Examination of multidimensional geographic mobility and sexual behaviour among Black cisgender sexually minoritized men in Chicago

Aleya Khalifa,1,2 Byoungjun Kim,3 Seann Regan,1 Tyrone Moline,1 Basile Chaix,4 Yen-Tyng Chen,5 John Schneider,6 Dustin T. Duncan1

1Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA; 2ICAP at Columbia University, New York, NY, USA; 3Department of Surgery, New York University Grossman School of Medicine, New York, NY, USA; 4Sorbonne Université, INSERM, Institut Pierre Louis d’Épidémiologie et de Santé Publique, Némésis Research Team, Paris, France; 5Edward J. Bloustein School of Planning and Public Policy, Rutgers University, New Brunswick, NJ, USA; 6Department of Medicine, Public Health Sciences, University of Chicago, Chicago, IL, USA

Abstract

Black sexually minoritized men (BSMM) are the most likely to acquire HIV in Chicago—a racially segregated city where their daily travel may confer different HIV-related risks. From survey and GPS data among participants of the Neighbourhoods and Networks Cohort Study, we examined spatial (proportion of total activity space away from home), temporal (proportion of total GPS points away from home), and motivation-specific (discordance between residential and frequented space) dimensions of mobility. To identify potential drivers of BSMM’s risk, we then examined associations between mobility and sexual behaviours known to cause HIV transmission: condomless anal sex, condomless anal sex with a casual partner, transactional sex, group sex, and sex-drug use. Multivariable logistic regression models assessed associations. Of 269 cisgender BSMM, most were 20-29 years old, identified as gay, and low-income. On average, 96.9% (Standard Deviation: 3.7%) of participants’ activity space and 53.9% (Standard Deviation: 38.1%) of participants’ GPS points occurred outside their 800m home network buffer. After covariate adjustment, those who reported sex away from home were twice as likely to report condomless sex (Odds Ratio: 2.02, [95% Confidence Interval (CI): 1.08, 3.78]). Those who reported socializing away from home were four times more likely to have condomless sex with a casual partner (Odds Ratio: 4.16 [CI: 0.99, 29.0]). BSMM are on the move in Chicago, but only motivation-specific mobility may increase HIV transmission risk. Multidimensional investigations of mobility can inform place-based strategies for HIV service delivery.

Introduction

The composition and context of our neighbourhoods—and how we move through them—has been associated with HIV-related outcomes among racially minoritized groups (Duncan et al., 2021). As residents of one of the most racially segregated cities in the United States (Menendian et al., 2021), Black people in Chicago face a myriad of poor HIV outcomes due to their spatial segregation and marginalization (Gant et al., 2023; Oluymi et al., 2023; Rimmler et al., 2022). Chicagoan Black sexually minoritized men (BSMM), in particular, experience disproportionately higher rates of HIV incidence compared to other sexually minoritized men (SMM) (Mustanski et al., 2019) and comprise over one-quarter of new diagnoses in the city (Getting to Zero Illinois Dashboard, 2022). However, few studies explore the links...
between spatial (im)mobility and HIV transmission risk behaviours exclusively among BSMM.

Geographic mobility – where, how far, and for how long someone travels over a given period – can impact several health outcomes (Morris et al., 2018), including one’s sexual behaviours that can cause HIV transmission (Kim et al., 2020). For example, mobility may be associated with condomless anal sex (Patel et al., 2014), transactional sex (Oldenburg et al., 2015), group sex (Lew et al., 2023), and using alcohol or drugs during sex (Tomkins et al., 2019). This is because individuals may experience less social control from known friends, family, or neighbours when they are away from home (DeLamater, 1981; Zenilman et al., 1999). “Journey-to” theory, which spans multiple disciplines, captures how mobility lessens the social controls that govern individual behaviours. In criminology, the “journey to crime” (committing a crime away from one’s residential neighbourhood) is associated with victimization and law enforcement outcomes (Donnelly et al., 2021; Luo et al., 2021). This theory has been applied to substance use research in which the “journey to overdose” (overdosing in a neighbourhood that is not one’s own neighbourhood) was found to result in more accidental deaths than if individuals overdosed at home (Forati et al., 2023). To extend this theory further, “journey to sexual behaviour” – having sex in neighbourhoods away from home – may be associated with greater rates of sexual behaviours that increase the risk of HIV transmission (Casels et al., 2020; Dharma et al., 2023). Of course, mobility could also introduce individuals to neighbourhoods and networks with varying social norms that can also influence sexual behaviours (Frye et al., 2017). For this reason, it is important to unpack which aspects of BSMM’s geographic mobility (e.g., time spent away from home, having sex away from home) relate to which sexual behaviours that may increase HIV transmission risk.

While recent studies among SMM suggest links between mobility and sexual behaviours, none have exclusively studied these associations among BSMM. Duncan and colleagues found that SMM in New York City engage in “spatial polygamy” (using a survey measure) in which individuals spend time outside of their residential neighbourhood for a multitude of reasons like having sex and socializing – and these types of activity spaces differ by key characteristics that relate to HIV vulnerability (Duncan et al., 2014). In New York City among a racially and ethnically diverse sample of SMM, Kim et al. found that the size of one’s activity space, using a Global Positioning System (GPS) measure, was positively associated with having condomless anal sex (Kim et al., 2020). Geographic mobility – whether for sex, socializing, or other reasons – among BSMM in the United States remains poorly understood.

Current mobility and health studies, including those with SMM, use either survey or GPS-based measures, each with its own advantages and disadvantages. Survey measures, like from travel histories, are often favoured for describing the motivations for travel, but may be subjective and prone to recall bias (Rezza et al., 2023; Zare & Pearce, 2022). GPS methods facilitate more objective measurement of mobility and allow for many different quantifications of the scale of movement – like size of one’s activity space or the proportion of one’s time spent away from home (Duncan et al., 2020). However, without contextualizing GPS-based measures with survey data, associations between mobility and health outcomes may suffer from “selective daily mobility bias” (Chaix et al., 2012). Furthermore, when used in isolation, either of these methods may produce a unidimensional picture of mobility that provides little information. For example, in Kim and colleagues’ GPS-based study (Kim et al., 2020), it is unclear whether the sexual acts associated with mobility occurred away from individuals’ home neighbourhood (as mobility and sexual behaviours were measured separately) – making it difficult to test the specific effects of traveling for sex. In a sample of young BSMM and transgender women in Chicago, Kolak and colleagues found through survey data that individuals with sexual partners who lived in different non-neighbouring community areas were more likely to have exchanged sex for money, shelter, and other goods (Kolak et al., 2021). This study aims to combine survey and GPS methods to comprehensively describe different mobility dimensions and explore their associations with sexual behaviours, enhancing the understanding of contextual determinants of HIV risk. Applying “journey to” theory (Forati et al., 2023; Luo et al., 2021), i.e., “journey to sexual behaviour,” this study aims to examine multiple dimensions of geographic mobility using GPS and survey measures and their associations with sexual behaviours that may increase HIV transmission risk in a well-characterized sample of Chicaguan BSMM. We leverage individual-level GPS data uniquely linked with survey data from the Neighbourhood and Networks (N2) Cohort Study in Chicago to measure mobility more granularly – including across sex and socializing areas – to deepen understanding about the associations between mobility and sexual behaviour. As place matters for Chicaguan BSMM’s uptake of HIV services (Behler et al., 2018), a deeper characterization of their spatial mobility and associated HIV-related risks can help programs to meet these men where they are.

Materials and Methods

The N2 cohort study

The Neighbourhoods and Networks (N2) Cohort Study, described elsewhere (Driver et al., 2023; Duncan et al., 2019), seeks to examine associations between neighbourhood-level and network-level factors and HIV outcomes among BSMM. The cohort includes four sites (Chicago, IL, Jackson, MI, Jackson, MS, New Orleans, and Baton Rouge, LA) with high HIV burdens among BSMM; however, only Chicago’s GPS data was available at the time of analysis. In Chicago, 450 participants were recruited via seeds engaged in a variety of local HIV-related research projects (Fujimoto et al., 2017; Khanna et al., 2016, 2017; Morgan et al., 2016; Young et al., 2018). Respondent-driven sampling invited seeds to recruit up to six contacts into the N2 cohort, and so on. Eligible recruits were aged 16-34, assigned male sex at birth, identified as Black or African American, had no plans to leave Chicago during the study period, and reported at least one sexual encounter with another man or transgender woman in the past year.

Self-reported survey data were collected from 2018-2019 on topics such as racial and sexual identity, neighbourhood preferences, housing, sexual behaviour, substance use, and frequently visited locations for sex and socializing. Data also included GPS data from wearable GPS devices (Qstarz BT-Q1000XT, Qstarz International Co., Ltd.) worn by consenting participants for a target of 14 consecutive days as per the protocol (Zenk et al., 2018). Geographic coordinates were recorded every 10 seconds.

The analytic sample comprised cisgender (a person whose gender identity corresponds with the sex registered for them at birth; i.e. the opposite to transgender) men in Chicago with a mailing
address who agreed to wear the GPS device. We restricted the sample to cisgender men because only 43 transgender women had complete data. This means a separate multivariable model would lack sufficient statistical power, even though this sub-population requires separate confounder adjustment. This is because the drivers of both mobility and sexual behaviour among transgender women (e.g., social networks and life events) may differ from those of cisgender men (Bowers et al., 2012; Factor & Rothblum, 2007; Morris et al., 2018). For example, Black transgender women may have greater sexual partner turnover, more sexual partners, and lower income or employment compared to BSMM (Ezell et al., 2018; Russell et al., 2021).

Geocoding of home addresses and neighbourhoods

Participants reported their mailing address, operationalized as the “home location” (Duncan et al., 2020), and we geocoded addresses to create two types of home neighbourhood areas based on similar urban research. First, we established a street-network buffer area around the home location at 400m and 800m distances (Duncan et al., 2020) (Figure 1). While buffer-based neighbourhood definitions may more closely reflect individuals’ home environments in a walkable city, it is unclear whether 400m and 800m network buffer areas best reflect home neighbourhoods of Chicagoans in the N2 Cohort (Duncan et al., 2012). Second, home locations were categorized within Chicago community areas or zip codes if located outside Chicago, similar to approaches using New York City boroughs (Duncan et al., 2014).

Mobility measures

We used both GPS and survey data to describe participants’ geographic movement relative to their home neighbourhood. We used GPS-based measures to represent the amount of space and time individuals spend outside of their home neighbourhood. Activity spaces were created from individuals’ approximately 14-day GPS point records, represented by polygons with a 100m buffer area around their daily travel paths (Figure 1) (Duncan et al., 2020; Hirsch et al., 2014; Kim et al., 2021; Lee et al., 2016). The 100m buffer includes humans’ line-of-sight, and has been used in prior urban mobility research (Duncan et al., 2020; Kim et al., 2020). The spatial scale of mobility was determined by the proportion of total activity space away from home, and the temporal scale by the proportion of total GPS points away from home – each applying the 400m and 800m home network buffer definitions of “home” (Duncan et al., 2020; Müller et al., 2022; Searle et al., 2017). To represent motivation for mobility, we describe discordance between one’s home neighbourhood (employing the community area definition above) and the neighbourhoods where they report socializing or having sex. Participants were asked to list via a survey the top three locations where they most often i) socialize and ii) have sex (Figure 1). These activity-specific locations were geolocated within a Chicago community area (if inside Chicago) or within a zip code (if outside Chicago) and compared to the participant’s home (residential) neighbourhood. If at least one of the social or sex locations was discordant with their home neighbourhood, they were classified as having residential-social or residential-sexual neighbourhood discordance, respectively (Duncan et al., 2014).

HIV-related sexual behaviours

Five outcomes were examined that reflect sexual behaviours known to increase the risk of HIV transmission (Driver et al., 2023; Duncan et al., 2019; Timmins et al., 2021). These included i) condomless anal sex (with any partner), ii) condomless anal sex with a casual (non-regular) partner, iii) transactional sex (exchanging sex for money, food, shelter, or other goods – or vice-versa), iv) group sex (sex with more than one person at the same time), and v) sex-drug use (using alcohol or drugs before or during sex to enhance, improve, or extend sex) (Shrader et al., 2023) in the last six months. All were captured in the N2 survey through self-reported responses.

Figure 1. GPS and survey-recorded areas for deriving mobility measures, three randomly selected participants, Chicago, The N2 Cohort Study.

[Geospatial Health 2024; 19:1273]
Key covariates

The sample was described in terms of key covariates identified from the scientific literature that influence both mobility and health behaviours. These include individual sociodemographic characteristics (age group, educational attainment, and sexual identity) (Bowers et al., 2012; D’Anna & Chang, 2023), socioeconomic status (income, being currently employed or in school, being unhoused in the last 12 months, and experiencing stable housing in the last 3 months) (Morris et al., 2018; Raymond et al., 2011), and preference for living in a mostly gay neighbourhood (on a scale of not at all important to very important) (Bader & Krysan, 2015; Mauck et al., 2018; Van Dyck et al., 2011).

Statistical analysis

Mobility was described using measures of centrality, including mean, standard deviation (SD), median, and inter-quartile range (IQR) for continuous measures and proportions for dichotomous measures. Univariable and multivariable logistic regressions were conducted for each combination of the six mobility measures and five sexual behaviours. Unadjusted and adjusted odds ratios with 95% confidence intervals were computed. Covariates previously listed were included in the multivariable models if they were identified as a potential confounder via a directed acyclic graph. All analyses were performed using R Studio (Posit team 2023).

Results

Study participants

Of 411 total participants surveyed, 356 (87%) identified as cisgender men. Of those, 87 (24%) were excluded from analysis because they either had no home coordinate (1%) or GPS-recorded activity space (24%). The final analytic sample consisted of 269 Black cisgender SMM with GPS data. Besides their gender identity, there were no statistically significant differences in sociodemographic characteristics between the analytical sample and the overall N2 sample (Table 1). Of the 269 participants, 202 (75.1%) were aged 20-29 years, 165 (61.3%) identified as gay, 224 (83.3%) completed high school or less, and 186 (69.1%) made an annual salary of under $25,000.

Mobility

On average, 96.9% (SD: 3.7%) of individuals’ activity spaces were outside their 800m residential buffer area, and 53.9% (SD: 38.1%) of their GPS points were recorded outside their 800m residential buffer area (Table 2). These proportions were higher when considering the 400m buffer area (99.0% (SD: 1.5%) and 60.0% (SD: 37.5%), respectively). Of 262 participants reporting neighbourhoods for socializing, 249 (95.0%) reported a socializing neighbourhood outside of their community area. Of 255 participants reporting neighbourhoods for sex, 183 (71.8%) reported a sexual neighbourhood outside of their community area.

Table 1. Sociodemographic characteristics among Black cisgender sexually minoritized men in Chicago, The N2 Cohort Study (N=269).

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age group</td>
<td></td>
</tr>
<tr>
<td><20 years old</td>
<td>14 (5.2)</td>
</tr>
<tr>
<td>20-29 years old</td>
<td>202 (75.1)</td>
</tr>
<tr>
<td>30+ years old</td>
<td>53 (19.7)</td>
</tr>
<tr>
<td>Born outside the United States</td>
<td>1 (0.4)</td>
</tr>
<tr>
<td>Education level attained</td>
<td></td>
</tr>
<tr>
<td>High school or less</td>
<td>224 (83.3)</td>
</tr>
<tr>
<td>Above high school</td>
<td>45 (16.7)</td>
</tr>
<tr>
<td>Currently employed or in school</td>
<td>152 (56.5)</td>
</tr>
<tr>
<td>Unhoused in the past 12 months</td>
<td>78 (29.0)</td>
</tr>
<tr>
<td>Living in stable housing in the past 3 months</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>181 (67.3)</td>
</tr>
<tr>
<td>No</td>
<td>76 (28.3)</td>
</tr>
<tr>
<td>Not known/refused/missing</td>
<td>12 (4.5)</td>
</tr>
<tr>
<td>Sexual identity</td>
<td></td>
</tr>
<tr>
<td>Gay</td>
<td>165 (61.3)</td>
</tr>
<tr>
<td>Bisexual</td>
<td>77 (28.6)</td>
</tr>
<tr>
<td>Straight</td>
<td>7 (2.6)</td>
</tr>
<tr>
<td>Other</td>
<td>13 (4.8)</td>
</tr>
<tr>
<td>Don’t know</td>
<td>7 (2.6)</td>
</tr>
<tr>
<td>Annual Income</td>
<td></td>
</tr>
<tr>
<td><$25,000</td>
<td>186 (69.1)</td>
</tr>
<tr>
<td>>$25,000</td>
<td>79 (29.4)</td>
</tr>
<tr>
<td>Not reported</td>
<td>4 (1.5)</td>
</tr>
<tr>
<td>Prefer to live in a mostly gay neighbourhood</td>
<td></td>
</tr>
<tr>
<td>Not at all important</td>
<td>105 (39.0)</td>
</tr>
<tr>
<td>Not too important</td>
<td>79 (29.4)</td>
</tr>
<tr>
<td>Somewhat important</td>
<td>58 (21.6)</td>
</tr>
<tr>
<td>Mostly important</td>
<td>7 (2.6)</td>
</tr>
<tr>
<td>Very important</td>
<td>20 (7.4)</td>
</tr>
</tbody>
</table>

Note: “Other” sexual identities included “bisexually gay,” “dating biological women and transwomen,” ”demisexual,” “man who has sex with men,” ”openminded,” ”pansexual,” ”same gender loving,” and ”trisexual.”

Table 2. Multidimensional mobility characteristics among Black cisgender sexually minoritized men in Chicago (N=269).

<table>
<thead>
<tr>
<th>Mobility characteristic</th>
<th>Mean (SD)</th>
<th>Median (IQR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proportion of total activity space away from home (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outside 400m home network buffer area</td>
<td>99.0 (1.5)</td>
<td>99.4 (98.7–99.8)</td>
</tr>
<tr>
<td>Outside 800m home network buffer area</td>
<td>96.9 (3.7)</td>
<td>97.9 (96.3–99.3)</td>
</tr>
<tr>
<td>Proportion of total GPS points away from home (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outside 400m home network buffer area</td>
<td>60.0 (37.5)</td>
<td>65.2 (21.9–99.9)</td>
</tr>
<tr>
<td>Outside 800m home network buffer area</td>
<td>53.9 (38.1)</td>
<td>42.5 (18.6–99.5)</td>
</tr>
<tr>
<td>Neighbourhood discordance by activity type*</td>
<td>n</td>
<td>%</td>
</tr>
<tr>
<td>Residential-Socializing (N = 262 reporting)</td>
<td>249</td>
<td>95.0</td>
</tr>
<tr>
<td>Residential-Sex (N = 255 reporting)</td>
<td>183</td>
<td>71.8</td>
</tr>
</tbody>
</table>

*Defined as any named location for sex or socializing outside of the home community area/zip code.
Associations between mobility and sexual behaviours

Out of 269 SMM, 186 (69.1%) reported condomless anal sex in the last six months, and 110 (40.9%) reported condomless anal sex with a casual partner, and 28 (10.4%) reported transactional sex, 52 (19.3%) reported group sex, 47 (17.4%) reported sex-drug use (Table 3).

In measuring the crude associations between each of the six mobility measures and each of the five sexual behaviours, having sex in a different neighbourhood than your residence (residential-sexual neighbourhood discordance) resulted in 79% greater odds (Odds Ratio: 1.79, 95% [Confidence Interval: 1.00, 3.18]) of having condomless sex (Table 3). Residential-social neighbourhood discordance resulted in four times greater odds (4.01 [1.05, 26.3]) of having condomless sex with a casual partner.

After adjusting for age group, educational attainment, currently employed or in school, being unhoused, stable housing, income, sexual identity, and preference for living in a mostly gay neighbourhood, the association between residential-sexual neighbourhood discordance and condomless sex became stronger; those with this neighbourhood discordance were twice as likely to report condomless sex (2.02, [1.08, 3.78]). After adjusting for the same covariates, residential-social neighbourhood discordance and condomless sex with a casual partner became strongly associated (4.16 [0.99, 29.0]). The proportion of activity space or GPS points outside the residential buffer were not associated with any sexual behaviour in the adjusted models.

Table 3. Crude and adjusted associations between multiple dimensions of geographic mobility and sexual behaviours (N=269).

<table>
<thead>
<tr>
<th>Exposure-Outcome***</th>
<th>N</th>
<th>n</th>
<th>OR</th>
<th>95% CI</th>
<th>aOR*</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condomless anal sex</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proportion of activity space outside of 400m home network buffer</td>
<td>269</td>
<td>186</td>
<td>1.72</td>
<td>0.31, 8.84</td>
<td>1.56</td>
<td>0.25, 9.22</td>
</tr>
<tr>
<td>Proportion of activity space outside of 800m home network buffer</td>
<td>269</td>
<td>186</td>
<td>1.33</td>
<td>0.67, 2.60</td>
<td>1.29</td>
<td>0.62, 2.66</td>
</tr>
<tr>
<td>Proportion of GPS points outside of 400m home network buffer</td>
<td>269</td>
<td>186</td>
<td>1.01</td>
<td>0.94, 1.08</td>
<td>1.01</td>
<td>0.93, 1.09</td>
</tr>
<tr>
<td>Proportion of GPS points outside of 800m home network buffer</td>
<td>269</td>
<td>186</td>
<td>1.03</td>
<td>0.97, 1.11</td>
<td>1.03</td>
<td>0.96, 1.12</td>
</tr>
<tr>
<td>Residential-Social neighbourhood discordance</td>
<td>262</td>
<td>183</td>
<td>1.03</td>
<td>0.27, 3.27</td>
<td>1.04</td>
<td>0.26, 3.65</td>
</tr>
<tr>
<td>Residential-Sexual neighbourhood discordance</td>
<td>255</td>
<td>179</td>
<td>1.79</td>
<td>1.00, 3.18</td>
<td>2.02</td>
<td>1.08, 3.78</td>
</tr>
<tr>
<td>Condomless anal sex with a casual partner</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proportion of activity space outside of 400m home network buffer</td>
<td>269</td>
<td>110</td>
<td>1.23</td>
<td>0.25, 6.85</td>
<td>1.20</td>
<td>0.21, 7.71</td>
</tr>
<tr>
<td>Proportion of activity space outside of 800m home network buffer</td>
<td>269</td>
<td>110</td>
<td>1.13</td>
<td>0.59, 2.24</td>
<td>1.15</td>
<td>0.57, 2.40</td>
</tr>
<tr>
<td>Proportion of GPS points outside of 400m home network buffer</td>
<td>269</td>
<td>110</td>
<td>0.99</td>
<td>0.93, 1.06</td>
<td>0.99</td>
<td>0.92, 1.06</td>
</tr>
<tr>
<td>Proportion of GPS points outside of 800m home network buffer</td>
<td>269</td>
<td>110</td>
<td>1.01</td>
<td>0.95, 1.08</td>
<td>1.01</td>
<td>0.94, 1.08</td>
</tr>
<tr>
<td>Residential-Social neighbourhood discordance</td>
<td>262</td>
<td>107</td>
<td>4.01</td>
<td>1.05, 26.3</td>
<td>4.16</td>
<td>0.99, 29.0</td>
</tr>
<tr>
<td>Residential-Sexual neighbourhood discordance</td>
<td>255</td>
<td>105</td>
<td>1.59</td>
<td>0.90, 2.84</td>
<td>1.75</td>
<td>0.96, 3.24</td>
</tr>
<tr>
<td>Transactional sex</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proportion of activity space outside of 400m home network buffer</td>
<td>269</td>
<td>28</td>
<td>0.27</td>
<td>0.04, 2.64</td>
<td>0.54</td>
<td>0.05, 6.35</td>
</tr>
<tr>
<td>Proportion of activity space outside of 800m home network buffer</td>
<td>269</td>
<td>28</td>
<td>0.69</td>
<td>0.29, 1.96</td>
<td>0.88</td>
<td>0.33, 2.65</td>
</tr>
<tr>
<td>Proportion of GPS points outside of 400m home network buffer</td>
<td>269</td>
<td>28</td>
<td>1.03</td>
<td>0.93, 1.15</td>
<td>1.02</td>
<td>0.91, 1.15</td>
</tr>
<tr>
<td>Proportion of GPS points outside of 800m home network buffer</td>
<td>269</td>
<td>28</td>
<td>1.06</td>
<td>0.96, 1.18</td>
<td>1.05</td>
<td>0.94, 1.18</td>
</tr>
<tr>
<td>Residential-Social neighbourhood discordance</td>
<td>262</td>
<td>27</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>Residential-Sexual neighbourhood discordance</td>
<td>255</td>
<td>27</td>
<td>1.43</td>
<td>0.58, 4.03</td>
<td>1.24</td>
<td>0.47, 3.67</td>
</tr>
<tr>
<td>Group sex</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proportion of activity space outside of 400m home network buffer</td>
<td>269</td>
<td>52</td>
<td>0.16</td>
<td>0.03, 0.90</td>
<td>0.16</td>
<td>0.02, 1.09</td>
</tr>
<tr>
<td>Proportion of activity space outside of 800m home network buffer</td>
<td>269</td>
<td>52</td>
<td>0.46</td>
<td>0.22, 0.96</td>
<td>0.48</td>
<td>0.22, 1.05</td>
</tr>
<tr>
<td>Proportion of GPS points outside of 400m home network buffer</td>
<td>269</td>
<td>52</td>
<td>1.00</td>
<td>0.92, 1.08</td>
<td>0.99</td>
<td>0.91, 1.08</td>
</tr>
<tr>
<td>Proportion of GPS points outside of 800m home network buffer</td>
<td>269</td>
<td>52</td>
<td>1.01</td>
<td>0.93, 1.10</td>
<td>1.01</td>
<td>0.93, 1.10</td>
</tr>
<tr>
<td>Residential-Social neighbourhood discordance</td>
<td>262</td>
<td>51</td>
<td>1.35</td>
<td>0.35, 8.89</td>
<td>1.27</td>
<td>0.29, 9.11</td>
</tr>
<tr>
<td>Residential-Sexual neighbourhood discordance</td>
<td>255</td>
<td>50</td>
<td>1.73</td>
<td>0.84, 3.87</td>
<td>1.56</td>
<td>0.74, 3.56</td>
</tr>
<tr>
<td>Sex-drug use</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proportion of activity space outside of 400m home network buffer</td>
<td>269</td>
<td>47</td>
<td>0.55</td>
<td>0.09, 4.54</td>
<td>0.62</td>
<td>0.08, 6.29</td>
</tr>
<tr>
<td>Proportion of activity space outside of 800m home network buffer</td>
<td>269</td>
<td>47</td>
<td>0.78</td>
<td>0.36, 1.84</td>
<td>0.83</td>
<td>0.35, 2.11</td>
</tr>
<tr>
<td>Proportion of GPS points outside of 400m home network buffer</td>
<td>269</td>
<td>47</td>
<td>1.02</td>
<td>0.94, 1.11</td>
<td>1.03</td>
<td>0.94, 1.14</td>
</tr>
<tr>
<td>Proportion of GPS points outside of 800m home network buffer</td>
<td>269</td>
<td>47</td>
<td>1.03</td>
<td>0.95, 1.12</td>
<td>1.05</td>
<td>0.95, 1.15</td>
</tr>
<tr>
<td>Residential-Social neighbourhood discordance</td>
<td>262</td>
<td>47</td>
<td>2.72</td>
<td>0.52, 50.2</td>
<td>7.31</td>
<td>0.89, 193</td>
</tr>
<tr>
<td>Residential-Sexual neighbourhood discordance</td>
<td>255</td>
<td>46</td>
<td>1.77</td>
<td>0.84, 4.11</td>
<td>1.55</td>
<td>0.68, 3.84</td>
</tr>
</tbody>
</table>

*Adjusted for age group, educational attainment, currently employed or in school, unhoused, stable housing, income, sexual identity, and preference for living in a mostly gay neighbourhood. **Empty cells, cannot compute. ***All proportion measures have been scaled to reflect changes in 10 percentage points.

Discussion

Beyond the nuanced examination of multidimensional geographic mobility, this study uniquely examined journey to sexual behaviour theory and generated evidence for BSMM – for whom there is little data despite their disproportionately high HIV outcomes and the structural racism they experience in American cities and around the world. This study used both survey and GPS-based measures to characterize the temporal, spatial, and social dimensions of BSMM’s mobility. These comprehensive measures may improve our understanding of the relationship between mobility and HIV-related sexual behaviours. BSMM in our Chicago sample...
were highly mobile, and having sex or socializing in a neighbour-
hood other than their residential neighbourhood was associated
with elevated risk of having condomless anal sex with a casual
partner.

In this study, BSMM largely under age 30, with low-income
and limited educational attainment, were highly mobile (e.g., they
spent on average half of their time away from their home neigh-
bourood). By comparison, young SMN in the New York City P18
study spent on average one third of their time away from their
home neighbourhood (Duncan et al., 2020) – suggesting that it is
not age that explains these differences. Possibly, the experience of
structural racism drives mobility. In racially segregated Chicago,
young Black men may navigate different neighbourhoods to coun-
teract the negative effects of segregation, seeking opportunities
like work, education, and healthcare (Asabor et al., 2022;
ReNational Research Council et al., 1990; Hedman et al., 2021).
Moreover, young BSMM may travel to access LGBTQ+ friendly
health and social services, potentially better resourced in commu-
nities beyond their own. Racial segregation, combined with inad-
quate social support for SMM living in racialized communities,
could drive the high mobility rates we see in this sample, but more
research is needed to understand the different mobility experiences
between those living in Black vs. non-Black neighbourhoods.

The association between traveling for sex and a potentially
higher HIV transmission risk found in the current study reflect
similar mechanisms found in the “journey to crime” and “journey
to overdose” literature. Associating mobility with sexual behav-
iors, having sex away from home correlated with condom-
less anal sex with any partner and casual partners. This was similar
to New York City study that found that SMM were more likely to
have condomless oral sex if they had sex away from their residen-
tial neighbourhood than if they had sex close by (Duncan et al.,
2014). Our study may provide evidence for the role of social con-
trols in “journey-to” theory, as people may be more likely to
engage in certain behaviours when away from home (Frye et al.,
2017).

The proportion of one’s activity space and time spent outside
the home buffer area was not associated with specific sexual behav-
iors. This differs from that of another SMM-focused study in New
York City, which found that the risk of condomless anal sex
increased for each additional square kilometre of activity space
(Kim et al., 2020). A qualitative study among Black and Latinx
SMM in Los Angeles, CA, is also contradictory: men who felt less
belonging were more likely to spend time away from home
(Cassels et al., 2020), and likely to experience less social cohesion
which would impact sexual risk (Saleh et al., 2016). One explana-
tion for these null findings is that the size of activity spaces among
this sample of Chicagoan BSMM may be too similar to detect any
differences by an outcome of interest. In this study, the SD equaled
the mean of activity space sizes, leaving very little vari-
ability.

The study had limitations. First, 87 (24%) of participants were
excluded because they did not contribute GPS data. However, a
sub-analysis revealed this group did not differ by sociodemograph-
ic characteristics or sexual behaviours (Table 1). Second, condom-
less sex may be an inadequate marker of HIV transmission risk (Jin
et al., 2015). Especially in regular partnerships, it is unclear
whether both partners adopt other HIV prevention measures, like
monogamy, joint testing, or PrEP. Third, due to selective daily
mobility bias, we could not disentangle whether mobility caused
the sexual behaviour or vice-versa. This is because people may
travel away from home with the intention of engaging in certain
sexual behaviours away from their normal social controls. Fourth,
unmeasured confounding may have created a spurious association
between mobility and condomless anal sex. For example, experi-
encing discrimination against one’s sexual orientation or HIV pos-
itive status could drive them both to spend time away from their
home neighbourhood and to engage in less safe sexual practices
(Babel et al., 2021; Newcomb & Mustanski, 2011). However,
since associations were relatively weak between mobility and
other sexual behaviours, we think the confounding effects of such
unmeasured variables are minimal. It is also possible that discrim-
ination is a mediator if BSMM experience stigma or harassment
only outside of their home neighbourhood. This may be true if they
visit predominantly white neighbourhoods with historical LGBTQ
presence, as some non-white transgender and nonbinary people
reported in a qualitative study in New York City (Lampe et al.,
2020). Importantly, mobility measures might be inaccurate if par-
ticipants’ mailing addresses do not represent their true home loca-
tions. This is one explanation for the large number of participants
who spent no time in their derived home neighbourhoods.
Furthermore, participants’ “home” location may frequently change
over the study period – so their mailing address may not be the
same home location they would have reported while wearing the
GPS device. For example, young people may move residences
with more frequency, including for reasons like entering cohabitat-
ing partnerships. Also, over one-third of the sample reported unstab-
le housing in the past six months – presenting a challenge in
ascertaining home locations beyond our specific study in the con-
text of the housing crisis (Chicago Department of Family and
Support Services, 2023: Snapshot of Homelessness in Chicago,
nd.).

This study contributes in various ways to the literature on
mobility and HIV. First, we built a novel and reproducible analytic
framework to examine multiple dimensions of mobility (spatial,
temporal, and motivation-specific). Second, we leveraged survey-
based mobility measures to supply a deeper understanding of more
objective measures obtained from GPS devices. Third, by examin-
ing multiple sexual behaviours vis-à-vis multiple mobility indica-
tors, this paper serves to develop hypotheses about specific mech-
isms that might link mobility and HIV risk. For example, travel
for socializing may only cause condomless sex with casual
partners as opposed to regular partners necessitating a different set
of safe sex interventions. Finally, by focusing on a sample of racially
and sexually minoritized men, we achieved an adequate sample
size – rare in other HIV research (Maulsby et al., 2014) – to
describe the varied risks and vulnerabilities within this key popu-
lation group.

This study highlights various directions for future research.
First, beyond the need for more research with BSMM, specific
underrepresented populations warrant centring in mobility and
HIV research. Studies could over-sample transgender populations,
for whom there is a dearth of data (Goedel et al., 2019). Future
research could also generate evidence in rural and suburban com-
unities to advance our understanding beyond urban BSMM. Our
findings are likely not generalizable to BSMM living in areas with-
out public transportation networks, where their mobility depends
on car access and traveling further distances. Second, mixed-meth-
ods studies might disentangle the issue of reverse-causation, i.e.,
whether individuals travel to engage in certain behaviours, or their
travel leads them to engage in those behaviours. Such a deep dive
into the mechanisms that connect mobility and sexual risk could
better inform behaviour change interventions. Third, mobility measurement everywhere would benefit from more accurate definitions of “home.” Here – as in other studies – we equate “home” with a residential address (Duncan et al., 2020), but home can mean many things to different people at different times. Finally, future research could relate multidimensional mobility to HIV service uptake and retention, like PrEP and ART (Chen et al., 2019; Kim et al., 2021).

Due to their reduced condom use, BSMM who have sex away from home – even if just in a different Chicago community area – are at higher risk for HIV acquisition or for transmitting the virus. This means that interventions focused on behaviour change like increasing condom use and other healthy sexual practices should not just be spatially targeted to the areas where high numbers of people vulnerable to HIV reside, but also to where they have sex. This may come in the form of place-based interventions, like promoting safe sex at gay bars and other social venues. With GPS-based mHealth technology, behaviour change interventions could also use geofencing to deliver messages to consenting users when they enter areas where they are more likely to report sexual activity (Tobin et al., 2023). Messages may direct app users to where they might be able to access condoms or PrEP or guide them on how to negotiate safer sex. By considering individuals’ activity spaces vis-à-vis their sexual behaviours, more contextually-relevant place-based interventions may be able to interrupt HIV transmission and lessen the HIV burden among BSMM (Duncan et al., 2019).

Conclusions

In a racially and sexually minoritized population, this study among BSMM demonstrated the richness that can be achieved in mobility and HIV research by examining multiple dimensions of human movement. While the scale of BSMM’s daily travel away from home was not associated with sexual behaviours that increase HIV risk, having sex or socializing in neighbourhoods away from home may lead to increased risks through decreased condom use during anal sex. Due to the lower social control in places distant from home, some people may either engage in sexual risk behaviour when they are there or purposely travel there to engage in this behaviour. To curb the epidemic among BSMM, more research is needed to understand BSMM’s mobility patterns – including where they spend their time and why – so that future interventions can be designed with them in mind, meeting them where they are.

References

Duncan DT, Kapadia F, Halkitis PN, 2014. Examination of spatial polygamy among young gay, bisexual, and other men who have sex with men in New York City: The P18 cohort study. Int

Zenk SN, Matthews SA, Kraft AN, Jones KK, 2018. How many days of global positioning system (GPS) monitoring do you need to measure activity space environments in health research? Health Place 51:52-60.