot value denotes the
regressed slope between the  rate of spread and temperature
change - size indicates the value of the determination coefficient
(R2), with the line showing the regression fit - filled dots denote
significant spreading-temperature (95% CL) responses, while
empty dots represent insignificant responses and were thus not
included as points regressed in the trend line.
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(around November to January) from 2020 to 2021 (Figure 4a).
There was only one pandemic wave in 2022, likely in part due to
reduced testing rates or the gradual achievement of herd immunity.
The wave peaks were generally higher in winter than in spring and
summer, suggesting seasonal dependence of the virus transmis-
sion. The reason for this, commonly ascribed to virus persistence
on surfaces or in the air, depends on sensitivity to temperature,
humidity and ultraviolet light (Chin et al., 2020). This fact changed
susceptibility of human victims and led to changes in human social
behaviour under different weather pattern (Engelbrecht & Scholes,
2021) such as a closer proximity of people in households during
the cold season. The highest peak wave occurred in the autumn-
winter of 2021, while the slowest occurred in the spring of 2020.  

The structure of the transmission pattern differed among
regions. While all nine climate zones experienced strong winter
waves, NW, NR, WS, OV, ST, and SE experienced strong activities
during summer. NE and UM also underwent obvious outbursts in
cases during spring. In contrast with previous findings that indicat-
ed that colder weathers favoured the spread of the COVID-19
(Figure 4b), the proportion of accumulated cases to the total popu-
lation was higher in the South where the mean temperature was
higher (Figure 3). This can largely be attributed to the higher
spreading rates in the South during the 2021 winter because of the
domination of Omicron variant (Harris, 2022). Counties in ST
exhibited the highest proportion in the population with confirmed
COVID-19 positive, with a median of 30%, followed by SE of
29.8%, while counties in NW experienced the smallest positive
proportion, with a median of 23.9%.

Importance of the weather driver 
Prior studies have reported variable incubation periods

between the infection and confirmation of the cases due to the
onset of symptoms, COVID real-time tests, and publication of con-
firmed cases (Ficetola & Rubolini 2020, Li et al., 2020). We com-
puted mean climatic variables assuming different exposure periods
starting 0 ~ 4 weeks before the onset of the waves (referred to as
Δ0, Δ1, Δ2, Δ3, Δ4).  However, the COVID-19 data displayed very
little time lag with respect to temperature as the temperature at the
same period of spread exhibited the highest correlation across the
US with the COVID-19 series. The COVID-19 series displayed a
time lag of Δ3 and Δ1 weeks, respectively, for RH and P. A high
correlation between the time series of the meteorological factors
and the number of confirmed COVID-19 cases indicated the strong
dependence of the pandemic on weather patterns. The number of
COVID-19 cases was significantly correlated to the meteorologi-
cal factors across most of the continental US. Of the three meteo-
rological factors, temperature (T) exhibited a dominantly negative
relationship to COVID-19 cases across the majority US, reflected
by over 95.6% of the counties experiencing a significant correla-
tion (p<0.05) between weekly cases and the climatic factors
(Figure 5a, Table 1), with a median value of correlation coefficient
-0.42. However, relative humidity (RH) and precipitation (P) indi-
cated a mixed relationship to the case throughout the country. For
RH, 74% of counties exhibited a significant correlation between
RH and cases, with a median coefficient of 0.25. A positive corre-
lation is dominant in the country, with a large number of counties
in NR, ST, OV and SW either exhibiting an insignificant or a neg-
ative relationship between RH and the cases (Figure 5b). For pre-
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Figure 3. Climate zones and percentages of accumulated confirmed cases to the population in counties in United States. 
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cipitation, only 67% of mainland counties experienced a signifi-
cant relationship with the weekly reported cases, with a median
correlation coefficient of 0.16. Counties in the middle climate
zones including NR, SW, UM, ST, and OV exhibited a negative
correlation between P and the cases, with mostly positive relation-
ships in counties across the eastern and western climate zones
(Figure 5c). 

Spread of COVID-19 in response to temperature 
Given the significance of temperature on the spread of

COVID-19 across most of mainland US, we continued to examine
the impacts of T on the spatial variation of COVID-19 transmis-
sion. We estimated different temperature indicators, including
mean temperature, diurnal temperature and range of the period of
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Figure 4. The COVID-19 waves and their variation over the climate zones across United States. a) continental US; b) by county in the
nine climate zones.

Table 1. Summary statistics of regression between COVID-19 cases and climatic variables across United States.

                                                                                                                             T                              RH                                P

Counties with a significant correlation* (%)                                                                               95.6                                     74.0                                      67.0
Median correlation coefficient (R)                                                                                               -0.42                                    0.25                                       0.16
Median week latency                                                                                                                            0                                          3                                            1
T, average near-surface air temperature; RH, relative humidity; P, precipitation; *p<0.05.   
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spread, temperature variability and temperature change to examine
their explanatory power on the variation of spreading rates.
Although there were widespread and high correlations between the
mean temperature and the weekly COVID-19 cases across the
county, the rates of spread exhibited a weak and negligible
response to mean temperature, with an R2 of 0.025 and a slope of
0.02 (Figure 6a). In contrast, temperature change   ̶  a change in
temperature during the period of spread, or the regressed slope of
mean temperature against spreading time   ̶ exhibited a significant
and exceptionally high explanatory power to the spatial and tem-
poral variation in the rate of spread, with an R2 of 0.201 and a slope
of –0.41 between the log (rate) and the temperature change. This
negative and significant relationship indicates that different tem-
perature change rates can explain more than 20% of the variation
in COVID-19 transmission, suggesting that temperature fluctua-
tions rather than the mean temperature are responsible for the vari-
ations in the rate of spread. The negative response (slope=-0.41)
suggests a faster temperature decline/rising corresponds to a faster
increase/decrease in COVID-19 cases. Converting the ln(slope) to
the absolute change of COVID-19 spreading resulted in spreading
rate% = 100 ´ (eslope (DT) – 1) . In other words, with a fast rate of
COVID-19 spread from autumn to winter, the temperature quickly
going down (by 1ºC) can accelerate the rate of spread by 50.1%;
while a slower temperature decrease (by 1ºC) leads to a 33.6%
reduction in the predicted spreading rate.

The spread-temperature response
The pandemic waves across the US counties concurrently

occurred in seven time windows due to specific virus variants, con-
trol measures and immunization conditions (Figure 2a). A temporal
window here was defined as the time period that local waves peak
simultaneously for the entire mainland US. Therefore, we conduct-
ed the spatial correlation analysis separately for waves in the com-
bination of seven temporal windows and nine climate zones
(Figure 2b). The two statistical indicators – the coefficient of deter-
mination (R2) which reflects the dependence of the spread on the
weather pattern on the one hand, and the slope of COVID-19 rate
of spread on temperature change which represents the responding
extent to a unit change in weather factors on the other – were used
to depict the explanatory power of temperature on the spread of the
infection and the spread-temperature response. 

Not surprisingly, waves in the second and fifth periods (during
autumn to winter) exhibited a significant and higher spatial corre-
lation between the COVID-19 spread and temperature change,
suggesting a larger impact of the weather on the spread of the
infection in autumn to winter. For the nine climate zones, the R2

averaged across all periods was the highest in NR (0.1) followed
by UM (0.09), implying that the weather impact on the spread of
COVID-19 was more obvious in the North than in the South.

However, the spread-weather response (i.e., the slope) demon-
strated a clear change over time in six out of nine climate zones
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Figure 5. Spatial pattern of correlation coefficients between COVID-19 weekly confirmed cases and corresponding variables. a) tem-
perature, b) relative humidity and c) precipitation; White area denotes an insignificant correlation at the 95% confidence level.
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(NR, WS, NE, UM, OV, ST). They exhibited a decreasing temper-
ature impact on COVID-19 between the beginning and the present
of the pandemic as indicated by diminishing slope values. SW
expressed small changes in weather impact, with a nearly zero
trend over time, while SE and NW were the only zones that exhib-
ited an increased climate impact as indicated by the increasing
absolute value of the slope, which suggested a faster rate of spread
with a unit decrease in temperature (Figure 2b).  

Discussion
A growing number of studies have been assessing the relation-

ships between the COVID-19 growth rate and multiple environ-
mental features (Chien & Chen, 2020; Chien et al., 2022; Ma et al.,
2021). However, the results of these studies were inconclusive and
inconsistent, casting doubts on the possibility of correctly identify-
ing environmental signals on COVID-19 spread dynamics
(Carlson et al., 2020). Our analysis supports the belief that this
virus, like other circulating human coronaviruses and influenza
viruses, is influenced by the weather with respect to spreading rate
and level of severity of the disease. Out of the three selected cli-
matic variables, our results show that temperature is the one most
strongly linked with COVID-19 transmission. This is reflected by
a significant correlation between the weekly confirmed case and
temperature across most of the US. Furthermore, the large tempo-
ral and spatial heterogeneity in the rate of spread can partly be
explained by temperature. However, contributing to previous find-
ings, we find that temperature change had the highest explanatory
power of spatial and temporal rate variation. In addition, across
different periods and climate zones, climate played a heteroge-
neous role as a driver (Xiao et al., 2021). The observed changes in
spread with regard to extent and direction give a reasonable expla-

nation for the ambiguity in previous studies on whether meteoro-
logical drivers affect COVID-19 transmission (Briz-Redon &
Serrano-Aroca 2020). Environmental features, containment mea-
sures and population immunity can translate to complex temporal
and spatial dynamics in the course of an outbreak. Three factors
likely caused the change in impact of the weather drivers: i) viral
strain variation, e.g., the SARS-CoV-2 Delta variant caused a rapid
spread in the summer of 2021(Zhao et al., 2021); ii) the change in
population immunity induced by the US vaccination strategy (Cot
et al., 2021); and iii) implementation of control measures, includ-
ing social distancing and reduced human mobility (Pan et al.,
2020). Thus, while weather drivers can create seasonal or geo-
graphic differences in the COVID-19 intensity, the impact was
heavily confounded by immunity (induced or natural), interven-
tions, human behaviour and also other details that are usually left
out in the models used by prior studies. Although these factors can
lead to potentially spurious conclusions, our results indicate the
important mechanisms of weather variability with respect to
COVID-19 spread. First, a sudden decline in temperature tends to
increase human susceptibility to infection (e.g., due to weaker
immunity, closer proximity and the like), resulting in a faster
spread rate of COVID-19 from autumn to winter. This is indicated
by the small lag between temperature and the viral waves and the
strong explanatory power of temperature change on the rates of
spread. Second, when the dominant virus variant shifted from
Alpha to Delta and then to Omicron with their increasing ability to
transmit, the virus had to adapt to the environment, such as warmer
climates or larger temperature variability. This is indicated by the
fact that the southern US has gradually exhibited a higher rate of
spread and level of severity compared to the North where its envi-
ronment is believed to have favoured the viral spread at the begin-
ning. 

Current analysis also suffers from several drawbacks. For
example, most available contact tracing data indicates that the pro-
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Figure 6. Regression between the rate of spread of the COVID-19 waves and temperature. a) mean temperature; b) changes in temperature. 
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portion of indoor transmission is high, likely caused by a combina-
tion of social contact patterns (including number, intensity and
duration of contacts), air circulation, and potential weather drivers,
such as sunlight or humidity. However, due to the environmental
data availability, we had to use gridded climate data or local weath-
er data that represent outdoor conditions rather than what is the
case indoors, where transmission events are primarily related
aerosolized viral clouds (Chen et al., 2021). Social behaviour, per-
haps the biggest confounder, is environmentally driven and sea-
sonal but still rarely weighed alongside environmental and immu-
nity drivers as hypothesis for why infectious diseases show season-
ality (Fares, 2013; Martinez, 2018). For example, school terms are
seasonal and have a marked influence on social mixing patterns
relevant to influenza transmission, even in pandemics. Future stud-
ies in developing forecasting models should consider all these fac-
tors and their changes over time. 
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