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From Snow’s map of cholera transmission to dynamic catchment boundary
delineation: current front lines in spatial analysis
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The history of mapping infectious diseases dates back to the
19th century when Dr John Snow utilised spatial analysis to pin-
point the source of the 1854 cholera outbreak in London, a
ground-breaking work that laid the foundation for modern epi-
demiology and disease mapping (Newsom, 2006). As technology
advanced, so did mapping techniques. In the late 20th century,
geographic information systems (GIS) revolutionized disease
mapping by enabling researchers to overlay diverse datasets to
visualise and analyse complex spatial patterns (Bergquist &
Manda 2019; Hashtarkhani et al., 2021). The COVID-19 pandem-
ic showed that disease mapping is particularly valuable for opti-
mising prevention and control strategies of infectious diseases by
prioritising geographical targeting interventions and containment
strategies (Mohammadi ef al., 2021). Today, with the aid of high-
resolution satellite imagery, geo-referenced electronic data collec-
tion systems, real-time data feeds, and sophisticated modelling
algorithms, disease mapping has become a feasible and accessible
tool for public health officials in tracking, managing, and mitigat-
ing the spread of infectious diseases at global, regional and local
scales (Hay et al., 2013).

The visual representation of disease occurrences on geograph-
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ical maps provides a powerful analytical tool to discern their spa-
tial distribution. This approach is pivotal for identifying clusters,
hotspots and emerging trends as well as for investigating drivers
of transmission (Firouraghi et al., 2023). When incorporating the
temporal dimension, invaluable insights into disease dynamics are
revealed (Kiani et al., 2021). Furthermore, mapping technology
can be used to investigate potential associations between the
occurrence of infectious diseases and a wide array of spatially het-
erogeneous indicators such as natural and built environments,
socio-cultural and socioeconomic elements, vectors and animal
reservoirs (Mohammadi et al., 2023). All these factors play signif-
icant roles in shaping the dynamics of infectious diseases (Yantzi
et al., 2019),with the socioeconomic indicators adding the critical
facet of access to healthcare resources (Tizzoni ef al., 2022). One
of the most crucial points to bear in mind when employing spatial
regression models to discern connections between infectious dis-
ease outcomes (such as prevalence or incidence) and spatially het-
erogeneous indicators is that these analyses can only establish
‘associations’ and should not be construed as indicating ‘cause and
effect’ relationships.

By integrating the intricate interplays of environmental,
socioeconomic, built environment and socio-cultural factors, map-
ping of infectious diseases affords a comprehensive understanding
of disease transmission patterns, enabling more effective public
health responses and targeted interventions. This holistic approach
equips researchers and public health officials with a robust frame-
work for formulating tailored strategies to control and prevent
infectious diseases. Various types of maps have different utility in
the field of infectious diseases epidemiology. Cluster and hotspot
maps provide a visual representation of high-risk areas in terms of
disease occurrence across geographical regions (Wangdi et al.,
2022), while choropleth maps use colour gradients to represent
disease intensity, which allows a clear visualization of disease bur-
dens in different areas (MohammadEbrahimi ez al., 2022). Heat
maps employ colour intensity to highlight areas with higher dis-
ease concentration, providing a smooth perspective of disease dis-
tribution (Fagerlin ef al., 2017). Additionally, thematic maps over-
lay disease data with environmental, socioeconomic, or demo-
graphic factors, offering insights into potential drivers of disease
transmission (Talbi ez al., 2020). Flow maps, on the other hand,
illustrate the movement of people, goods or vectors, aiding in
understanding the spread of infectious agents (Ponce-de-Leon et
al., 2021). By incorporating the time dimension, they reveal pat-
terns crucial for tracking disease trends and outbreaks over time
(Firouraghi ez al., 2022). As pointed out by Mohidem et al. (2021),
interactive web-based maps enhance decision-making by allowing
users to explore and analyse disease data in real-time and filter
data by subpopulations of interest, e.g., age and sex. Overall, the
diverse range of maps and their applications in infectious diseases
epidemiology provide vital tools for researchers, policymakers
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and public health officials in formulating more geographically tar-
geted strategies for disease control and prevention.

Disease mapping and spatial analytics can be conducted at dif-
ferent levels of spatial resolution. For example, catchment area
analysis goes beyond predefined geographical boundaries, delving
into more intricate dynamics of disease transmission compared to
regional-level analysis (Huber er al., 2022). Catchment areas
defined by travel time or distance can help delineate transmission
zones and the potential reach of an outbreak. From that point of
view, responses can be instrumental for understanding the potential
extent and pattern of an outbreak, allowing the implementation of
targeted interventions to contain spread. In addition, these methods
aid in the efficient allocation of healthcare resources. By identify-
ing areas with higher disease burdens, authorities can strategically
deploy medical personnel, supplies and facilities where they are
most needed. Finally, measuring spatial accessibility to healthcare
services to ensure equitable access to those services is a key appli-
cation of catchment area analysis (Mohammadi et al., 2021,
Pereira et al., 2021).

Mapping infectious diseases presents several notable chal-
lenges. A key obstacle is the potential limitation with respect to
availability and quality of data in resource-constrained regions.
Spatial sampling methods represents another consideration as it
provides a structured approach to gathering data points across geo-
graphical areas and ensures that the spatial distribution and number
of data points are appropriate for answering the research question
posed. For example, determining an appropriate sampling strategy
involves considerations of spatial representativeness, ensuring that
sampled locations adequately capture the diversity of the land-
scape. Additionally, logistical constraints and resource limitations
may pose hurdles in the implementation of rigorous spatial sam-
pling protocols. Leveraging advanced modelling techniques, such
as geostatistics and machine-learning algorithms, predictive risk
mapping enables the extrapolation of disease risk estimates to
unsampled locations, offering a comprehensive view of disease
distribution across entire landscapes (Restrepo et al., 2023). This
approach proves invaluable in ensuring that even regions with lim-
ited or no direct data contribute to a holistic understanding of
disease dynamics.

Sharing and integration of data across different jurisdictions is
not as straightforward as one would wish as privacy concerns and
legal regulations often hinder this approach. One solution can be
jittering of the data for visualisation purposes but keeping the orig-
inal data for modelling (Helderop et al, 2023). The dynamic
nature of infectious diseases poses another challenge, as factors
like changing population densities, human mobility, and evolving
pathogens and vectors require continuous data updates and sophis-
ticated modelling techniques. Furthermore, biases in healthcare
access and reporting can lead to underestimations or misrepresen-
tations of disease burdens, skewing the accuracy of maps.
Inaccurate geospatial information or errors in mapping techniques
can also introduce uncertainties. Moreover, the complexity of
interactions between environmental, socioeconomic, and cultural
determinants demands multidisciplinary expertise for meaningful
interpretation, and the geographical scale of the data is always a
challenge for researchers, especially in modelling approaches such
as multilevel modelling, where a different geographical scale in the
hierarchical structure of the data might change the results (Owen
et al., 2015). Finally, the task of accurately defining catchment
areas is not without hurdles. Considerations such as transportation
infrastructure, socioeconomic disparities, and healthcare accessi-
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bility might need to be weighed. Emerging techniques, including
gravity models and network-based analyses, are poised to better
represent real-world scenarios (Kiani et al., 2021). However, there
will be greater opportunities for catchment level analysis in the
future because of the strong possibility of better data availability.
Indeed, the fusion of real-time data streams, machine-learning
algorithms and dynamic modelling techniques promises more
refined analyses leading to integration of socio-behavioural fac-
tors, climate data and genomic information. There is no doubt that
our comprehension of infectious disease dynamics within catch-
ment areas will rise further already in the near term.

In an era marked by unprecedented challenges in infectious
disease prevention and control, the marriage of infectious disease
mapping and catchment area analysis stands as one important tool.
Through sophisticated mapping and dynamic catchment boundary
delineation, the intricate tapestry of pathogens and populations can
be highlighted and explored at higher spatial resolutions. However,
as we navigate this terrain, we must remain vigilant in addressing
disparities, adapting methodologies and embracing innovative
technologies. By doing so, we pave the way for a more resilient
and responsive public health infrastructure, better equipped to face
the challenges of tomorrow.
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