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Abstract

During the COVID-19 pandemic, a system was established in
China that required testing of all residents for COVID-19. It con-
sisted of sampling stations, laboratories capable of carrying out
DNA investigations and vehicles carrying out immediate transfer
of all samples from the former to the latter. Using Beilin District,
Xi’an City, Shaanxi Province, China as example, we designed a
genetic algorithm based on a two-stage location coverage model
for the location of the sampling stations with regard to existing
residencies as well as the transfer between the sampling stations
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and the laboratories. The aim was to estimate the minimum trans-
portation costs between these units. In the first stage, the model
considered demands for testing in residential areas, with the objec-
tive of minimizing the costs related to travel between residencies
and sampling stations. In the second stage, this approach was
extended to cover the location of the laboratories doing the DNA-
investigation, with the aim of minimizing the transportation costs
between them and the sampling stations as well as the estimating
the number of laboratories needed. Solutions were based on sam-
pling stations and laboratories existing in 2022, with the results
visualized by geographic information systems (GIS). The results
show that the genetic algorithm designed in this paper had a better
solution speed than the Gurobi algorithm. The convergence was
better and the larger the network size, the more efficient the genet-
ic algorithm solution time.

Introduction

The coronavirus disease 2019 (COVID-19) pandemic spread
rapidly worldwide after the first cases in December 2019were
detected in Wuhan, Hubei Province in central China (Zhou et al.,
2020). This highly contagious virus has had a major impact on
individuals, societies and economies, causing infections and even
deaths worldwide (Nicola et al., 2020; Davis et al., 2023). To mit-
igate casualties and economic loss, there is a pressing need to
establish service facilities for urgent patient support, such as evac-
uating or relocating victims to various emergency medical care
facilities, shelters, mobile hospitals, etc. Structural imbalances of
the current healthcare system, e.g., limited medical service supply,
uneven spatial distribution and underutilization of resources, pose
challenges to the growing demand for essential services.

The high transmissibility of the coronavirus necessitates time-
ly screening and rapid isolation of infected individuals propelling
a strong demand for the location of testing services and emergency
facilities. This requires the establishment of temporary sampling
points in various districts followed by the transfer of samples to
laboratories designated for DNA investigations. When the work-
load surged in the initial stages of the COVID-19 pandemic, some
regions in China experienced suboptimal positioning of sampling
stations hindering the timely identification and control of infection
sources. Moreover, the efficiency of sample processing was often
influenced by the distance between sampling stations and labora-
tories capable of investigating virus DNA. These issues reveal
location deficiencies for which we propose a two-stage model
covering the location of sampling stations and laboratories, with
the aim to facilitate implementation of rapid and accurate testing
followed by DNA investigation.
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The facility location problem is one of the classical problems
in combinatorial optimization. Because it is difficult to obtain the
optimal solution in such situations, heuristic algorithms are often
used. Compared to other algorithms, this particular approach has
stronger universality and searching ability and is suitable for solv-
ing large-scale complex location problems. Genetic heuristic algo-
rithms (GAs) are inspired by the principle of natural selection and
used for solving both constrained and unconstrained optimization
problems. GAs assists the solution of complex problems by
improving a population of potential solutions iteratively. They
have been widely used in emergency facility location (Murali et
al.,2016; Liu et al., 2016), emergency logistics planning (Nikzamir
et al., 2020; Wang et al., 2021) and other fields. Although the GAs
have shortcomings, they can be improved by technical design
(Bashiri et al., 2018; Wang et al.,2022; Liu et al., 2023) or through
combination with other algorithms (Farrokhi-Asl et al., 2017;
Rabbani et al., 2018; Zhong et al., 2020).

Literature review

Work on facility locations is typically categorized into differ-
ent models, such as the discrete coverage approach (the P-median
model) and efforts to minimize the maximal distance for all
demand points (the P-centre model). Most facility location studies
concentrate on the requirement of facility points to identify needs
that cover the largest proportion. In the context of emergency med-
ical service facilities, the objective function commonly includes
maximizing the coverage level, minimizing the number of facili-
ties and the transportation costs (Karimi et al., 2011; Nogueira et
al., 2016; Alizadehn & Nishi, 2020).

Ahmadi-Javid et al. (2016) conducted a comprehensive study
on the location of medical facilities considering ten dimensions
that included uncertainty, periodicity, and discreteness leading to a
location model with targeted action. Liu et al. (2016) focused on
mobile hospitals, while Bélanger et al. (2020) emphasized ambu-
lance deployment. Siddiq ez al. (2013) studied the coverage of ser-
vice radii of Automatic External cardiac Defibrillators (AEDs) in
metropolitan Toronto, Canada and found that improved service
radii significantly improved survival rates after out-of-hospital car-
diac arrests. Schneeberger et al. (2016), based on previous work by
Gendreau et al. (1997), constructed a single-period, dual-coverage
model leading to re-siting of available resources, while Gu et al.
(2018) solved a similar situation using a ‘greedy algorithm’ to find
the preferable of temporary emergency medical service stations.
Dong et al. (2018), on the other hand, utilized different accident
emergency response times in Dalian, China as constraints in a
study of emergency facility subway locations that resulted in a
lower number of sites.

Caunhyea et al. (2016) proposed a two-stage path dealing with
various uncertainty conditions and Mantzaras et al. (2017) con-
structed an optimization model with the objective of minimizing
the cost of an infectious waste management network, which result-
ed in optimal locations of transfer stations and treatment centres.
Pichka et al. (2018) used the minimum cost as the objective func-
tion, incorporating a third-party logistics provider to develop a
variable two-stage open model, while Sanci ef al. (2019) proposed
a two-stage, stochastic planning model that not only considered
facility locations, but also equipment location. Oksuz et al. (2020)
developed a two-stage stochastic planning model with the objec-
tive of minimising the total TMC set-up cost and the expected total
transport cost by considering the distance between the disaster area
and the medical centres and assigning different casualty categories
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to these medical centres for emergency medical response. The sit-
ing and transportation flow with regard to a healthcare temporary
storage centre for waste was approached by Liu ez al. (2020) with
a two-stage model considering environmental traffic and vehicle
loading factors. Amideo et al. (2021) studied the siting of shelters
in different contexts by first focusing on location followed by a
second stage optimizing the evacuation routes. Seraji et al. (2021)
constructed a two-stage, multi-objective model for the study of the
problem of location and uneven distribution of refuge places. Here,
the first stage considered the various distances between warehouse
and refuge, with the second suggesting a distribution that mini-
mized the cost caused by unequal distribution systems, while Long
et al. (2023) constructed a similar stochastic model considering
pre-pandemic preparatory measures and post-pandemic rescue
operations based on a preference-inspired co-evolutionary algo-
rithm that was validated by an actual case in Hunan Province,
China.

There is a limited number of studies on emergency location
models utilizing complete coverage approaches and there is scarci-
ty of work considering the capacity limitations of facility points
and service radii. The potential contributions of this study include:
i) development of a versatile, two-stage location model that takes
capacity constraints and rapid response into account; ii) creation of
a genetic algorithm that effectively helps solving this problem; and
iii) validation of the effectiveness of the algorithm and model. The
approach is summarised in a flow chart (Figure 1).

- press

Materials and Methods

To cover the medical needs for all regions, reduce the construc-
tion cost as much as possible and improve the efficiency of medical
testing as well as the convenience of residents, it was necessary to
optimise the sampling system in the entire region and scientifically
select the number and location of sampling points. This was fol-
lowed by the selection of DNA laboratory locations taking into
account the integrity of medical testing according to Standard
Operating Procedures (SOPs). We also considered the transport
costs at this stage. These operations were eventually transformed
into a mathematical model. In the first stage, the location of the net-
work of sampling points was determined based on the location and
number of residencies. In the second stage, the location of the lab-
oratories was decided based on the location of the sampling points.

Study site

Background

As a city with a population of 10 million, Xi’an faced a high
risk of importing the COVID-19 infection. The establishment of a
15-minute DNA sampling circle, proposed and implemented by the
Xi’an municipal government in 2022, would circumvent large-
scale outbreaks and potential dangers on the one hand, and would
also be beneficial in providing the public with more convenient
healthcare services on the other. As the core area of Xi’an, Beilin
District has a complex population flow, and in order to maximise
the level of medical emergencies, Beilin District has established a
relatively well-established COVID-19 testing service station in
2022. We therefore focused on the Beilin District of Xi’an as study
area and defined 2022 as the study year.

The road information of Beilin District was obtained from the
Resources and Environmental Science and Data Center, Institute
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of Geographic Sciences and Natural Resources Research, Chinese
Academy of Sciences; population data and residence data for
Xi’an were obtained from the 2021 Xi’an Statistical Yearbook, the
Geoscience Data Network and the National Geographic
Information Database (NGID). The intersections of secondary
roads in Beilin District were used as demand points and candidate
facility points (Figure 2). The demand points in the first stage are
residential areas, representing the number of residents to be sam-
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pled at that point, and the candidate facility points are DNA sam-
pling stations, representing whether or not to construct a sampling
station at the demand point (candidate facility point). Demand
points and candidate facility points are the same set of points, i.e.,
each demand point has the potential to be a sampling facility point,
but due to resource constraints, different demand points (residen-
tial areas )may be assigned to the same facility point, and a sam-
pling station can only be constructed at some of the demand points.

persons.

escription of]
the problem

laboratory tests.

« Highly infectious in the early stages of a pandemic outbreak
* Establishment of temporary DNA sampling stations to screen for infected

» Samples collected need to be further sent to designated hospitals for

and laboratory hospitals

* Two-stage emergency facility siting model for DNA testing stations

*The objective of the first phase is to minimise the sum of the cost of construction
of the sampling stations and the cost of public travel: the objective of the second
phase is to minimise the cost of transporting ambulance samples

=Setting the service radius and response time

algorithm

in Xi'an. China

* Design the appropriate genetic algorithm for the model
*Set up arithmetic examples to verify the convergence and efficiency of the

*The validity of the algorithm and model is again verified using a real case study

Figure 1. Flow chart describing what needs to be done during an epidemic.
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Figure 2. Map of the study area with the stage I candidate sites.
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Using ArcGIS software (ESRI, Redlands, CA, USA), the road net-
work distances between points were firstly calculated to form dis-
tance matrix 1, while the number of residents was aggregated to
the corresponding candidate points based on the proximity princi-
ple, as the demand for the candidate points in the first stage (see
Table A in the Appendix).

The hospitals with medical testing qualifications announced by
the Health Planning Commission of Beilin District, Xi’an (Table 1)
were used as candidate sites for the second stage of the facility
(Figure 3). The demand point of the second stage is the collection
of sampling stations selected in the first stage, and the facility point
is the location of the DNA laboratory, which are different sets of
points, i.e., the samples collected at the sampling stations are trans-
ported to the laboratories that meet the constraints. The road net-
work distances between the candidate sampling sites and the can-
didate DNA laboratories were calculated by using the ArcGIS soft-
ware to form distance matrix 2.

@  laboratory hospital

a 05 1 2 Mies

IZCPress

Model construction

General

A two-stage location model was created with aim of minimiz-
ing the number of sampling stations, DNA-laboratories and the
transport of samples between them. We chose a complete coverage
model including these facilities and the road network joining them
based on existing facility requirements, integrated time constraints
and transfer capacity. This first stage concerned the location of res-
idential dwellings and the prevailing demand for testing with the
walking time to giving the coverage radius. This was used to min-
imize the construction cost of sampling stations and the travel cost
required for the residents to get there. The second stage consisted
of minimizing the transport cost of samples from the sampling sta-
tions to the DNA-laboratories, where the sample preservation time
was the constraint governing the service radius. Based on this a
GA was designed.

Figure 3. Map of the study area with the stage II candidate sites.

Table 1. Laboratorieswith DNA testing capability in Beilin District according to Xi 'an Municipal Health Commission.

Hospital Postal address

Xian NO.1 Hospital
Xian NO.9 Hospital

30 Fen Lane, South Main Street
151 East Section of South Second Ring Road

Honghui Hospital
Genertec Universal Medical Hospital

555 Friendship East Road
319 East Section of South Second Ring Road

Shaanxi Province Friendship Hospital

Shaanxi provincial people’s Hospital

277 Friendship West Road
256 Friendship West Road

Beilin District Hospital of Traditional Chinese Medicine
Xijing 986 hosptial

38 East Sheep Market
6 Construction West Road
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Sampling stations

The optimal location and number of sampling stations that
would produce the minimum travel in addition to the cost of con-
structing new sampling stations were the objectives of the first
stage. According to National Health Commission, the capacity of
the sampling stations has a fixed value, here denoted as a;, while
the street network nodes were denoted as i = {1,2, ... [}; the num-
ber of residential areas around the nodes of the second-level street
network were termed demand points and denoted as b;; the street
network nodes in the secondary districts were taken as facility can-
didate points and denoted as j = {1,2, ... , J}; unit construction
costs as ¢; the distances between the demand points and the facility
points as d;; the demand assigned to a candidate facility point as
v;; and the service radius of the sampling stations (set at 15-minute
walking distance) as D,,

Assumptions

i) The limitations in demand and capacity at both demand
points and candidate facility points are known; ii) The demand for
testing does not exceed the capacity of the facility candidate point;
iii) Demand can be covered by more than one facility point, i.e.
residents can go to different sampling stations; iv) Distances are
measured using the road network with residents reaching the sam-
pling stations via primary and secondary roads, excluding lower—
level roads, and only focusing on distance without considering
effects of potential road works; and v) Residents walk at a uniform
speed;

DNA-laboratories

The facility candidate points for the location of DNA-laborato-
ries in the second stage were denoted as k; the distances between
sampling stations and laboratories as s; shipment from the sam-
pling stations to the facility point as u;; according to official guide-
lines, medical reagents should be tested within a specified time to
assure the effectiveness of the reagents used. This time limit should
be the service radius of this stage and recorded as D, . Based on the
efficiency of the healthcare facility, the number of people sampled
per hour at each sampling point is #. The working time at the sam-

X Yij

IEMJ[ 4

pling point is , from which the number of transportation

n
units can be calculated; in the second stage, the location and num-
ber of DNA-laboratories were chosen to minimize the transporta-
tion cost.

Assumptions

i) The sampling stations have capacity limitations, while the
DNA-laboratories do not, disregarding laboratory capacity and the
time for reagents to reach laboratories; ii) Transportation costs are
only related to the number of samples and distance, without con-
sidering other costs; and iii) The speed for reagent transport is con-
stant, and the per-unit transportation cost is the same, without con-
sidering the impact of traffic congestion or road works.

Variables
The parametric variables used in this study are given in Table 2.

Sampling station construction costs

The network of sampling stations and the DNA-laboratories
network must meet the stipulated security principles and need
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therefore to be carefully distributed. The minimum value of the
construction cost of a sampling station can be expressed as:

Min C1X;
&% (Eq. 1)

Public travel

The service radius was set at the distance possible to cover
inl5 minutes by footand this travel cost without considering any
other costs was expressed as:

Mfﬂz E Cz}’[)'du (Eq 2)
JEJKEK

Sample transportation cost

The transportation cost of samples and reagents from the sam-
pling stations to the DNA-laboratories and the number of times
that test reagents need to be transported were calculated taking
sample storage time and driving distance of the transport vehicle
into account as follows:

T Yyij=by, Viel (Eq. 3)

JEN;

fs’i«jw §

né ] denotes the number of times the reagents needed

where

to be transported, The total transport cost was taken as the unit cost
r multiplied by the distance travelled (with the distance doubled to
account for the return of the transfer vehicle).

Constraints

Feasibility domain constraint

The service radius was set at 15-minute walking time; N; rep-
resents the collection of sampling stations that can cover the resi-
dential area i within the D, range. When the demand point is 7, the
facility point is selected from the set that can cover i within 15
minutes and is less than or equal to the original facility point set.
M; represents a collection of residential areas that can cover the
sampling stations j within the D, range, and N, represents a col-
lection of laboratories £ that can cover the sampling stations j with-
in the D’, scope. M’, represents a collection of sampling stations j
that can cover DNA-laboratory k£ within the D’, range.

Capacity limitation

The first requirement is to ensure that all demand points are
covered. Since the capacity of the sampling stations is limited, the
number of allocations cannot exceed the overall capacity.

T yij=b, viel (Eq. 4)
JEN;
te%])"ij < ajx;, Vi€] (Eq. 5)
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Supply/demand balance
The whole system is a supply and demand balancing system
where all samples collected must be distributed to the DNA labo-

ratories.

E Ujk = Xj» V]E]
keN';

(Eq. 6)

Based on the above analysis, the following model was con-
structed where equation 7 represents the first-stage objective of
minimizing the cost of construction of sampling stations and the
cost of travelling for residents; equation 8 represents the constraint
that all DNA testing needs in residential areas must be covered,
and equation 9 indicates that the number of samples collected by
the sampling station j must not exceed its testing capacity and that
sampling can only be carried out if this sampling station has been
selected:

Table 2. Parametric factors and their definition.

——

Min ¥ oxj+ I F cayydy) (Eq. 7)
JEN} JEIkEK

s.t Ryj=by Viel (Eq. 8)
JEN}

z Yij = ajXj, Vj E] (Eq 9)

iEMj

Equation 10 represents the second-stage objective of minimiz-
ing the sample transport cost; while equation 11 represents the con-
straint that ensures that the selected sampling stations must all be
covered (but only once); equation 12 represents the constraint that
samples can be shipped from the sampling station to the DNA-lab-
oratory, but only if the laboratory has been selected; and equation
13 indicates the range of values of the decision variables:

L ¥
MiniEIkEKZ [.E:—C{I] SjkVKT (Eq. 10)
€lke L

Parameter Definition

i

The residential area

I The set of residential areas
b; The population of residential area i
j The sampling station
J the sampling station network
2 The capability limitation of sampling stationj
[ The construction cost of a sampling station
[ Cost of travelling per unit distance for the public to the sampling station
d; The distance between residential area i and the sampling stationj
. The service radius
M, An infinite number
Ni = {j|d; <D} The set of sampling stations that can cover residential area i within the D, range
M = {j|d; < D.} The set of residential areas of the sampling stations j can be covered within the range of D,
n The number of people that can be sampled at a sampling station per hour
IEEM,-Yii The time needed to collect all samples at sampling station j
n
Gy The maximum time interval for transportation of collected samples to a DNA-laboratory
igﬂj}’ii]
nGx The minimum number of transports required by a sampling station in a limited time period rounded upward, if >1, counted as 1
r Transfer vehicle transport cost
Sii Distance between sampling station j and laboratory k
X; {1, Select the sampling station j 0, sampling station j was not selected
Vi The number of residents assigned to the sampling station j
Vi {1, Select laboratory k 0, Laboratory k is not selected
Uy, {1, Sampling station j selects laboratory k 0, sampling station j does not select laboratory k

[Geospatial Health 2024; 19:1281]
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st ¥ uk=x, Vi€] (Eq. 11)
keN’;
¥ ujk < Movy, VKEK (Eq. 12)
JEM',
Xjs Uik Vi € (0,1), yjjinteger (Eq. 13)

Use of genetic algorithm

The genetic algorithm takes the coding of the decision vari-
ables as operator and performs a set of operations, such as encod-
ing, cross-over, mutation and fitness (described below) in a proba-
bilistic manner applying what is called an elite preservation strate-
gy (also described below).

Chromosome encoding

The implementation of genetic algorithms requires a primary
encoding as this affects the subsequent genetic operators directly
and largely determines the efficiency of the evolution. Various
encoding methods exist and as we were faced with multiple deci-
sion variables, actual number encoding was used since it helps to
reduce computational complexity. Each variable corresponds to a
specific gene location on the chromosome and the number of vari-
ables determines the code length. Two chromosomes are designed
according to Eq. 13. In the first stage, x indicates whether a facility
point has been selected and y the number of facilities allocated;
thus when x takes the value of 1 for a given genotype, the corre-
sponding y columns sum to >0 (Figure 4), which indicates that the
site should be selected for facility construction and that a demand
assigned to it. The second stage runs likewise coding the decision
variables « and v correspondingly.

The genetic algorithm starts the iteration with the initial popu-
lation as the initial point and uses random numbers to generate N
data strings, each of which represents an individual, who together
form a population. In the coding session, the initialization of the ¥
chromosome needs to follow the X chromosome. The initialisation
of the V chromosome also needs to follow the initialisation of the

[ x; x2 x5 - Xj1 X
[ Ju g = on & g N
1
Ya Yoz - - Yz
Yai Yzz -« - Y3y
Yai Yz - - - Yaji
Yi-01r Yi-pz Yi-1)j
\ II
N i Yiz Yig /
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U chromosome.

Fitness

This is an important metric in heuristic algorithms representing
the ability of an individual trait to adapt to its environment (and
gain progress in the same way as in real life where successful
organisms reproduce better). It is used to measure the possibility of
an ‘individual’ to reach the optimal solution in an optimization
computation. The fitness function for a model with constraints is
constructed by adding the constraints as penalty terms to the objec-
tive function. Each time ‘individuals’ are chosen from a popula-
tion, the better-adapted ones are selected to enter the ‘offspring’
population. This operation is repeated until the population size
becomes the same as the original one. We used a binary tourna-
ment selection method, which involves taking two ‘individuals’
from the population at once and selecting the better one to be
retained in the next-generation based on comparison of fitness
functions.

Cross-over

A two-point, cross-over approach was used, which refers to
randomly setting two cross-over points in individual chromosomes
and exchanging some ‘genes’ there. The procedure is as follows:
two individuals were randomly selected from the parental genera-
tion (1, N) (where N is the length of the gene population on the
chromosome) to generate two random numbers. These two random
numbers determine the crossover position, where the two chromo-
somes are cut and then re-combined cross-wise generating two
new ‘individuals’ as shown in Figure 5.

Mutation

This is done to determine whether ‘individuals’ should be
mutated to maintain the diversity of the population needed to pre-
vent the population from falling into a local optimum. This study
used the uniform variation method, which first determines the
location of an individual gene variation, then replaces the original

Randomly Selecting Starting
and Ending Points
parentl E | 2 6t | ‘%
s [ » |« |+ D
Randomly Selecting Starting
and Ending Points
parentl E 2 o (s
s [ » |« + D

Figure 4. Chromosome coding mode.

Figure 5. Two-point, cross-over schematic diagram.
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‘gene’ value with a random number that conforms to a uniform dis-
tribution within a specific range according to a certain probability.
For example, if X is the point of mutationin individual X =
{X,X,..X,} that takes the value range [U,,,, U,..] after a uniform
mutation of the individual, the new individual X = {X X,... X' ...
X,}, where X'y = U,,;,,+ r(U,,, - U,,;,) appears with r being a ran-
dom number that conforms to a uniform distribution over a range.

Elite preservation strategy

After the offspring with cross-variation had been obtained and
merged with the parents to form a new population generation with
a size of 2N, the fitness is calculated and sorted, with the first N
‘individuals’ with better fitness retained as the new population
size. This elite retention strategy was adopted to optimize the pop-
ulation further. The flow of the designed algorithm is as follows: 1)
Initialize a population consisting of N individuals according to the
coding rules; ii) Calculate the fitness of the current population; iii)
Stop when the stopping condition is met; otherwise continue; iv)
Independently select N individuals from the current population; v)
Independently perform a cross-over operation in these individuals;
vi) Independently mutate the N individuals after the cross-over
operation; vii) Merge the parent and population resulting from the
crossover mutation to obtain a population of size 2V: viii) From the
merged population, select NV individuals according to the selection
algorithm to obtain a new generation population; and then ix)
Return to step 2. The flowchart is shown in Figure 6.

A Sampling station location

* Laboratory Location

2 Mies

—.Genetic Encoding
ﬁ Al
Data
Prc%essing ?

" Initialization of
Population

Set the service
radius of the model

Objective Function

> Caleulation and Constraint Penalty
Term
Tteration Number
Judgrry YES
NO
Tournament

Selection '—5’ Selection Operator

[ - ] Two-Point
rossover ——>
Crossover Crossover

I Mutation |

| Elite Preservation
Strategy
[ ke
Resulis £

Figure 6. Flowchart of genetic algorithm design.

Figure 7. Location of sampling stations and DNA-laboratory in Beilin District.
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Algorithm testing

To evaluate the effect of a genetic algorithm, the algorithm
should be tested with different indicators, mainly including the
convergence index of the solution time and the solution. We used
Gurobi (Kratica et al., 2014; Saghand et al., 2022) to generate five
computational examples randomly with the cross-over probability
(Pc)=0.7, the mutation probability (Pm)=0.05, the population size
(POP)=100 and the iteration number G=50.

Study variable settings

Each healthcare worker can collect about 360 samples per
hour. Calculating on the basis of 5 healthcare workers for each
sampling station, 1,800 samples can be taken at each sampling sta-
tion per hour, and according to the “Guidelines for the
Implementation of Regional Medical Testing for Novel
Coronaviruses” of the National Health and Wellness Commission,

Table 3. Comparison between the genetic algorithm and Gurobi.

Article

the sampling should be completed within 6 hours, and each sam-
pling station can accommodate the collection of samples from
10,800 people. Assuming that each user walks 2,000 meters in 15
minutes, the first stage’s service radius was set at this length. Each
sampling station costs 20,000 Chinese yuan (RMB) to build and 1
RMB for a residential trip. According to the regulations, follow-up
samples must be tested within 4 hours and collected and transport-
ed every 30 minutes to 2 hours so the service radius of the second
stage was set at 2 hours; the cost of the transfer vehicle within 3
km is 10 RMB and the unit transportation cost » was set at 10
RMB. Specific parameter values are shown in Table 5.

Algorithm solving

The distance matrix, target model, constraints and parameters
were entered into the genetic algorithm, and the language of the
genetic was written by a Python application, which selected a total
of 109 sampling stations and 8 laboratories.

Gurobi solution results

Population size (pcs)Algorithm solution time (sec) Algorithm solution resultsGurobi solution time (sec)

10*10 2.20 552936 3.99 551894
20%20 4.80 863242 34.50 861924
30*30 7.28 1183355 186.29 1180703
50*50 12.21 18578993 1918.19 18547776
100*100 35.53 35748325 7100.28 35626523

Table 4. Efficiency of the Genetic algorithm at different scales.

Population size(pcs)

Iterations (no.)

Solution time (sec)

10*10 50 2.75

10*10 100 6.21

100*100 50 36.72

100*100 100 80.63

200*200 100 229.77

Table 5. Relevant parameters.

Parameter D, n Gy C, C,
Numerical setting 2,000 1,800 2 20,000 1

D,, service radius; n, number of people sampled per hour at the sampling station; r, transfer vehicle transport cost; Gy, maximum time interval for transportation of collected
samples to a DNA-laboratory; C, , construction cost of a sampling station; C,, cost per unit distance.

Table 6. Computational results of the locations of sampling ststion and DNA-laboratories.

Sampling station (serial number)

724, 217, 36, 55, 66, 67, 90, 99, 101, 122, 130, 132, 135, 161, 164, 165, 180, 185, 198, 207, 215, 218, 222, 224

236, 287, 302, 325, 333, 353, 361,364, 416, 458

Laboratory

Shaanxi Province Friendship hospital

Shaanxi provincial people’s hospital

1369, 385, 429, 459, 486, 554, 563,598, 599, 626, 682, 689, 724
497, 500, 571, 586, 635, 673, 713,716,

Xian No.1 Hospital
Honghui Hospital

727, 767, 812, 869, 915, 967, 997, 1067, 1086, 1118, 1140, 1143, 1149,

1179, 1206, 1243, 1265, 1272, 1332, 1367, 1394, 1422, 1426, 1476, 1503, 1536

808, 851, 856, 957, 991, 1031, 1077, 1080, 1112

Beilin District Hospital of Traditional
Chinese Medicine
Xijing 986 hosptial

1199, 1229, 1259, 1295, 1323, 1373, 1418, 1432, 1483, 1499, 1505, 1565, 1607, 1620

771,930, 1032, 1069

Xian NO.9 Hospital

Genertec Universal Medical
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Results

Algorithm testing

Table 3 shows the difference between the genetic algorithm
and Gurobi with respect to the time needed to solve the equations.
It can be seen that the genetic algorithm is faster than Gurobi and
that it varies with the scale. In addition, the efficiency of the genet-
ic algorithm used in this study was also progressively more stable
with increasing scale. The optimal solution obtained by the genetic
algorithm was close to that obtained by Gurobi. To further prove
the algorithm’s effectiveness, the number of demand points and
facility points as well as the number of iterations were tested with
unfading results. Indeed, it was found that the solution time of the
model grows as the scale of the independent variables increases
and the effect of the scale on the solution efficiency is greater than
the number of iterations (Table 4). Thus, the results converge faster
at the different demand points and facility candidate point sizes,
which is evidence that this algorithm is sufficiently good.

Comparative analyses

The results obtained by the algorithm were compared with the
location of sampling stations and DNA-laboratories in Beilin
District during the COVID-19 epidemic and visualized with
ArcGIS software. As can be seen from Figure 8, the results of the
model constructed in this study are roughly evenly distributed in
each region, covering the entire area and many sampling stations
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are close to the actual positions (Figure 8), all laboratories with
DNA testing capabilities were selected (Figure 7), which indicates
that the model and algorithm are effective. At the same time, con-
sidering the construction cost, the location scheme proposed can
cover all existing needs and satisfy the sampling time constraints,
often providing a more comprehensive location decision. It is
worth noting that the results obtained by the model selected 20
more sampling stations than the actual situation, and with regard to
sampling stations, there were often few, sometimes none located in
some areas in practice. This is because the model is based on the
location of facilities under the condition of sufficient need for
DNA-testing, but as unable to organize staff to handle the situation
when the pandemic first struck. Only selective construction could
be carried out in some areas.

Discussion

General

This paper presents the construction of a two-stage covering
location model considering capacity constraints and rapid
response. While ensuring that all demands are met, the model aims
to minimize costs associated with transportation, building of facil-
ities and residents’ travel. Taking into account the capacity con-
straints of the sampling stations and the given service radii, a two-
stage project covering residents and sampling stations on the one
hand and the transport to and location of laboratories with capacity

A A
- | ™
& o e 2 o
@ °
_ 4 s
) i e I
@ [ 7Y ®
° f P Ao
L] re
A t. Aot s .
.. : ‘ | - L ]
St w o' i A LR X
A ® -. | Wy ‘l gl __IT]
A® 'S A A
&
.“' » 'y & A
Mk

Figure 8 Comparison between computational results of sampling stations and actual locations in Beilin District 2022.
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to perform DNA testing on the other. This provides a novel
approach for emergency facility location, more aligned with real-
world scenarios. In terms of model solution, we designed a genetic
algorithm whose solution results were compared with those
obtained using the Gurobi algorithm package. The genetic algo-
rithm designed using the Python language outperformed the
Gurobi algorithm in terms of speed even when dealing with large
the population sizes and time constraints. Taking the Beilin District
of Xi’an City as example, 1,636 road nodes were selected as the
first-stage demand points and candidate testing points, with 8 med-
ical institutions meeting national medical testing qualifications
chosen as the second-stage candidate laboratory points. The results
of the algorithm solution show that 109 sampling stations need to
be constructed in the first stage, and all the laboratory candidate
sites for the second stage have been selected.

The results of the model constructed in this study show that
proposed localisation of facilities are roughly evenly distributed in
each region, covering the entire area, with many alternative points
close to the actual positions (Figure 8), often providing a more
comprehensive location decision than the actual one. Considering
the costs of building extra sampling stations and DNA-laborato-
ries, citizens’ travel and sample transportation, the location scheme
proposed here meets the capacity of the facilities and the time
requirements. It is worth noting that the results obtained by the
model selected 20 more sampling stations than the current scheme
and there were often few, sometimes no DNA-laboratories located
in some areas in practice. This is because we designed the model
based on the location of facilities under the condition of sufficient
need for DNA-testing, but did not include organization of staff to
handle the situation when the pandemic first struck.

Existing research has demonstrated the critical importance of
sampling stations (Zhao et al.,, 2021) and nucleic acid screening
stations (Liu et al., 2022 Niu et al., 2024) in preventing the spread
of health crises such as the COVID-19 pandemic and in reducing
their profiles. Recent studies have also begun to address issues
regarding the allocation of healthcare workers (Saidani et al.,
2021) and subjects (Xie et al., 2022) at sampling stations, but little
research has been done on the siting of sampling stations and DNA
laboratories, and this paper aims to fill this gap.

Firstly, the research model can provide specific decision-mak-
ing suggestions for the national emergency management depart-
ment. Models similar to the one proposed here can be constructed
by setting different parameters according to the situation at hand,
such as locations for candidate facilities, with reasonable planning
arrangements provided for resource allocation in emergency
response or national disaster prevention. At the same time, it helps
to improve the collaborative response ability between the relevant
departments and provides academic support for the formulation of
rules and regulations of emergency management systems.

Secondly, the research model can provide feasible solutions for
the location of medical testing units in relation to hospitals and
other health care units. These units set the coverage radius and
limit capacity of the facility points according to the location char-
acteristics. The application of models as the one described here can
minimize the cost of facility locations, improve the utilization rate
of scarce resources and reduce construction costs. The model
established in this study is thus universal and can be applied in dif-
ferent fields where time requirements play a role, e.g., centres for
logistics and distribution.

Thirdly, the theoretical model can provide residents with cor-
responding plans to deal with future emergencies. Combining with
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relevant requirements and residents’ reality, setting different cov-
erage service radius, and adopting the location mode with the goal
of minimizing the construction cost of the test site and the travel
cost of residents, can guide cooperation between residents and
government enterprises.

Limitations of the study

Due to the limited level, this study is still deficient in many
places and future research can consider improving it from the fol-
lowing perspectives: i) Only the optimization problem of cost and
number of facilities was considered, input parameters were all set,
and a single time node selected to analyze the problem, without
considering multiple choices of citizens and dynamic changes of
demand points; ii) With regard to the cost factor, this paper only
considered the average construction cost of the DNA-laboratories
and not the impact of various other factors, which need to be fur-
ther explored in the subsequent research; iii) The genetic algorithm
was designed to solve the problem, but the efficiency of solving
large-scale problems needs was not compared with other heuristic
algorithms; iv) The research is based on the relevant data provided
by the National Health Commission of China. However, in the
actual situation, the location options and capacity limitations of
medical testing enterprise outlets can be different from these data.
The research on the location of sampling stations only remains at
the theoretical level, and many unforeseen factors can be expected
in actual operative situations.

Conclusions

The research bears significant implications for the location of
emergency facilities following sudden incidents and can provide
effective decision-making guidance for the location of medical
testing facilities. The results indicate that 109 medical sampling
stations and 8 DNA-laboratories need to be established.
Comparing with the actual situation, the results validate the effec-
tiveness of the model and algorithm constructed and discussed in
this paper.
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