
Abstract 
The geo-inequality of COVID-19 risk has attracted a great 

deal of research attention. In this study, the spatial correlation 
between community environment and the incidence of COVID-19 
cases in 30 Chinese cities is discussed. The spread of the disease 
is analyzed based on timing and spatial monitoring at the km2-grid 

level, with the use of publicly available data relating to housing 
prices, Gross Deomestic Product (GDP), medical facilities, con-
sumer sites, public green spaces, and industrial sites. The results 
indicate substantial geographical variations in the distribution of 
COVID-19 communities in all 30 cities. Significant global bivari-
ate spatial dependence was observed between the disease and 
housing prices (Moran’s I =0.099, p<0.01, z=488.6), medical 
facilities (Moran’s I = 0.349, p<0.01, z=1675.0), consumer sites 
(Moran’s I =0.369, p<0.01, z=1843.4), green space (Moran’s I 
=0.205, p<0.01, z=1037.8), and industrial sites (Moran’s I =0.234, 
p<0.01, z=1178.6). The risk of COVID-19 under the influence of 
GDP is further examined for cities with per capita GDPs from 
high to low ranging from 1.69 to 4.62 (1.69~3.74~4.62, 95% CI). 
These findings provide greater detail on the interplay between the 
infectious disease and community environments. 

 
 
 

Introduction 
Ensuring equal health rights with regard to COVID-19 during 

the pandemic for middle- and low-socioeconomic residents has 
been a significant challenge Since the infection has resulted in an 
unusually high number of infections and deaths globally and led 
to a global economic recession and medical runs. According to the 
Demographic and Health Surveys (DHS) Program, this has 
impacted the health rights of low-socioeconomic groups negative-
ly (DHS, 2020; Hopkins, 2020). Examples include the abilities of 
less developed countries to provide sufficient Polymerase Chain 
Reaction (PCR) testing, medical treatment and social security 
(Ahmad et al., 2020; Finch & Hernández Finch, 2020). The 
inequalities of COVID-19, including economic, environmental 
and medical inequalities that have resulted from it, have become 
serious, social issues (Buikema et al., 2021; Price-Haywood et al., 
2020; Woo & Jun, 2021).  

High-resolution COVID risk analysis is of particular impor-
tance for pandemic prevention and control (Sousa et al., 2022; 
Yang et al., 2021). However, when examined on the community 
scale, its various influences on the urban environment become 
intricate and difficult to disentangle (Cordes, 2020; Yang et al., 
2021). Many factors can affect the health of residents, including 
the amount of fast-food restaurants, hospitals, green spaces and 
factories in a neighbourhood, and it has been shown that geo-
graphical factors contribute to several chronic diseases, such as 
high blood pressure, obesity and asthma (Lantz et al., 1998; 
Pearson, 2015). In addition, neighbourhood characteristics may 
result in higher infection rates and poorer health outcomes among 
disadvantaged populations, paricularly in poorer areas, due to a 
lack of public trust in government and health authorities (Pak et 
al., 2020) and limited access to healthcare (Dowd et al., 2020; 
Pettinicchio et al., 2021). During previous epidemics and pan-
demics, researchers have reported that the targeting of commuters 
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from high-incidence locations (Cuong et al., 2013) and low socio-
economic areas (Barmby & Larguem, 2009; Hansen et al., 2016; 
Skatun, 2003) can help mitigate the transmission of the disease in 
these communities. On this basis, some researchers believe that the 
community environment is a potential reason for the inequity of 
COVID (Jim & Chen, 2006). Due to the correlation of social statis-
tics with environmental indicators, multi-source, spatial big data 
were obtained using a big ‘data sniffer’ for this experiment 
enabling the construction of six basic data layers, including com-
munity infrastructure, public green space, consumer sites, medical 
sites, industrial sites and economic environment (Qian et al., 2021; 
Zheleznyak & Khripach, 2014). This experiment analyzes the spa-
tial correlation between multiple indicators of the urban environ-
ment in addition to that between COVID risk and the urban envi-
ronment. Together with the community-level COVID-19 data that 
was authorized and released by the Chinese center of Disease 
Control (CDC), a block-scale, COVID-19 dataset was constructed. 
This dataset was then used to verify the relevant assumptions relat-
ing to whether or not poor community environments face a higher 
COVID-19 risk than others. 

 
 
 

Materials and Methods 

COVID-19 data 
The COVID-19 data used in this study was obtained from 

Alibaba and authorized by the Chinese CDC (Platform, 2020). The 
COVID-19 data used in this study are from publicly available 
sources and available at the website: https://pages.uc.cn/r/feiyan-
map/FyMapPageMap. A community pandemic data monitoring 
system was established for observing the community data of con-
firmed COVID-19 cases announced by the health departments of 
prefecture-level cities. The main functional modules of the sniffing 
system were based on the ‘Beautiful Soup’ library (Pant et al., 
2024) and the three core modules: the sniffing module, the parsing 
module and the storage module. Several main functions including 
parameter construction, timing, polling and exception handling 
were included. The geographic analysis function was built around 
Baidu Map Geocoding’s Application Programming Interface 
(API), with the quality of the geographic analysis controlled by 
manual inspection. The core part of the system source code was 
uploaded as an attachment. For this study, all communities identi-
fied as COVID-infected were those with at least one confirmed 
case. According to the description of the data source from the 
Chinese CDC, a confirmed case is defined as a laboratory-con-
firmed case or a case that meets the clinical case definition and is 
epidemiologically linked to a confirmed case. 

Data on the communities where confirmed COVID-19 patients 
were found was obtained and Figure 1 was plotted as a means of 
comparing multiple COVID-19 outbreaks in mainland China in 
terms of time and total infections. From 2019 to 2021, the most 
significant period of the COVID-19 pandemic, occurred between 
January and March 2020. In this period, large number of people 
were infected and it lasted a long time exhibiting a clear complete 
three stages consisting of a beginning, a middle and an end. We 
therefore chose this period (January 2020 to March 2020). China 
CDC defined a confirmed a COVID-19 patient as either a labora-
tory-confirmed patient or a case that satisfies the clinical case def-
inition including an epidemiologic link to a confirmed patient. In 
this study, each community was treated as a research individual, 

and a case was defined as a community with confirmed COVID-
19 patients. Regardless of the number of COVID-19 patients found 
in a community, it was marked “with COVID” in order to reduce 
the impact of demographic factors in the absence of community-
resolution population data. Due to an insufficient number of affect-
ed communities in several cities, this experiment excluded 163 
cities (average 7.5 communities/city) and focused on 2,387 com-
munities in 30 cities (average 79.6 communities/city). Each piece 
of data in the early stage of the pandemic was regarded as extreme-
ly valuable and such data are of great significance for understand-
ing the prevention and control measures as well as the transmission 
pathways. During the data processing in this study, only the cities 
with overly low case counts were removed, and no excessive man-
ual interventions were made.Key tracking analysis was then con-
ducted for these 30 cities and community cases data continued to 
be obtained. 

Monitoring 
Spatial monitoring of COVID-19 was monitored basedon the 

community environment. Housing prices were used as a direct 
benchmark for the community infrastructure as they reflect the 
ambient socioeconomic level. These data were obtained from one 
of the largest real estate online transaction platforms in China, 
58.com (Inc). Field interpolation is a mature method for supple-
menting missing data in the fields of real estate and geographic 
information (van den Broek-Altenburg et al., 2020; Cellmer, 2011; 
Crosby et al., 2018). The average housing price data for a total of 
50,796 communities in 30 cities was interpolated and used as the 
basic data for community infrastructure.  

We obtained data on Points Of Interest (POIs) and land use 
from Openstreet.com, which is the largest open-source map data 
source in the world, including Medical facilities (M), Consumer 
sites (C), public Green spaces (G) and Industrial sites (I) referred 
to as MCGI When presented together. This data was interpolated 
with Euclidean distances into a continuous grid matrix that repre-
sented the shortest distance from any point to the nearest MCGI 
within the 30 city precincts. A total of six consecutive spatial 
matrices with 1-km resolution, including the distance to COVID 
community (D2COVID); to medical site (D2Med); to public green 
space (D2Green); to consumption place (D2Consum); to industrial 
site (D2Ind); and the interpolated house price (HP), were used for 
analyzing the environmental impact of community COVID risk.  

The bivariate spatial autocorrelation between 1-km2grid-level 
environmental factors and the location of confirmed COVID-19 
cases was measured using Moran’s Index, the most common global 
spatial autocorrelation measurement, which gives the overall dis-
tribution of departures from randomness. Univariate and bivariate 
global and the Local Indicators of Spatial Association (LISA) were 
used at the grid level for providing information on various forms 
of spatial correleations, such as autocorrealtion, clusters and out-
liers. The LISA calculation was based on Queen’s contiguity spa-
tial-lag of order 1, and the statistical significance of the spatial 
autocorrelation pattern in each grid (relative to the entire spatial 
scope) was tested at a 5% level of significance (p=0.05). The spa-
tial dependence of the grid was plotted on the map and colour-
coded based on the type of interaction.  

Bivariate global spatial autocorrelation results reveal the spa-
tial correlation between two variables and its significance indicates 
whether a positive or negative spatial correlation is obvious. 
Aggregation types can be divided into four types: high-high (HH), 
LL (low-low), high-low (HL), and low-high (LH). It is important 
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to note that the COVID-19 and MCGI parameters used in this 
experiment were distances, so the corresponding four types of 
aggregation have different meanings. HH aggregation suggests a 
low impact of COVID-19 risk and environmental factors, while LL 
type aggregation means that is the impact is high. HL clusters indi-
cate a lower risk of COVID-19 but a higher impact of environmen-
tal factors, while LH clusters indicate a higher risk of COVID-19 
with a lower impact of environmental factors. HH and LL clusters 
indicate a positive correlation between COVID-19 and the impact 
of environmental factors, whereas HL and LH clusters show a neg-
ative correlation between COVID-19 risk and the impact of envi-
ronmental factors. By using these approaches, it was hoped to spa-
tially monitor community environmental indicators for anomalies 
relating to COVID-19 risk. 

The time-series variation characteristics of global and local 
spatial autocorrelation of the COVID-19 epidemic in 30 cities ana-
lyzed from community scales using global and local Moran’s I, 
cluster, and outlier analysis reulted in basic data from 53,183 com-
munities in 30 cities. The house price and MCGI data were then 
formatted into a 1-km grid, with a total of 414,173 for subsequent 
correlation and Moran’s analysis. In addition, five time-sections of 
COVID data from between February and March were combed for 
analyzing the shift of the pandemic in 30 cities across the commu-
nity infrastructure level. 

Temporal monitoring of COVID-19 basedon  
housing prices 

To follow the evolution of COVID risk in the 30 cities, we sim-
plified the monitoring of the mobile component of the COVID risk 
by dichotomization of the communities into those with a highlevel 
of infrastructure and those in the opposite situation based on the 
average housing price of the city in question. The processing of the 
average house price was performed in two steps;firstly, the house 
price information for every community in each city was obtained 
using a network sniffer,then ArcGIS (ESRI, Redlands, CA, USA) 
was used to count the average price of all communities within the 
jurisdiction of each city to determine the average house price.  

The number of communities with COVID-19 patients and the 
number of communities without in the two community infrastruc-
ture categories were counted, and a contingency table for each city 

was established (Table 1). We calculated the COVID-19 patients 
for each community just once to reduce the impact of differences 
in the population of communities. The communities located in the 
low infrastructure level area were labelled exposure variables, and 
if COVID-19 was found they werelabelled outcome variables. This 
enabled the calculation of the COVID-19 odds ratio for the low 
community infrastructure level. As there were different develop-
ment levels between cities, this study introduced per capita GDP 
and further conducted Spearman rank correlation analysis between 
different cities as a means of verifying the statistical regression 
relationship between the economic level and the COVID-19 odds 
ratio. 

We used used big data timing snapshots for monitoring com-
munity-level time series COVID data in China. The COVID data 
for each time section was counted by community infrastructure 
coordinates and plotted as a time-series using the nonparametric 
testing method Kernel Density Estimation (KDE). Assuming (x1, 
x2, ... , xn) to be a univariate independent sample with similar dis-
tribution characteristics drawn from the ƒ distribution with 
unknown density, the shape of the estimated function ƒ is of great 
interest. The distribution of the KDE curve ƒ can be defined as: 

 

         
(Eq.1)

 
 

where K is the kernel (a non-negative function) and h > 0 is a 
bandwidth smoothing parameter. The Kh is the zoom kernel and is 
defined as Kh(x) = 1/hK(x/h). This affects the microscopic fitting 
accuracy of curve f, but has no effect on the macroscopic distribu-
tion law of the curve. Generally, a series of kernel functions is used 
for the K kernel, including the uniform function, triangle function, 
double weight function, triple weight function, Epanechnikov 
function and the normal distribution function. The standard normal 
distribution function kernel is generally used for reducing the cal-
culation scale, meaning that K (x) = φ(x), where φ is the standard 
normal density function (Figure 2 and S1 video). 

Infectious diseases are spread from the source of infection to 
all people who are susceptible. From the time cross-section of 
price data, it was found that communities where COVID-19 cases 
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Figure 1. The duration of the data survey and China's epidemic situation. Theabscissa (the horizontal X-coordinate) represents the time 
line and the ordinate (the vertical Y coordinate) represents the number of people diagnosed with COVID Chinese mainland. This experi-
ment selected the largest outbreak of COVID-infected people in China, January to March 2020.



appear are not confined to the original price range, so an increase 
in the number of other price ranges can occur. This will result in 
the price distribution KDE curve shifting along the X-axis, so its 
mean and variance will also change. From the change in the nor-
mal distribution μ of the price-distribution curve of the diseased 
cell, it can be seen that there a two states to the relative position 
change based on the time sequence: μ1 > μ2 and μ1 < μ2. By com-
bining the distribution of the initial curve, it can be judged whether 
the distribution curve is approaching or deviating from the back-
ground (BG) distribution, which can be used as an indicator teling 
whether the COVID-19 pandemic at the community scale of a 
region is in a state of local or regional spreading.  

In order to quantify the extent to which the curve moves to the 
background value based on the linear regression function of the 
housing price and frequency distribution X~N(μ,σ2) of the diseased 
community, we propose Community Infection Trends (CIT) a 
quantitative measure to be used for quantifying the tendency of 
housing prices in communities with COVID patients when deviat-
ing from the ideal distribution axis of symmetry: 

         
(Eq.2) 

 

         
(Eq.3)

 

In Eq. 3, σis  is the normalized price curve movement and   
 
used for offsetting the absolute difference in housing prices in different cities. 

In Eq. 4,  was used for balancing and standardizing the sample  
 

data, withyas the time index. The index is able to quantify the law 
of temporal spread, determine whether the city is in a state of local 
spread (negative value) or regional spread (positive value) and 
indicates also the severity of its quantitative changes.  
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Table 1. Baseline information of of home prices in relation to COVID-19 risk in 30 cities. 

City              Local price         Local price    CwC price    CwC price   CwC price    CwC price  CnoC price    CnoC price     Pearson        P       AUC 
                        (mean)                  (SD)             (mean)            (SD)          (<mean)        (>mean)       (<mean)          (>mean)     chi-square 

Anqing              7,654                   2,000              6,472             1,249               31                   11                 581                  601                9.52        2.0E-3    0.70 
Bengbu              6,751                   2,190              6,797             1,541               56                   34                 332                  354                5.38        2.0E-2    0.48 
Bozhou              6,157                   1,774              7,848             3,806               23                   25                 211                  209                0.08        7.7E-1    0.59 
Changde            6,097                   1,841              6,561             3,147               31                   28                 500                  504                0.16        6.9E-1    0.76 
Changsha           9,883                   4,221              9,749             2,556               84                   52                1,955               1,988              7.55        6.0E-3    0.47 
Chengdu           17,710                  7,731             21,257            6,803                5                     8                  280                  277                0.69        4.1E-1    0.31 
Chongqing         9,550                   4,915              7,054             5,174               65                   12                 476                  529               36.48       1.5E-9    0.70 
Fuyang              7,445                   2,271              6,782             1,620               69                   41                 385                  413                7.13        7.6E-3    0.58 
Guangzhou       28,399                 16,584            28,213           14,026             122                  77                4,443               4,488             10.18       1.4E-3    0.48 
Harbin               9,171                   4,836              8,658             3,054               63                   64                1550                1,550              0.01        9.3E-1    0.48 
Hefei                 14,985                  4,710             13,948            4,555               57                   30                 847                  874                8.38        3.8E-3    0.62 
Huaihua             5,023                   1,304              4,413               788                 22                    7                  263                  278                7.76        5.4E-3    0.67 
Jiujiang              6,582                   2,511               9,210             3,300               18                   41                 611                  588                8.97        2.8E-3    0.61 
Liu'an                 6,935                   1,550              5,396               757                 34                    4                  220                  250               23.68       1.1E-6    0.80 
Nanchang          12063                   4,316             10,897            3,419               90                   35                1,312               1,367              24.2        8.7E-7    0.60 
Nanyang            7,049                   2,834              5,297             1,791               61                   14                 616                  664               29.52       5.5E-8    0.68 
Neijiang             5,609                   1,581              6,234             3,565               22                   10                 371                  383                 4.5         3.4E-2    0.64 
Ningbo             18,598                  8,528             20,939            9,236               28                   54                1,988               1,962              8.24        4.1E-3    0.51 
Pingdingshan     6,382                   1,680              5,630               690                 26                    7                  143                  162               10.94       9.4E-4    0.64 
Quanzhou          9,461                   4,686              6,848             1,138               53                    1                 1213                1265             50.07      1.5E-12   0.64 
Shangqiu           4,675                   1,588              3,893               760                 61                   12                 635                  684               32.89       9.8E-9    0.68 
Shangrao           6,845                   1,689              6,127             2,075               54                   16                 553                  591               20.63       5.6E-6    0.73 
Shenzhen          5,0670                 33,984            55,764           23,104              86                  104              1,792               1,774              1.71        1.9E-1    0.46 
Suzhou             34,969                 17,166            41,493           1,6488               5                    10                 236                  231                1.67        2.0E-1    0.37 
Xinyang             5,686                   2,044              4,887             1,052              134                  29                 519                  625                67.8       1.8E-16   0.63 
Xinyu                5,528                   1,500              4,547               757                 74                   12                 130                  192                44.7       2.3E-11   0.72 
Yiyang               4,775                   1,562              5,078             1,940               24                   11                 278                  291                4.83        2.8E-2    0.72 
Yueyang            6,268                   2,049              5,332             1,539               60                   24                 434                  470               15.43       8.6E-5    0.66 
Zhengzhou       14,304                  6,299             13,083            5,328               18                    8                  491                  501                3.85        5.0E-2    0.58 
Zhuzhou            5,601                   1,468              4,927               904                 51                   16                 500                  536               18.35       1.8E-5    0.65 
CwC, community with COVID; CnoC, community without COVID; AUC, area under the curve. 



Controlled experiments for other social statistical 
factors 

A city-scale controlled experiment was also designed and the 
relationship between the indicators (population, age structure, fam-
ily size, years of education, illiteracy rate, housing price, GDP) and 
the proportion of communities with COVID-19 patients at the city 
scale was analyzed. In an attempt to evaluate the impact of com-
mon indicators mentioned in other studies on the risk of the prob-
ability of finding COVID-19 cases in a community (PFCC), they 
were compared to the impact of housing price factors before ana-
lyzing the housing price indicators at the community resolution 
and the urban-specific data for population was retrieved from the 
Sixth National Population Census of China. This included total 
population, those aged 0-14, 15-59, and > 60 years, family size, 
years of education, and literacy rate. Therefore, this demographic 
data was correlated with the PFCC at the urban resolution, and the 
relationship between house prices, per capita GDP, and the propor-
tion of communities with COVID-19 patients were analyzed 
simultaneously to compare population, age structure, education 
and economic factors and the degree of correlation with COVID-
19 on the city scale. The urban-scale housing prices were obtained 
from the average community-level house prices in the urban area, 
and the GDP data was obtained from the 2019 China Statistical 
Yearbook.  

Experimental environment and parameters 
A big data crawler was drawn with Python (v.3.7). The source 

code was released under the GNU v3 license and was accessible at 
https://github.com/qq5220243/COVID _HousingPrice. In order to 
evaluate possible correlations and the interplay between different 
parameters, separate analyses were run considering one of the 
parameters as the independent variable, with the measures odds 
ratio, Area Under the Curve (AUC), GDP and housing price as 
dependent variables, and other parameters for defining particular 
experimental settings (see Results for details). Geoda 1.14 was 
used for performing geographic analysis relating to Moran’s 
Iresults. Other analyses were performed using R version 3.5.3. 
Kriging interpolation, data extraction, correlation analysis, and 
clustering analysis. These analyses were performed using the 
Spatial Analyst Tools of AcGIS 10.5; Geocoding performed with 
Baidu Map JavaScript API v2.0 and ArcGIS; and the maps in the 
manuscript drawn using ArcGIS and QGIS. 

 
 
 

Results 

Basic information 
Table 2 displays the statistical characteristics of the urban res-

olution of 30 cities, and 11 base indicator data were counted. The 
average GDP of the 30 cities was found to be 84.49 with a 
Standard Deviation (SD) of 86.24, and the average population was 
616.99 (SD: 364.35). The average housing price was 11,360.79 
(SD: 10,032.65), with a high variance between house prices in dif-
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Figure 2. The house price frequency time series of the spread of COVID-19. The X coordinate of each subgraph is the housing price of 
the community, and the Y coordinate represents the frequency. The black curve in the subgraph represents the background distribution 
(BG) of housing prices for all neighbourhoods of the city. The coloured curve represents the distribution of housing prices in communities 
where people with COVID are found. Among them, blue represents the distribution of house prices at time 1, and red represents time 2. 
With the different patterns of the spread of the epidemic, communities with different house prices are infected with COVID, and the house 
price curve will shift on the abscissa, which can be represented by the μ of the curve.



ferent cities. House prices also showed high variability within each 
city, with Coefficients of Variation (CVs) ranging from 0.22 to 
0.58, and an average of 0.37 (SD: 0.11). There were 2,324 commu-
nity data counts (as of March 14th, 2020) where COVID-19 was 
discovered in 30 cities, with an average closest distance of 3,050m 
(SD: 5464m).  

COVID-19 risk at city scale 
As Figure 3 shows, base statistical analysis displays a statisti-

cal relationship between population (p=0.41, n=30), population of 
people aged > 60 years (p=0.10,n=30), but the PFCC, and this rela-
tionship was not found to show statistical significance. A weak lin-
ear correlation between family size and PFCC (r=0.38, 95% CI, 

n=30) was discovered in a Spearman rank correlation test. Other 
indicators, population of 0-14 years (r=0.43, 95% CI, n=30) and 
literacy rate (r=0.496, 95% CI, n=28) exhibited a moderate linear 
correlation with PFCC. However, astatistically significant strong 
linear correlation was found between years of education and the 
PFCC (r = -0.53, 95% CI, n=30). Strong statistically significant 
correlations were also found between per capita GDP and PFCC 
(r=-0.56, 95% CI, n=30), house price and PFCC (r=-0.598, 95% 
CI, n=30) and the 15–59 years old population section and PFCC 
(r=-0.65, 95% CI, n=30). These data supportthe housing price as a 
strongly associated factor, at least in urban areas. This represents 
the market recognition of the community infrastructure, which is 
often expressed in price, and its correlation with the COVID risk 
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Table 2. The statistical characteristics of the urban resolution of 30 cities. 
City                              Number of people in the different             Average number   Illiteracy rate   Education   Proportion Average        GDP per 
                                                     age groups x 104                                of persons                  (%)           (>15 years)       CwC    house price        capita 
                                                                                                               per household                                                                          (RMB/m2)   (RMB x 103) 
                              0-14       15-59     60-65       65+          60+ 
                            (years)    (years)   (years)   (years)     (years)                                                                                                                                

Anqing                  16.68       61.81       4.44       17.06         21.5                    2.57                        2.71                 9.18               0.03           7,654               36.3  
Bengbu                  22.21        59.8        3.63        14.4         18.03                   2.74                        5.31                 9.19               0.12           6,751               40.7  
Bozhou                   25.6         57.9         2.9        13.61        16.51                   2.72                        6.95                 8.38               0.10           6,157               24.4  
Changde                14.87        60.1        0.86       19.16        20.02                    2.6                          1.6                   9.5                0.05           6,097               58.2  
Changsha              16.64       68.03       4.22       11.11        15.33                   2.62                        0.47                11.52              0.03           9,883              134.9  
Chengdu                13.28       68.74       4.36       13.62        17.98                   2.49                         1.7                 10.85              0.02          17,710             117.2  
Chongqing            15.91       62.22       4.79       17.08        21.87                   2.45                        1.63                  9.8                0.09           9,550               79.8  
Fuyang                  24.44       58.69       3.09       13.79        16.88                   2.85                        5.72                 8.51               0.12           7,445               16.4  
Guangzhou            13.87       74.72       3.59        7.82         11.41                   2.22                        0.58                11.61              0.02          28,399             158.5  
Harbin                   10.46       67.56       7.33       14.65        21.98                   2.23                        2.67                 9.93               0.05           9,171               55.2  
Hefei                       16.5         68.2         3.3           12           15.3                    2.52                        3.72                10.08              0.05          14,985             116.4  
Huaihua                 20.24       58.68        5.2        15.88        21.08                    2.6                         2.69                 9.16               0.05           5,023               30.4  
Jiujiang                  20.96       61.37       4.95       12.62        17.57                   2.74                        2.51                 9.74               0.05           6,582               55.1  
Liu'an                    18.53       60.21        4.4        16.86        21.26                   2.53                        2.83                 8.98               0.07           6,935               20.7  
Nanchang              17.44       67.59       4.43       10.54        14.97                   2.81                        1.93                11.01              0.05          12,063              95.1  
Nanyang                26.23       54.99       4.57       14.22        18.79                   2.86                        2.09                 9.14               0.06           7,049               35.6  
Neijiang                15.55       59.22        5.2        20.03        25.23                   2.39                        3.84                 8.72               0.04           5,609               34.3  
Ningbo                  12.26       69.63       5.51       12.59         18.1                    2.21                        1.55                 9.97               0.02          18,598               131  
Pingdingshan        24.78       56.92       4.77       13.53         18.3                    2.98                        2.02                 9.63               0.10           6,382                 41  
Quanzhou              20.62       66.17       4.21           9           13.21                   2.74                        1.94                  9.3                0.02           9,461               114.3  
Shangqiu               25.42       56.44       4.12       14.02        18.14                   2.64                         3.4                  9.88               0.05           4,675               32.6  
Shangrao               23.23       59.08       5.24       12.45        17.69                   3.11                        2.45                 9.27               0.05           6,845               26.3  
Shenzhen               15.11       79.53       2.03        3.33          5.36                    2.25                          1                   11.86              0.05          50,670             206.7  
Suzhou                  13.55       69.49       4.52       12.44        16.96                   2.62                          2                   10.67              0.03          34,969             475.5  
Xinyang                23.67       57.06       4.07        15.2         19.27                   2.66                        4.06                 8.89               0.13           5,686                 27  
Xinyu                    20.73       61.59       5.43       12.25        17.68                   2.76                        2.72                 9.85               0.22           5,528               93.9  
Yiyang                   17.71       59.65       5.47       17.18        22.65                   2.54                        1.73                 9.31               0.06           4,775                 40  
Yueyang                18.46       61.27       5.27          15          20.27                   2.76                        1.27                10.06              0.09           6,268                 60  
Zhengzhou            19.05       68.11       3.86        8.98         12.84                   2.82                        0.88                11.76              0.03          14,304              111.7  
Zhuzhou                18.28        61.8        5.39       14.53        19.92                   2.78                        0.91                10.21              0.06           5,601               65.4  
Mean                     18.74       63.22      4.372      13.50        17.87                   2.63                        2.57                 9.87               0.06           1,136              84.49  
SD                          4.25         5.71       1.176       3.36          3.80                    0.22                        1.51                 0.94               0.04           1,003              86.21  
CV                          0.23         0.09       0.269       0.25          0.21                    0.08                        0.59                 0.10               0.66            0.88                1.02  
CwC, community with COVID; RMB, Chinese yuan, the official currency of the People's Republic of China; GDP, gross domestic. product. 



(Figure 3). The analysis of 414,173 data grids found an incredibly 
significant correlation between the six types of data (p<0.01, 
Figure 4). The correlation coefficients between D2Consumer and 
D2Greenspace as well as D2Consumer and D2Medical reached 
0.702 and 0.666, respectively, which indicate a significant positive 
correlation for these two data pairs. The correlation coefficients of 
D2COVID and the four components of MCGI also reached 0.352, 
0.373, 0.208 and 0.235, respectively, indicating they allhave a ten-
dency to appeart together as a concentrated reflection of COVID-
19 risk. A statistically significant negative correlation between the 
distribution of house prices and MCGI (-0.276, -0.262, -0.279,  

-0.167), which is consistent with the idea that community medical 
care, green spaces, consumption and industrial sites result in high 
housing prices. However, an incredibly strong positive correlation 
was found between house prices and COVID (0.099), indicating 
that closeness to a COVID-19 community results in lower house 
prices. This is the opposite of the COVID-related trend with 
MCGI, which is of great importance. As Figure 5 show, moderate 
and high significant global spatial autocorrelation in the distribu-
tion of communitywith COVID-19 (Global univariate Moran’s I 
=0.994, p<0.01), medical sites (Moran’s I =0.994, p<0.01),con-
sumer sites (Moran’s I =0.991, p<0.01), green space (Global uni-
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Figure 3. The relationship between the indicators and PFCC at the city scale. The ordinate indicates PFCC (the probability of finding 
COVID-19 cases in a community), and the abscissa indicates 9 different indicators, including: A) population, B) proportion of people over 
60 years old, C) family size, D) proportion of population under 14 years old, E) illiteracy rate, F) years of education, G) GDP per capita, 
H) average house price, I) proportion of population aged 15-59.
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Figure 5. Global univariate Moran’s I autocorrelation scatterplot of 6 layers. All subplots are normalized. A very high Moran's I (>0.9) 
indicates that these layers exhibit very high spatial autocorrelation. A) housing price, B) green space, C) Covid, D) consumer sites,  
E) medical sites, F) industry area.

Figure 4. Linear correlation scatterplot matrix of 6 layers. The correlation matrix shows the correlation and linear fit of COVID, industry, 
consumer, green space, medical sites, and housing prices.



variate Moran’s I =0.969, p<0.01), industry area (Moran’s I 
=0.988, p<0.01), and house price (Moran’s I =0.926, p<0.01) were 
observed in the 1-km the grids of the 30 cities. That these Moran’s 
Ivalues werehigher than 0.9 might be related to the collectivist 
urban planning in China.Certainly, the use of the 1-km grids 
instead of the commonly adopted administrative divisions can also 
lead to higher Moran’s I values, which is determined by the First 
Law of Geography (Tobler, 1970).Univariate LISA plots revealed 
the presence of significant spatial clusters or outliers by grids. 

In addition, significant global bivariate spatial dependence 
(Figure 6) was found between the disease and house price 
(Moran’s I =0.099, p<0.01, z=488.6), medical sites (Moran’s I = 
0.349, p<0.01, z=1675.0), consumer sites (Moran’s I =0.369, p< 
0.01, z=1843.4), green space (Moran’s I=0.205, p<0.01, 
z=1037.8), and industrial area (Moran’s I=0.234, p<0.01, 
z=1178.6).When the sample size tends towards infinity, Moran’s I 
tends towards 0. Therefore, for larger sample sizes, even a small 
Moran’s I value (0.099) is acceptable. 

As Figure 7 shows, the bivariate Moran’s I of medical sites 
versus COVID maps buffers at lower resolution due to there being 
fewer medical facilities, but dark blue anomalies in western and 
eastern cities suggests high risk of COVID with adequate medical 
coverage, and the dark red color in the Midwest and Northeast 
shows a low risk of COVID with insufficient medical resource 
coverage. Large areas of light blue in Central cities show that there 
is a high risk of COVID in situations with insufficient medical 

resources. Light red indicates a low risk of COVID in a community 
with a good healthcare environment. These areas are mostly con-
centrated in satellite cities around the provincial capitals, including 
Liu’an, Shangrao, Xinyu and Huaihua. The dark blue anomaly of 
the mid-western cities in Figure 7B reveals COVID cases adjacent 
to industrial areas, and the light blue in the Midsouth shows a 
smaller industrial base and greater COVID risk. In the housing 
price layer, dark red represents low COVID risk areas in several 
areas with high house prices, whereas more blue areas represent a 
correlation between house prices and high COVID risk, with light 
blue covering almost the entirety of the central region. The impact 
of public green space and consumer sites layers is similar to that of 
house prices, with light blue in central and southern cities indicat-
ing communities further away from public green space and con-
sumer sites exhibita greater COVID risk. 

Timing characteristics of COVID risk based on 
the CIT index 

In the 30 cities studied, there were 53,183 communities with 
2,387 of them having cases of COVID-19, which accounts for 
4.5%. In addition, the proportion of communities with house 
prices lower than the city average was found to be 70% 
(1,672/2,387). Taking “low community infrastructure levels in 
the community are not the cause of COVID-19” as H0, the null 
hypothesis was rejected in 80% of the cities (24/30). The weight-
ed average odds ratio of the low community infrastructure levels 
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Figure 6. Global univariate bivariate Moran’s I autocorrelation scatterplot of 5 layers. The fitted states in the subplots represent the spatial 
correlation of the 5 layers with COVID risk, and the x-coordinates of all subplots are COVID, and the y-coordinates indicate A) housing 
price, B) green space, C) consumer sites, D) medical sites, E) industy area, respectively.



in 30 cities reached 3.0 (95% CI), and the weighted average odds 
ratio of all cities where the null hypothesis was rejected was 
3.035 (95% CI, Figure 8). The KDE curve allowed an intuitive 
comparison of the non-normally distributed COVID house price 
data and observation of the deviation of the curve over time 
(Figure 9). 

Following the introduction of the per capita GDP indicator, the 
COVID-19 risk in low socioeconomic areas exhibited a more obvi-
ous trend (Figure 8). Cities with a per capita GDP of more than 
100k have a weighted average COVID-19 risk of 1.69 in neigh-

bourhoods with lower house prices. Cities with a per capita GDP 
of between 100k and 40k have a COVID-19 risk of 3.74 (95% CI), 
and cities with a per capita GDP that is lower than 40k have a 
weighted odds ratio of 4.62 (95% CI). These results suggest that 
house prices significantly impact COVID-19 risk, particularly in 
low-GDP cities. In addition, a negative correlation was found 
between the per capita GDP of all 30 cities and the odds ratio index 
in low-cost communities (r=-0.48, 95% CI). 

Average house price has simply been used as a classifier for 
COVID. When the Receiver-Operating Characteristic (ROC) 
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Figure 7. LISA map for spatial dependence between COVID-19 and community environmental factors. A) medical sites, B) industryareas, 
C) house prices, D) green-space, E) consumer sites.



curve for all 30 cities were standardized and drawn uniformly, the 
AUC was 0.58. When the ROC was conducted on 24,961 commu-
nities in 21 cities that had a per capita GDP of lower than 100k, the 
AUC increased to 0.63. When ROC curve was conducted for 

10,405 communities in 10 cities that had a per capita GDP of 
below 40k, the AUC increased to 0.66 (Figure 10). It is generally 
effective to predict the risk of COVID with low house prices, par-
ticularly in cities that have a lower GDP (Figure 11). 
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Figure 8. Forest map of COVID-19 risk in communities in 30 cities. This figure not only shows the COVID risk of low housing price 
neighbourhoods in various cities, but also shows that lower urban economic levels (GDP) tend to represent higher COVID risk.



Discussion 
Containment and ultimate eradication of an infectious disease 

requires interdisciplinary collaboration as transmission and spread 
not only depend on the nature of the pathogen, but on various envi-
ronmental factors and socioeconomic characteristics. A better 
understanding of all these factors and their interdependencies are 
essential for identifying the best strategies for containing the 
pathogen and protecting the population. The aim of this study was 
to examine the spread of the COVID-19 pandemic by analysing 
the community-scale relationships between communities with 
COVID-19 and the environmental indicators including medical 
sites, consumer sites, green space, industry sites, house prices 
community GDP.  

A negative spatial dependency between communities with 
COVID-19 and house prices in a spatial perspective was found. 
Many cities in China were found to be defined as economically 
underdeveloped, with outflow sources of migrant workers. The 
positive correlation between house prices and environmental 
indices means that traditional urban centers have more medical 
sites, green spaces, industrial sites and consumption resources. 
However, the negative relationship between house prices and 
COVID-19 risk implies that some areas with low house prices 
have an unduly high risk of the disease. Interestingly, we found a 
positive spatial dependency between communities with COVID-19 
and green space. The initial hypothesis was that industry may 
cause additional pollution, leading to an increased risk of COVID-
19 infection, while public green space acts as a ventilation and 

exercise areas reduc this risk. However, the regional correlations 
found in the data appeared to be different from this hypothesis and 
exhibit no stable abnormal pattern, something that may be due to 
the fact that there was no differentiation between industrial types. 
Different pollutants and pollution patterns, even rivers, topography 
and wind direction can all affect pollution severity, with the health-
promoting effect of public green space not appearing to be enough 
to provide an advantage regarding COVID risk. It should, howev-
er, be noted that the COVID-19 risk (as treated  in this study) refers 
to the risk of new infections. Even though this study results suggest 
that the population and the degree of aging of cities do not have a 
statistically significant contributions to the new such infections, it 
does not mean that the elderly and those living in densely populat-
ed areas can ignore the long-term health impacts of COVID-19, 
especially in the context where long COVID has been increasingly 
verified. 

The use of spatial and temporal monitoring methods enabled 
the study of the impact of community settings on COVID-19 risk. 
International studies have shown that the population distribution 
and economic conditions of different cities can be used to deter-
mine the infection and transmission rates. Residents who live in 
low-cost communities have a greater likelihood of facing econom-
ic distress and cannot obtain adequate medical services or maintain 
social distancing (Ahmad et al., 2020; Sharma & Yount, 2020). 
The findings of this study show that house prices have a significant 
correlation with COVID-19 risk, which is consistent with the con-
clusions of many other studies, such as those by Lau et al. (2020) 
and Wasdani and Prasad (2020). Many studies have reported simi-
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Figure 9. Housing price-frequency distribution and normal test in 30 cities. The x-coordinates of all subplots are prices and the y-coordi-
nates are frequencies. The gray histogram represents the distribution of housing prices in each city, and the red dotted line represents the 
results of the K-S test.



lar results from low-socioeconomic environmental studies of other 
vector-borne and infectious diseases, e.g., malaria, tuberculosis 
and H1N1 influenza (Balogun et al., 2019; Dawaki et al., 2016; 
Ghani et al., 2019; Rukmanee et al., 2014). A strong positive cor-
relation can often be found between literacy level, income, and 
house prices in residential areas ((Coker et al., 2011); Dowd et al., 
2020), and the average life expectancy of low-socioeconomic 
groups such as black people during the pandemic is much lower 
than that of other races (Bong et al., 2020; Millett, 2020). This 
appears to be consistent with the understanding of this research. 
House prices were found to have no apparent strong correlation 
with MCGIs, as is generally believed by other researchers (Rocha 
et al.,2021). Prior to this study, house prices were proven to be cor-
related with the income of residents, their living habits, environ-
mental pollution, chronic diseases, and occupations (A and B), all 
of which can impact COVID-19 risk. Further research on house 
price and COVID-19 risk differences is required. 

This study demonstrates that a spatial link between community 
environment and COVID-19 risk, particularly community infras-
tructure represented by house prices, can be used as a proxy for the 
evaluation of this risk in low socioeconomic groups. This is of 
great significance to the health equality of low-socioeconomic 

                                                                                                                                Article

Figure 11. Receiver-operating characteristic (ROC) of classifier by average house price in 30 cities. AQ, Anqing, BB, Bengbu, BZ, 
Bozhou, CD, Changde, CS, Changsha, CDU, Chengdu, CQ, Chongqing, FY, Fuyang, GZ, Guangzhou, HB, Harbin, HF, Hefei, HH, 
Huaihua, JJ, Jiujiang, LA, Lu’an, NC, Nanchang, NY, Nanyang, NJ, Neijiang, NB, Ningbo, PD, Pingdingshan, QZ, Quanzhou, SQ, 
Shangqiu, SR, Shangrao, SZ, Shenzhen, SUZ, Suzhou, XY, Xinyang, XYU, Xinyu, YIY, Yiyang, YY, Yueyang, ZZ, Zhengzhou, ZUZ, 
Zhuzhou.

Figure 10. Receiver-operating characteristic (ROC) of classifier 
by average house price in all, mid-low, and low GDP city commu-
nities. The housing price classifier visually shows the city's eco-
nomic situation and the trend of low-price neighbourhood risk: In 
cities with lower economic levels, the housing price classifier can 
better screen out neighbourhoods with high COVID risk.
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groups in developing countries. The inequality of social resources 
that are hidden behind the inequality of COVID-19 risks requires 
greater attention. 

 
 

Conclusions 
By examining the interplay between COVID-19 and commu-

nityenvironmentbased on a gridscale, this study can be used to help 
mitigate the rate of spreading and the severity of the disease, while 
also advocating for greater attention to areas with a higher risk of 
infection. Our analysis demonstrates that, even under the circum-
stances where the sample size for diseases is 2,387 and that for 
housing prices is 55,570, housing prices have a highly significant 
positive correlation with COVID-19, which implies that housing 
prices are relatively lower in the vicinity of a COVID-19 commu-
nity.In addition, significant low-low and high-high clusters of 
COVID-19 cases and deaths and diabetes were found in the 
Midwest and the South, area colloquially known as the “stroke 
belt” where there is a significantly higher stroke rate than in the 
rest of the country. Interestingly, no significant spatial correlation 
was found between COVID-19 cases and deaths and the number of 
primary care providers (PCPs), prevalence of adult obesity and 
diabetes, number of uninsured individuals, or flu vaccination. 
Finally, this study confirms previous findings that poor people 
have an increased risk of infection. In particular, a positive signif-
icant spatial dependence between house price and COVID-19 
cases was found, which can possibly be explained by poor living 
standards, insufficient access to healthcare facilities, and living in 
areas where there is higher population density. 
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