
Abstract
Although previous studies have acknowledged the potential of

geographic information systems (GIS) and social media data
(SMD) in assessment of exposure to various environmental risks,
none has presented a simple, effective and user-friendly tool. This
study introduces a conceptual model that integrates individual
mobility patterns extracted from social media, with the geographic
footprints of infectious diseases and other environmental agents
utilizing GIS. The efficacy of the model was independently eval-
uated for selected case studies involving lead in the ground; par-
ticulate matter in the air; and an infectious, viral disease (COVID-
19). A graphical user interface (GUI) was developed as the final
output of this study. Overall, the evaluation of the model demon-
strated feasibility in successfully extracting individual mobility
patterns, identifying potential exposure sites and quantifying the
frequency and magnitude of exposure. Importantly, the novelty of
the developed model lies not merely in its efficiency in integrating
GIS and SMD for exposure assessment, but also in considering the
practical requirements of health practitioners. Although the con-
ceptual model, developed together with its associated GUI, pre-
sents a promising and practical approach to assessment of the
exposure to environmental risks discussed here, its applicability,
versatility and efficacy extends beyond the case studies presented
in this study. 

Introduction
The increase in international and domestic travel can spread

disease faster and with a wider geographic distribution than ever
before (Schlagenhauf et al., 2015; Otsuki & Nishiura, 2016).
Recent outbreaks of diseases such as Chikungunya (Krutikov &
Manson, 2016), Zika (Gardner et al., 2018) and coronavirus dis-
ease 2019 (COVID-19) (Chinazzi et al., 2020) have been directly
linked to the global transport network. Additionally, travellers are
exposed to infectious diseases that are not endemic to their home
countries (Angelo et al., 2017) and an estimated 20-70% of peo-
ple, who travel to the developing world report illness linked to
their travel (Edward, Wilson, & Kain 2002). Indeed, transport
geography is becoming an important issue with respect to health
(Amer & Bergquist, 2021).

Understanding the influence of location on health is one of the
determinants of the epidemiological research framework. The
study of health geography (Dummer 2008) can facilitate a spatial
understanding of disease propagation, population health, and
healthcare service distribution (Photis 2016). As such, efficient
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diagnosis and treatment of any illness are inherently linked to the
speed at which the source of the ailment is identified (Şengül et al.,
2013). 

Technological advances in geographical information systems
(GIS), remote sensing and computer science can increase efficien-
cy of medical diagnosis (Mbunge et al., 2021). In addition, inno-
vations such as mobile geo-enabled sensors with the ability to
track an individual’s movement can help evaluate the impact of
social influences and environmental factors (Kozel & Burnham-
Marusich, 2017). Particularly, the widespread use of smartphones
and other global positioning system (GPS)-enabled mobile devices
has made large volumes of georeferenced data readily available to
healthcare researchers (Wu et al., 2014; Tompkins & McCreesh,
2016; Bisanzio et al., 2020).

The advent of big data analysis and GIS technologies represent
a new era in public health service delivery and problem-solving.
Specifically, advances in social networks, mobility, cloud comput-
ing and the Internet have made this possible (Alonso et al., 2017).
GIS technologies such as geo-visualization (Panteras et al., 2015;
Yasobant et al., 2015) and space-time analysis (Briggs 2005) are
becoming major tools for analysing big data generated by social
media. Social media platforms, such as X (formerly Twitter),
Facebook and Instagram have gained considerable significance as
valuable data sources for a wide range of applications, including
research in the field of public health. These platforms offer access
to a diverse array of data types, encompassing real-time streaming
content as well as retrievable archival data comprising text, images
and videos (Fujita 2017; Liu et al., 2018; Middleton et al., 2018).
Leveraging their immense user base, which encompasses millions
of individuals across the globe, social media platforms present a
unique opportunity to acquire location data shedding light on
users’ movements and engagements. These platforms have been
utilized for purposes such as monitoring disease outbreaks
(Heldman et al., 2013; Fung et al., 2016; Aiello et al., 2019;),
assessing health behaviours (Allington et al. 2021; Basch, Hillyer,
& Jaime 2022) and executing public health interventions
(Gunasekeran et al., 2022). Moreover, using GIS tools and
methodologies in medicine and public health has been recognized
as a valuable approach to improving disease control, monitoring
and prevention (Musa et al., 2013; Yasobant et al., 2015;
Yousefinaghani et al., 2019). Despite this recognition, the con-
sumption of GIS use within these fields is still relatively low and
the literature does not explicitly identify specific tools and method-
ologies to its application in the assessment of disease exposure.

Despite the considerable potential to support public health ini-
tiatives (Aiello et al. 2019), current applications in this field
require further refinement, particularly in terms of improved inte-
gration and validation. For example, real-time mobile phone data
can be used to provide mobility pattern information to pre-empt
future disease outbreaks and/or retrospective disease exposure
integrated with diseases’ spatial mapping. Although methods for
extracting mobility patterns from social media data (SMD) have
been well-established, and studies have demonstrated the feasibil-
ity of using SMD to map and predict human movements (Jurdak et
al., 2015; Liao & Yeh 2018; Scholz & Jeznik 2020), the extensive
use of social media presents a challenge for GIS researchers. On
the other hand, limited attention is given to individual-level char-
acteristics, such as mobility patterns and disease exposure, with a
focus on refined spatial and temporal resolution (Jurdak et al.,
2015; Sinnenberg et al., 2017; Xu, Dredze, & Broniatowski, 2020).

Hence, to fully harness the potential of SMD and effectively

integrate it with disease mapping, it is crucial to address the exist-
ing challenge and to develop robust spatial data processing tech-
niques. Additionally, the development of new tools and methods
should allow for greater use of GIS data by non-GIS experts, such
as health practitioners (Li, Wang, & Li, 2015; Yasobant et al.,
2015). As a result, these advancements should enable the seamless
integration of diverse data sources and bolster the accuracy and
timeliness of disease surveillance and response initiatives. 

This study introduces a novel conceptual and practical model
that integrates individual mobility patterns extracted from social
media, specifically X, with various geo-enabled datasets. These
datasets encompass disease outbreaks, endemic diseases and envi-
ronmental pollution, thereby facilitating the identification of
potential individual exposures within both spatial and temporal
dimensions. The overarching objective of our study was, therefore,
the development and evaluation of a conceptual model that inte-
grates GIS and SMD for disease exposure assessment. This model
aims to extend the utilization of GIS technologies and methodolo-
gies beyond GIS professionals, enabling medical doctors and pub-
lic health experts to apply these tools to real-world medical chal-
lenges. 

Conceptual model development
We focused on the development and evaluation of a conceptual

model capable of extracting individual mobility patterns from
social media and combining them with disease and environmental
agents’ geographic footprint using GIS to determine the spatial and
temporal relationship between agent and receptor. It is crucial to
ascertain the precise needs of medical practitioners involved in dis-
ease exposure assessment given that no previous study has provid-
ed tools and methodologies considering the specific needs of prac-
titioners and policymakers. As such, a consultation was undertaken
with 37 medical doctors to understand the requirements for the
model and identify the relevant parameters and variables to be
incorporated into the model. The overall feedback received was
promising, as it suggests that the conceptual model fulfils a
requirement within the medical community, who generally are not
experts in advanced GIS. They also identified several diseases,
agents and functionalities that the model should include and be
able to manipulate, which were the foundation for the selection of
case studies presented in this study.

After receiving the feedbacks from medical practitioners, the
process of model development was initiated (Figure 1). Here, the
proposed conceptual model used several independent datasets
(exposure agents and individual mobility patterns extracted from
SMD and multiple GIS processes to extract meaningful informa-
tion from these datasets. This new source of information enhances
the capabilities of medical and public health practitioners in iden-
tifying the possible locations where agent and receptor (individu-
al/patient) intersect leading to exposure and eventual ailment.
Figure 1 gives an illustrative overview of the proposed conceptual
model, data types, and GIS processes. 

The prevalence and spatiotemporal patterns of the agents of
exposure are often represented and modelled through maps and
GIS products. These maps and other GIS products typically depict
exposure, prevalence and risk gradients that vary over a specific
geographic region or globally (De Cola, 2002; Cleckner & Allen,
2014; Leta et al., 2018). With the use of geo-visualisation and
other GIS techniques, several diseases and exposure agents have
been successfully mapped and risk models created; examples
include, but not limited to, malaria (Okami & Kohtake 2016), var-
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ious vectors (Cleckner & Allen 2014), COVID-19 (Kamel Boulos
& Geraghty 2020) and lead (Wallace 2023). These maps and other
GIS products are at the core of this conceptual model as they will
serve as the base layers for all spatiotemporal queries between the
agent and receptor. The role of social media is also vital in this con-
ceptual model since it will be the source of the receptor spatiotem-
poral patterns. As mentioned above, the ability to utilize SMD as a
proxy for human mobility patterns is well established.

Materials and Methods 

X data acquisition
Only geo-tagged data from individual X (Twitter) user profiles

were downloaded in this study. Other location retrieval methods,
such as geoparsing (Middleton et al., 2018), can be used to retrieve
location information from social media. Unfortunately, these meth-
ods are subjected to more significant errors than actual geotagged
tweets due to the ambiguous spelling of placenames (Ye et al.,
2016). Data extraction was facilitated through a Python script

modified from GitHub.com (https://github.com/goldman88/djan-
go_twitter). The script development was done utilizing Spyder
4.1.4 development environment combined with access to X
(Twitter)’s application programming interface (API). Figure 2
illustrates the data acquisition process.

The X (Twitter) platform was used for this study because it is
one of the most popular social media (Gulnerman et al., 2020;
Sloan & Morgan 2015). It was also chosen because of the relative
ease of gaining access to its API and the process of obtaining a
developer account on the platform compared to other social media
platforms (Gulnerman et al., 2020). Mobility data were obtained
from randomly selected public X (Twitter) user profiles of three
different individuals venturing into the target area (user_1, user_2
and user_3) were selected (with names withheld) from the X
(Twitter) tracking website http://onemilliontweetmap.com. Using
valid X (Twitter) credentials (consumer key, consumer secret,
access token and access token secret) and the python script, all
tweets from the selected users were downloaded and stored in an
SQLite database connected to ArcGIS Pro (ESRI, Redlands, CA,
USA) The first two queries filtered tweets for the last year and
tweets containing geographic coordinates (latitude and longitude);
see Figure 2.

                   Article
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Exposure agents
Several environmental factors affect human health; these

include, but are not limited to, toxic chemicals, air pollution [e.g.,
particular matter (PM) of 2.5 µm], diseases caused by vector-borne
viruses or parasites and poor water quality (bacteria or toxic chem-
icals); these environmental factors and agents exhibit varying spa-
tial and temporal patterns influenced by natural and anthropogenic
factors, such as climate, weather, geology and built infrastructure
among others (Matsuyama et al., 2006; Gautam, 2020; Trajer,
2021). For this research, three agents and areas were randomly
selected: lead exposure risk in the state of Iowa, COVID-19 risk in
Texas, both in the United States (U.S.) and air quality in China.
These agents were selected due to their significance in public
health, varying modes of exposure and the availability of relevant
data sources. For each of them, three specific receptors, namely
User_1, User_2 and User_3, were selected to represent individuals
with unique characteristics, such as particular travel behaviours,
locations or environmental interactions. The geo-tagged data of
these individuals was extracted from X (Twitter) and made into
GIS layers to show attributes, such as dates and locations. This
approach allowed for the integration of receptor-specific data into
the analysis, enabling a more comprehensive assessment of the
framework’s efficacy in identifying exposure sites and informing
about risk.

Case study 1. Lead exposure risk in Iowa (U.S.)
Numerous detrimental health effects are associated with lead

exposure, including hearing deficit, impaired cognitive function,
cardiovascular disease and others (Assi et al., 2016). Annually
800,000 deaths in the U.S. are attributed to cardiovascular dis-
eases; lead has been identified as one of the many recognized con-
tributing risk factors (Lanphear et al., 2018). As a result, lead expo-
sure within the continental U.S. has received significant attention
in recent years, resulting in several websites housing various lead-
related data, such as risk factors, relative risk factors, populations
at risk and geographic exposure variation (Janke 2014).
Importantly, the Iowa census tracts were specifically chosen
because of their relatively small size and the expected homogene-

ity of population and demographic characteristics within them.
The risk of exposure to lead was obtained from the database

https://www.policymap.com. We investigated the 2010 U.S.
national census tract boundaries, where each census tract is
assigned a specific lead exposure rating, such as very low, low,
medium and high (Figure 3). 

Case study 2. Air quality in China
The impact of poor air quality on human health is associated

with several health effects, including, but not limited to, premature
death due to cardiovascular and pulmonary disease. PM2.is consid-
ered a common indicator of air quality and key constituent of air
pollution that can lead to illness. Table 1 highlights the health
implications of the different air quality levels according to the U.S.
Environmental Protection Agency (EPA) (Janke 2014). Air quality
in many parts of China is regarded as serious; 31% of all cities are
currently monitored for air quality are considered heavily polluted;
moreover, 3/4 of all urban dwellers in China are living under air
quality conditions deemed harmful (Hao & Wang 2005).

China has twenty-three provinces, five autonomous regions,
four municipalities and two special administrative regions, which
are further subdivided into 361 smaller areas (Figure 4). For our
case study 2, air quality index (AQI) data including PM2.5, SO3 and
NO2 for January 2021 to December 2021 for all 361 sub-regions
within China were obtained from the online database
https://aqicn.org/. Each region was assigned an AQI rating based
on the 12-month daily average. Though only a one-year average
was used, producing an AQI for any specific period is feasible,
providing that the data are available.

Case study 3. COVID-19 risk in Texas (U.S.) 
Since COVID-19 emerged as a threat to global health (Fauci,

Lane, & Redfield, 2020), it has been responsible for close to 7 mil-
lion deaths worldwide according to the latest recorded figures
(https://www.worldometers.info/coronavirus/) and severe econom-
ic hardship since March 2019. However, technological advances
such as real-time mapping and predictive modelling combined
with advances in medicine and traditional public health tools and
techniques have played a significant role in reducing the propaga-
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tion of COVID-19 (Allam & Jones, 2020; Smith et al., 2020).
When this article was prepared, COVID-19 cases were still rising
in many countries and territories (De Guzman, 2022). Several
websites and online databases provide a wide range of COVID-19-
related data and interactive tools for analysis by the public and
researchers. We used a daily moving average of COVID-19 risk
and selected the 7-day time span of January 10-17, 2022 for inclu-
sion in this research. The state of Texas was selected because it was
one of the most affected states, ranking second in the number of
confirmed cases and deaths in the U.S. Additionally, significant
disparities in the number of cases and deaths among different com-
munity groups were observed. This state is divided into 254 coun-
ties and each county was assigned a daily risk level between 1 and
4, with 4 being the highest risk, as shown in Figure 5.

Agent and receptor 
The final product of this conceptual model would be a software

application capable of performing the GIS processes, SMD extrac-
tion and providing possible sites of exposure in a user-friendly
software environment. To understand the potential benefits of this
conceptual medical investigation model, a hypothetical scenario
would illustrate this best. For example, when a patient presents
his/her symptoms, the physician, conducts a series of tests to iden-
tify the causative agent and the exposure situation. Figure 6 depicts
the graphical user interface (GUI), an application that enables
physicians to easily identify potential exposure sites utilizing the
patient’s SMD. However, it is important to acknowledge that there
can be multiple sources of exposure, and it is not feasible to predict
exposures as risk factors solely based on the limited data sources
incorporated in the current version of the developed tool. Until fur-
ther enhancements have been made, the GUI developed so far can
only monitor some specific threats, such as the agents presented in
this study. However, in its current form, the tool’s efficacy can be
augmented by sending text messages as alert notifications to indi-

                   Article

Table 1. Standard air quality indices and association with health implications.

AQI            Level of air pollution         Health implication                                                                           Cautionary statement (PM2.5)

0 - 50             Good                                           Air quality is considered satisfactory, with pollution of little or no risk      None
51 -100          Moderate                                     Air quality is acceptable, with moderate health concern for people            Active children and adults, and people with respiratory
                                                                          who are unusually sensitive to air pollution for certain pollutants               diseases, such as asthma, should avoid prolonged 
                                                                                                                                                                                                   outdoor exertion
101-150         Unhealthy for sensitive             General public not likely to be affected but sensitive                                   Active children and adults, and people with respiratory
                      persons                                        people may experience health effects                                                           diseases, such as asthma, should avoid prolonged 
                                                                                                                                                                                                   outdoor exertion
151-200         Unhealthy                                   Slight health effects for everyone, with of sensitive groups                        All, especially active children and people with
                                                                          may experience more serious health effects                                                  respiratory disease, such as asthma, should avoid 
                                                                                                                                                                                                   prolonged outdoor exertion
201-300         Very unhealthy                           Health warnings, with the entire population likely to be affected                All, especially active children and people with
                                                                                                                                                                                                   respiratory disease, such as asthma, should limit 
                                                                                                                                                                                                   outdoor exertion 
300+              Hazardous                                   Health alert: everyone may experience serious health effects                      All outdoor exertion should be avoided
AQI, air quality index according to U.S. Environmental Protection Agency standard of 2016; PM2.5, particular matter of 2.5 µm.
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Figure 4. Daily average of air quality with respect to the presence
of particulate matter (AQI-PM2.5) in China’s sub-regions in
2021(January 1-December 31). Source: https://aqicn.org/sources/.

Figure 3. The lead risk in Iowa, U.S. (average records over the
years 2015-2019). Source: https://www.policymap.com/
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viduals who pass through the identified high-risk locations during
outbreak situations. This feature allows for timely communication
and awareness to individuals potentially at risk.

Results
A total of 7,108 tweets were downloaded for this study but

only 524 tweets contained explicit location data, i.e. latitude and
longitude. Figure 7 gives a comparative overview of the total
tweets by users_1-3 vs. tweets containing GPS coordinates. 

Case study 1 examined the relationship between receptor 1 (X
(User_1) and lead exposure. Out of 825 census tracts in the state of
Iowa, 302 were identified as high risk during the period January 20
to December 21 in 2021(Figure 8). The mobility patterns extracted
from social media indicated that this user traversed locations des-
ignated as high-risk 34 times during the year.

Case study 2 focused on air pollution. The mobility pattern
extracted from social media of user_2 revealed that the subject tra-
versed a location where air quality was categorized as unhealthy
(AQI 121) for sensitive persons based on a daily average from
January 13, 2020, to December 29, 2020 (Figure 9). Moreover, 77
days of this period were deemed as very unhealthy, while seven
were considered hazardous. Overall, 10 sub-regions had a daily
AQI average rated as good, 125 rated as moderate and all other
sub-regions in that country classified as unhealthy for sensitive
persons.

Case study 3 investigated the possibility of exposure to
COVID-19 by user_3 for the period January 10 to 17 in 2022.
Here, the social media of user_3 indicated a mobility pattern
revealing that the subject had multiple times been in a COVID-19
high-risk area (Figure 10). 

Discussion
The results may seem simplistic for a scientific report.

However, the conceptual model proposed in this paper represents
only the first step on road to a significantly improved disease diag-
nosis, a completely new approach, with great implications and
potential. The model can help medical practitioners to investigate
the source of an ailment more quickly and efficiently by identify-
ing possible exposure sites. By identifying areas where the disease
agent and receptor are present at the same time and location, the
model can help medical practitioners to identify potential sources

                                                                                                                                Article

Figure 6. Illustrative mock-up of the graphical user interface
application (GUI) showing the main components including Social
media data download tab, Agent selection tab and a Results tab
with possible exposure sites.

Figure 7. Comparative overview of the total tweets vs. tweets con-
taining GPS coordinates.

Figure 5. The COVID-19 risk in Texas U.S. in 2022 (January
1017). Source: https://globalepidemics.org/.
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of infection, leading to better health outcomes for patients. 
In addition to an improved outlook for individual diagnosis,

the ramification of the model would also improve public health
surveillance. The model can be used as a early warning system
(EWS) for potential outbreaks of infectious diseases by identifying
and monitoring areas where the disease agent and receptor are pre-
sent. This would lead to faster responses and more effective dis-
ease control measures, ultimately improving public health out-
comes. The study also has implications for policy-making. The
information generated by the model can help to identify areas of
high risk or vulnerability, informing decision-makers where to
allocate resources for disease control measures. This information
can also contribute to the development of strategies for disease
prevention and control. By identifying potential exposure sites,

policy-makers can implement measures to reduce the risk of dis-
ease transmission and prevent outbreaks.

The X (Twitter) data
The percentage of tweets containing GPS coordinates in this

study (7.4%) is slightly above the global average of 1-3% (Zohar
2021). However, the percentage varies by case study; for instance,
case study 2, which examined air quality in China and user_2, was
the lowest total number of tweets, in particular tweets containing
location data. Several factors account for this; principally, X
(Twitter) is not one of China’s major social media platforms.
According to Thomala (2023), the most popular platform in China
is WeChat (https://www.wechat.com) followed by Douyin
(https://www.douyin.com) (Figure 11). illustrates the absence of

                   Article

Figure 9. The mobility pattern of a person in China extracted from
social media 2020 (January 13 - December 29) indicates high expo-
sure of air pollution.

Figure 8. Possible sites of lead exposure for a patient in Iowa, U.S.
in 2021 (January 20 to December 21).

Figure 11. Visible absence of tweeting in China as shown by a 24-
hour (August 27, 2020) geo-localized dataset delivered by X
(Twitter) streaming public application programming interface.
Source: https://onemilliontweetmap.com/

Figure 10. Mobility extracted from a person in Texas, U.S. in 2022
(January 10 to 17) indicating probable exposures to COVID-19.
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tweets in China compared to their global geographic distribution. 
The unpopularity of X (Twitter) in China notwithstanding, this

does not limit the conceptual model developed in this study, which
is developed for any social media platform that allows for data
export, including location data. Previous studies have shown that
human mobility patterns can be extracted from social media plat-
forms such as Sina Weibo, Tencent (https://www.tencent.com) and
QQ (https://im.qq.com) (Kwan, 2018), three of the most widely
used social media platforms in China. Conceptually, our model can
achieve the same results. However, with the limited proportion of
tweets containing geolocation data for user_2, the conceptual
model could still identify possible sites of exposure to unhealthy
air quality. 

Agent and receptor modelling
We have introduced a new and innovative conceptual and prac-

tical model that integrates individual mobility patterns extracted
from X (Twitter) data with various geo-enabled datasets, including
information on disease outbreaks, endemic diseases and environ-
mental pollution, in order to determine potential exposure. While
previous research has examined the use of geotagged tweets, lim-
ited attention has been given to individual-level characteristics,
such as mobility patterns and disease exposure, with a focus on
spatial and temporal resolution (Sinnenberg et al., 2017; Xu et al.,
2020). This level of detail is crucial for capturing exposure vari-
ability within a study population. 

As emphasized by Zachlod et al. (2022), the volume of user-
generated data, coupled with technological advancements and
expertise, is continuously expanding. Social media platforms pro-
duce a vast quantity of data, a considerable proportion of which
may not be immediately applicable for research purposes. Thus,
specialized tools and methodologies are required to extract perti-
nent information from SMD. In public health research, GIS tools
can be employed to merge SMD with spatial data to gain insights
into the geographical patterns of health-related discussions on
social media as well as exposure risk distributions (Ajayakumar et
al., 2019; Jing et al., 2023). Consequently, our proposed conceptu-
al model is pertinent in this field.

The proposed conceptual model that combines GIS with indi-
vidual mobility patterns obtained from SMD and exposure agents’
geographic footprints has demonstrated promising results in all
three case studies, as discussed below. Case study 1 results demon-
strate how the proposed conceptual model can be utilized to iden-
tify possible exposure sites to environmental pollutants and pro-
vide guidance for medical practitioners in further investigation.
The extracted mobility patterns indicated that the user visited loca-
tions designated as high risk 34 times during the period. This sug-
gests that the user may have experienced significant exposure to
lead, and this can be extrapolated to determine the absolute daily
exposure dose for all 34 visits. 

Exposure to lead has been known to cause detrimental health
effects, especially in vulnerable subgroups, which can result in
neurological and developmental issues (WHO 2022). The extent of
potential harm from lead exposure can be evaluated based on fac-
tors such as exposure duration, frequency, dose and the individu-
al’s physiological responses and the severity of lead exposure’s
adverse effects may vary depending on the level and duration of
exposure (Singh et al., 2018; Charkiewicz & Backstrand, 2020).
Therefore, examining the mobility patterns and their lead exposure
data could offer valuable insights for medical practitioners to
explore the connection between exposure and unfavourable health

outcomes, aiding in the establishment of a dose-response relation-
ship (DeBord et al., 2016).

The findings of Case study 2 highlight the efficacy of the pro-
posed conceptual model in identifying possible exposure to air pol-
lutants (as measured by the AQI) through individual mobility pat-
terns mined from X (Twitter). The link between exposure to air
pollutants and various health effects such as respiratory and cardio-
vascular diseases is well established (Kelly & Fussell, 2015; Al-
Kindi et al., 2020). However, it is important to note that the
adverse impacts of air pollutants can vary depending on individual
factors, as well as the type and concentration of the pollutant. For
instance, frequent exposure to a toxic substance can cause adverse
effects over time, high doses of exposure for a short period can
lead to immediate adverse effects, while low doses of exposure for
a long period can lead to chronic health effects (SCENIHR,
SCHER, & SCCS, 2011; Katoto et al., 2021). Thus, obtaining
information on the spatial, temporal and specific dosage of air pol-
lutants, as well as individual exposure profile mapped using our
conceptual model, is crucial for assessing the potential health
implications of exposure to toxic substances.

In Case study 3, we utilized data on a recent global pandemic
to examine the likelihood of exposure to COVID-19 using the risk
map that we developed. The analysis of mobility patterns extracted
from SMD revealed that the individual had frequently visited an
area classified as high risk for COVID-19 during the period anal-
ysed. This information provides insight into the spread of the dis-
ease within the community and the potential sources of infection
(Aiello et al., 2019; Allington et al., 2021). For instance, if many
people are contracting the virus after visiting a specific facility or
location, it suggests that the place may be a transmission hotspot.
By analysing exposure patterns, we can also identify individuals
who may have been exposed to the virus and take necessary pre-
cautions such as testing and quarantine (Singh et al., 2021; WHO
2021). Moreover, this approach can help pinpoint population sub-
groups or geographic regions that are more susceptible to the
infection, enabling public health officials to target interventions
effectively.

The case studies presented in this paper demonstrate that our
proposed conceptual model has the potential to generate hypothe-
ses regarding the transmission dynamics of infectious diseases and
environmental pollutants. Furthermore, the model can guide retro-
spective studies after an incident occurs. Through the analysis of
exposure patterns, researchers can identify variables that con-
tribute to disease transmission, such as demographic factors,
behavioural patterns and environmental conditions. By doing so,
public health officials can develop focused interventions to limit
further spread of the disease (Lin & Wen 2022; Luz & Masoodian
2022). These interventions can include measures such as increased
testing, targeted vaccination campaigns and public health messag-
ing designed to encourage behavioural change.

Strengths and limitations of the model
The conventional methods of identifying exposure sites

depend on retrospective analysis of data, which may result in
delays in identifying and managing health risks. However, the pro-
posed model uses real-time data obtained from social media to
identify possible exposure sites, leading to more rapid responses to
emerging health risks. Additionally, this model can offer more per-
sonalized and targeted assessments of health risks. The proposed
conceptual model can expand the use of GIS technologies and
methodology to medical doctors and public health professionals
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beyond GIS professionals. By offering a user-friendly software
environment, this proposed application can enable medical profes-
sionals to easily query location data against the spatial footprint of
exposure agents to identify potential exposure sites. This approach
represents a significant stride towards ‘democratizing’ access to
GIS technologies and methodology and empowering medical pro-
fessionals to use these tools to address real-world medical prob-
lems. It is important to acknowledge that the proposed conceptual
model is not without limitations, and these limitations must be
taken into consideration when utilizing the model. One such limi-
tation is the potential distortion of location data due to the use of
virtual private networks (VPNs) and other location-spoofing tools
potentially utilized by social media users. Another limitation of the
model is the reliance on disease data that may be sparse in certain
regions of the world, which makes it difficult to accurately associ-
ate mobility patterns with a particular disease footprint. To over-
come these limitations, incorporating multiple data sources to val-
idate the location data is recommended. This could involve the use
of wearable devices or GPS-based services to cross-reference the
location data obtained from social media. Additionally, other meth-
ods of acquiring location data, such as text mining, can be used to
extract a higher yield of location data from social media. By incor-
porating such methods in the proposed conceptual model, the accu-
racy and reliability of the results obtained can potentially be
improved. 

Conclusions
The proposed conceptual model, which integrates SMD and

GIS technologies, presents a promising and practical approach to
enhancing conventional disease exposure assessments. Significant
strides can be made in addressing practical medical issues by lever-
aging the model. It has the potential to revolutionize public health
investigations by providing real-time, dynamic information on
individual behaviour and mobility patterns, facilitating the identi-
fication of exposure sites for infectious diseases and environmental
agents. Despite the limitations mentioned, the importance of this
type of innovative tools will only continue to grow in the face of
various public health challenges. Integrating multiple data sources
and emerging technological advancements, such as wearable
devices and text mining, could potentially enhance the model fur-
ther, paving the way for a transformative impact on public health
and disease investigation.
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