
Abstract  
The COVID-19 outbreak has precipitated severe occurrences 

on a global scale. Hence, spatial analysis is crucial in determining 
the relationships and patterns of geospatial data. Moran’s I and 
Geary’s C are prominent methodologies used to measure the spa-
tial autocorrelation of geographical data. Both measure the degree 
of similarity or dissimilarity between nearby locations based on 
attribute values in such a way that the selection of distance tech-
niques and weight matrices significantly impact the spatial auto-
correlation results. This paper aimed at carrying out the spatial 
epidemiological characteristics analysis of the pandemic compar-
ing the results of Moran’s I and Geary’s C with different parame-
ters to gain a comprehensive understanding of the spatial relation-
ship of COVID-19 cases. We employed distance-based tech-
niques, K-nearest neighbour, and Queen contiguity techniques to 
assess the sensitivity of the different parameter configurations for 
both Moran’s I and Geary’s C. The findings revealed that former 
provided more reliable and robust results compared to the latter, 
with consistent results of spatial autocorrelation (positive spatial 
autocorrelation). The distance weight of 0.05 using the Manhattan 
method of Moran’s I is the recommended distance weight, as it 
outperformed other weight matrices (Moran’s I = 0.0152, Z-
value=110.8844 and p-value=0.001). 

 

Introduction 
Spatial autocorrelation techniques such as Moran’s Index 

(Moran’s I) and Geary’s Contiguity ratio (Geary’s C) are vital for 
the determination of spatial patterns in a dataset, such as the dis-
tribution and pattern of disease outbreaks, pandemics in particular. 
Both of these methods measure the similarity and dissimilarity of 
the neighbouring locations based on attribute values. With regard 
to infectious diseases, Moran’s I has consistently shown signifi-
cant positive spatial autocorrelation with different distance weight 
measurements indicating that areas with a high number of cases of 
diseases tend to be surrounded by other areas with similar high 
numbers. This is aligned with the characteristics of pandemics, for 
example the recent pandemic of the coronavirus disease 2019 
(COVID-19), where nearby areas have been more likely to have 
similar infection rates due to factors, such as the patterns of social 
interaction, various environmental factors and population density 
(Silalahi et al., 2020). Kuala Lumpur, Gombak and Petaling rep-
resent Malysian areas with a high total population (around 
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5,235,400 people) making these areas crowded and congested 
(Malaysia, 2022), something which increases the susceptibility to 
infection due to limited social distancing, high levels of physical 
contact, crowded living conditions and the strong probability of 
large outdoor gatherings of people (Ayouni et al., 2021). 

Moran’s I is commonly applied for the study of widely spread 
diseases, e.g., COVID-19 and dengue, and papers reporting this 
have been published in a large number of countries, e.g., Kang et 
al., (2020) in China, Wetchayont & Waiyasusri (2021) in Thailand, 
da Silva et al. (2022) in Brazil and Vilinová & Petrikovičová 
(2023) in Slovakia, with global implications reported by Morais & 
Gomes (2021). Suryowati et al. (2018) are among the few 
researchers using Geary’s C, which they applied for the determina-
tion of the spatial autocorrelation of dengue cases in Indonesia. All 
of the studies cited here concerned local outbreaks with a strong 
potential for spread and default weight matrices were used in order 
to determine the spatial autocorrelation. Default settings are gener-
ally applied in the study of spatial autocorrelation but Chen (2021) 
emphasizes the limitation of this approach as it may not accurately 
capture the spatial association. Consistent, reliable and robust 
responses are highly important, particularly in the study of the 
spread of threatening pandemics, such as COVID-19. As it is cru-
cial to enhance validity and reliability of the methodology used, we 
compared the sensitivity of Moran’s I and Geary’s C when applied 
with different weight matrices with the aim of identifying the most 
suitable weight matrix to determine spatial autocorrelation. 

 
 
 

Materials and Methods 

Dataset 
In this study, we utilized a very detailed dataset consisting of 

daily COVID-19 positive cases recorded for almost three years and 
residential addresses expressed by latitude and longitude (data 
rounded to 3 decimal places. The high granularity of the dataset is 

crucial to allow for precise geospatial analysis and accurate map-
ping of COVID-19 transmission patterns The timeline of the dataset 
was from 4 February 2020 until 19 December 2022 which com-
prised a total of 1,0008,518 patients of positive COVID-19 cases. 
This big pool of data was felt to be necessary for accurate analysis 
within the study area that encompassed three districts situated in the 
western region of Peninsular Malaysia: Petaling, Gombak and 
Kuala Lumpur. These areas were chosen because they have the 
highest populations in Malaysia, including Petaling with 2,290,000 
people, Kuala Lumpur with 2,000,000 people, and Gombak with 
945,400 people (https://www.dosm.gov.my). Petaling presents 
unique challenges in controlling the spread of COVID-19 as it has 
the highest population density among these districts. Kuala 
Lumpur, the nation’s capital, is also densely populated and serves 
as a major hub for nation’s economic activities hence making it a 
vulnerable region for transmission of infectious diseases. Gombak, 
with a smaller population, but due to its close proximity to Kuala 
Lumpur, cross districts transmission patterns might occur in this 
district potentially propelling the number of COVID-19 cases to 
become high also in this region. Each COVID-19 cases are reported 
together with additional data, such as brand of vaccine taken, age, 
gender, symptomatic status and nationality. This study randomly 
selected a total of 1,00,8158 cases from the year of 2020 until 2022 
to avoid biases that may arise (Shaham et al., 2020). The year 2020 
was chosen as the earliest outbreak due to COVID-19 appeared in 
Malaysia during that time. The data were recorded via 
MySejahetra. a COVID-19 monitoring mobile application used by 
the Ministry of Health, Malaysia. Figure 1 shows the study area 
map and Figure 2 depicts the total populations for each district. 
Figure 3 shows the distribution of the COVID-19 cases in Gombak, 
Petaling and Kuala Lumpur based on the location of residential 
addresses with the geographical coordinates rounded to 3 decimal 
places. Due to the large number of data points, which exceeds one 
million cases, the map shows a very densely populated view. The 
small scale of the map, combined with the sheer volume of data 
points, results in an overlapping and cluttered appearance, which 
might be perceived as visually overwhelming. 

                 Article
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Figure 1. Map of the study area in Malaysia.



Statistics 
Getis-Ord-Gi* (1992) is one of the spatial statistics techniques 

used to identify spatial clusters and hotspots and coldspots in the 
dataset. It is calculated as: 

 

                                         

Eq. 1 

 
where xj is the attribute value for feature j; wi,j the spatial weight 
between features i and j; and n is equal to the total number of features: 

                                         

Eq. 2

 
where 

                                                   
The Gi* statistic is a Z-score, hence no further calculation is 

required. Moran’s I (1950), on the other hand, is a measure of spa-
tial autocorrelation expressed as,  

 

                             

Eq. 3
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Figure 2. Population distribution at the district level.

Figure 3. Distribution of the COVID-19 cases in Gombak, Petaling and Kuala Lumpur based on the location of residential addresses.



where n is the number of spatial units;  xi and xj the values of the 
variables in spatial units;  the mean of the variable in all spatial 
units; and wi,j is the spatial weight between spatial units i and j.  

A Moran’s ) close to 1 indicates a strong positive spatial auto-
correlation, which is a sign that similar value tends to cluster 
together in the space investigated. Conversely, a Moran’s ) value 
closer to -1 indicates a strong negative spatial autocorrelation, 
which is a sign that dissimilar value tends to cluster in that space. 
Values around 0 indicate absence of a significant spatial autocorre-
lation, which is a sign of random spatial distribution values. In this 
study, we used the frequency of the numbers of positive COVID-
19 cases occurring at each spatial unit as attribute data. To evaluate 
the statistical significance of Moran’s I, we calculated the Z-score 
to assess its significance. The presence of a Z-score inside the crit-
ical region rejects the null hypothesis (H0) suggesting that there is 
spatial autocorrelation in the dataset, while a Z-score outside the 
critical region indicates the absence of spatial autocorrelation in 
the dataset. The Z-score is calculated as: 

 

                                          
Eq. 4

 

where I is the value of Moran’s I; E [I] the expected value of 
Moran’s I for the null hypothesis; and Var [I] the variance of 
Moran’s I.  

The p-value is calculated to test the hypothesis and assess the 
strength of the null hypothesis. It indicates that level of the chance 
that the dataset is statistically significant rather than random 
chance occurrence and is calculated as: 

 

                                          
Eq. 5

 

where ZObserved is the Z-score of Moran’s I; and P (Z ≥ | ZObserved |) 
the probability of observing a Z-score being equal or higher than 
the observed one. A p<0.05 outcome indicates that the value of 
Moran’s I is different from that expected under the null hypothesis 
resulting in the rejection of the null hypothesis as it shows the pres-
ence of spatial autocorrelation in the dataset, and vice versa. 

Geary’s C, finally, measures the spatial autocorrelation in a 
dataset through the formula: 

 

                                      
Eq. 6

 

where is the number of spatial units;  and xj the values of the vari-
able in spatial units; the mean of the variables in all spatial units; 
wij is the spatial weight between the spatial units i and j; and W the 
sum of the spatial weights (wij). 

A value of Geary’s C lower than 1 indicates positive spatial 
autocorrelation, a value higher than 1 negative spatial autocorrela-
tion and values close to 1 absence of significant spatial autocorre-
lation. We applied the Moran’s I and Geary’s C to the datasets 
using various parameter settings as shown in Table 1. In addition, 
999 permutations for Euclidian, Manhattan and Queen contiguities 
were applied to enhance the robustness of the results. All program-
ming was run in JupyterNotebook, a web-based 
(https://jupyter.org/) computing platform. The summary of the pro-
cessing steps to determine Moran’s I, Geary’s C, p-values and Z-
scores is shown in Figure 4.  

Proximity metrics 
The Euclidian distance is a measure of two points in a straight 

line. For example, the position of two points are (x1, y1) and (x2, y2), 
hence the Euclidian distance of two points can be calculated 
(Dokmanic et al., 2015) as: 

                                         

The Manhattan distance is a measure of the distance of two 
points in a grid-based system. For example, the position of two 
points are (x1, y1) and (x2, y2), hence the Manhattan distance of two 
points can be calculated (Malkauthekar, 2013) as: 

 

                                         

K-nearest neighbour is a supervised machine-learning method 
used for classification and regression (Rahman et al., 2021). The 
default method to assign weight for k-nearest neighbour is 
Euclidian distance. In order to determine the optimum number of 
neighbours (k), the Elbow curve method (Thorndike, 1953) was 
performed and the results show that k=5 is the maximum number 
of neighbours. The spatial weight for given data points is 
expressed as: 

                                          
Eq. 7

 

where wij is the spatial weight between spatial units i and j; di,j the 
Euclidian distance between i and j; dk the threshold distance, which 
determines how many points are neighbours. If di,j £ dk, both points 
are considered neighbours; otherwise not. Hence, the formula 
above assigns the weight = 1 to pairs of data within the threshold 
distance, which indicates neighbour relationship, while pairs that 
are not neighbours are assigned the weight = zero. 

The Euclidian distance technique measures the distance in a 
straight line between two points, while the Manhattan one mea-
sures the sum of absolute differences in coordinates in both vertical 
and horizontal axes. Due to this, the latter technique tends to be 
more sensitive to local spatial patterns, especially when using 

x
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Table 1. Weight matrices of Moran's I and Geary's C. 

Method                            Distance technique           Distance type 

Inverse Distance                              Euclidean                                0.01 
                                                                                                         0.02 
                                                                                                         0.03 
                                                                                                         0.04 
                                                                                                         0.05 
Inverse distance squared                 Manhattan                                0.01 
                                                                                                         0.02 
                                                                                                         0.03 
                                                                                                         0.04 
                                                                                                         0.05 
K-nearest neighbour                              Nil                                      k=8 
                                                                                                          k=9 
                                                                                                         k=10 
                                                                                                        k =15 
Queen contiguity                                   Nil                                       Nil 
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smaller distance weights, which results in higher Moran’s I values 
(Syetiawan et al., 2022). The Queen contiguity matrix method con-
siders two spatial units as neighbours when they share a boundary 
or vertex. The calculation of the method for a binary spatial 
weights’ matrix is express as: 

 

                                                    

 
where wij is the spatial weight between spatial units i and j. If i and 
j share common boundaries or vertex, then wij = 1; otherwise  = 0. 
 
 

 
Results  

Supplementary Materials, Table 1 shows the result of the spa-
tial autocorrelation test. All four methods using Moran’s I with dif-
ferent weight matrices consistently produced significant positive 
spatial autocorrelation results. However, Geary’s C yielded incon-
sistent results with different weight matrices. Significant negative 
spatial autocorrelation was observed using a 0.01 distance weight 

with Manhattan, Euclidian and K-nearest neighbour, while other 
distance weights produced insignificant positive spatial autocorre-
lation results.  

The distance weight of 0.01, i.e., analysis at a very local scale, 
suggests that neighbouring locations are less similar to each other, 
which indicates a sign of dispersion (Juliani & Nasution, 2024). It 
shows that the weighted sum of squared differences among the 
adjacent locations was high compared to the global variance. 
Conversely, the distance weight of ≥0.02 produced insignificant 
positive spatial autocorrelation suggesting that nearby locations 
were more similar to each other, with the weighted sum of squared 
differences between adjacent location low compared to the global 
variance (Saiful Bahri et al., 2014). 

Figure 5 illustrates the result of Moran’s I with the Euclidian 
and Manhattan techniques. As expected, the latter method yielded 
higher result with Moran’s I results compared to the former. 
However, as seen in Figure 6, the results were the opposite when 
Geary’s C. and as the distance weight increases, the Geary’s C val-
ues for both techniques also increases indicating more similarity 
between the neighbours as noted by Chen (2021). Figures 7 and 8 
show that Moran’s I results decrease when the distance weight 
increases. Conversely, when the distance weight increases, Geary’ 
C results also increase showing that this method is more sensitive 
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Figure 5. Results of Moran's I based on the Euclidian and Manhattan methods.

Figure 4. Process summary.



when larger distance weights are involved (Chen, 2021). 
Figure 9 illustrates the results of the k-nearest neighbour 

method C using different numbers of neighbours (k). The results 
indicate that when the number of neighbours increases, the results 
of Moran’s I and Geary’s C both decrease. As seen in the Figure 
Moran’s I values are lower than those of Geary’s C, i.e. the latter 

is more sensitive to local spatial patterns when the Queen contigu-
ity method is used (Chen, 2021). 

An overview over the sensitivity, and potential applications in 
spatial autocorrelation analysis of Moran’s I of Geary’s C with spe-
cial reference to advantages under various circumstances is shown 
in Table 2. 

                 Article
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Figure 7. Results of Moran's I vs Geary's C with the Euclidian method.

Figure 8. Results of Moran's I vs Geary's C with the Euclidian method.

Figure 6. Results of Geary's C based on Euclidian and Manhattan methods.



Discussion  
As the distance weight increases, the Moran’s I values decreas-

es which is aligned with Tobler’s (1970) first law of geography, 
which states that “Everything is related to everything else, but near 
things are more related than distant things”. This pattern is evident 
across both Euclidean and Manhattan distance techniques, the 
results of which reflect diminishing spatial autocorrelation when 
the analysis considers higher spatial scales (Saiful Bahri et al., 
2014). However, the Manhattan distance technique produced 
slightly higher Moran’s I values compared to the Euclidian tech-
nique at similar distance weights (Malkauthekar, 2013), a fact that 
can be attributed to the nature of the Manhattan distance, which 
sums the absolute differences in coordinates along both vertical 
and horizontal directions (Li et al., 2007). The increased sensitivity 
for local spatial patterns is practically useful in determining clus-
tering in urban environments, where the spatial layout follows a 
grid pattern, as opposed to the straight-line Euclidian distance (Ei 
et al., 2023).  

Geary’s C, on the other hand, produces a different perspective 
on the spatial autocorrelation by focusing more on local variations 
rather than global patterns, which highlights its sensitivity to the 
choice of spatial weight matrices and distance techniques. This is 
due to a particular responsiveness to local changes and Geary’s C 

is therefore more likely to detect areas of spatial heterogeneity 
(Chen, 2021) making it valuable for detecting localized spatial 
anomalies or areas where the spatial relationship between points 
differs from overall trends (Chen, 2023). Nevertheless, this sensi-
tivity also means that Gearys’ C produces less stable and inconsis-
tent results when applied across different techniques and different 
distance weights. 

The k-nearest neighbour methods offers flexibility by defining 
spatial relationships based on the number of nearest neighbours 
rather than fixed distances (Bangira et al., 2019). We found that 
increasing the number of neighbours reduced the spatial autocorre-
lation value for both Geary’s C and Moran’s I, something that 
moved the results towards spatial dispersion. Thus, the spatial 
autocorrelation effect drops as more distant and unrelated points 
are considered during the analysis (Rahman et al., 2021). Hence, a 
very high precaution shall be taken when using this technique, 
especially in epidemiology dealing with high rates of bacterial and 
viral transmissions. Additionally, the Queen contiguity method, 
which defines neighbours based on shared boundaries, also 
showed significant positive spatial autocorrelation with both tech-
niques. This suggests strong clustering outcomes, which was espe-
cially evident in the densely populated areas in Gombak, Petaling 
and Kuala Lumpur.  

The comparison of Moran’s I and Geary’s C with different 
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Figure 8. Results of Moran's I vs Geary's C with the k-nearest neighbour method.

Table 2. Overview the characteristics of Moran's I and Geary's C. 

Characteristic                Distance technique                                                        Distance type 

Types of measure                 Global spatial autocorrelation                                                    Global spatial autocorrelation 
Function                               Measures global covariance (clustering of similar values)       Measures global differences (dissimilarity between neighbours) 
Mathematical range             -1 to +1                                                                                        0 to 2 
Interpretation                        Positive values indicate clustering while negative values        Values less than 1 indicate positive autocorrelation (similarity) 
                                             indicate dispersion                                                                      while valuesmore than 1 indicates negative autocorrelation (dissimilarity) 
Sensitivity       Less sensitive to local variations and more suitable More sensitive to local variations and measures local differences 
                                             for global patterns                                                                        
Advantages                           Provides a broad overview of spatial patterns                           Sensitive to local changes 
Disadvantages                      Might overlook local variations                                                 Results might be inconsistent with varying parameters 
Sensitivity to parameters     Generally robust across different spatial weight matrices        Highly sensitive to changes in spatial weight matrices and other parameters 
Application examples          Clustering of disease cases, socio-economic data                      Detection of spatial outliers, localized patterns of inequality 
Preferable approach             Manhattan distance for detecting clustering                              Euclidean distance for detecting local dissimilarities 



parameters provides a profound understanding of spatial autocor-
relation as it leads to the identification of parameter settings pro-
ducing consistent results. It also highlights the potential biases and 
limitations correlated with specific parameter choices (Phillips et 
al., 2020). In our study, the most suitable method for the dataset 
used was found to be the inverse distance approach based on the 
Manhattan distance using a weight of 0.05 as this distance weight 
produced a positive Moran’s I value with a high Z-value and low 
p-value (Supplementary Materials, Table 1). The consistency 
across different distance weights and techniques makes it a robust 
choice to understand the global spatial patterns, while Geary’s C 
offers a more nuanced approach by emphasizing local spatial vari-
ations. The different sensitivity of the Geary’s C with respect to 
different weight matrices would make it useful in potential studies 
in identifying local anomalies providing support for targeted inter-
ventions, such as local diagnostic programmes and vaccination 
approaches (Ei et al., 2023).  

The k-nearest neighbour method can be utilised in regions 
where population density varies widely as it ensures that a consis-
tent number of neighbours is analysed regardless of the spatial 
context. Nonetheless, this method should be utilised with precau-
tion, especially in local areas with high transmission as higher 
number of neighbours may produce lower values for spatial auto-
correlation and thus produce false results. The Queen contiguity is 
suitable to be utilised in urban areas where spatial clustering is 
closely intertwined. Together with physical proximity, this tech-
nique highlights the spatial boundaries and contiguity considera-
tion in epidemiological studies. 

Limitations 
One of the limitations of this study is that the dataset consisted 

of reported cases from the Malaysian Ministry of Health, which 
means that the presence of unreported cases would create a bias, 
the strength of which remains unknown. This study also consid-
ered spatial autocorrelation based on the frequency of the COVID-
19 cases with respect to location (the spatial element), while the 
additional consideration of factors, such as those based on socio-
economy, detailed demography and health interventions could 
have changed outcomes. Future studies should also focus on other 
factors contributing to transmission, e.g., vaccination based on the 
fact that different vaccines used against COVID-19 have varying 
levels of protection. By studying the spatial autocorrelation of vac-
cination types together with the distribution of COVID-19 cases, it 
would be possible to understand the impact of vaccination inter-
ventions in mitigating and controlling transmission. It is crucial to 
provide all information of potential impact. such as additional data 
would provide a better understanding of the factors driving spatial 
autocorrelation. 

 
 
 

Conclusions 
We compared the result of spatial autocorrelation with differ-

ent parameter settings to allow a deeper insight on the spatial rela-
tionships by taking account the sensitivity of the weight matrices. 
By using a high-resolution dataset, this study should provide more 
accurate and reliable spatial patterns and dynamics of disease out-
breaks. Compared to other weight matrices, a Manhattan distance 
weight of 0.05 with Moran’s I was found to be the most suitable 
for the dataset used. 
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