
Abstract 
Chronic Obstructive Pulmonary Disease (COPD) has been the 

focus of scientists and policymakers in the past decade with regard 
to mortality rates and global warming. The long-term shift in tem-
perature and weather patterns, commonly called climate change, is 
an important public health issue, especially concerning COPD. 
Using the most recent county-level age-adjusted COPD mortality 
rates among adults older than 25 years, this study aimed to inves-
tigate the spatial trajectory of COPD in the United States between 
2001 and 2020. Global Moran’s I was used to investigate spatial 
relationships utilising data from Terra satellite for night-time Land 
Surface Temperatures (LSTnt), which served as an indicator of 
warming within the same time period across the United States. 
The Forest-based Classification and Regression model (FCR) was 
applied to predict mortality rates. It was found that COPD mortal-
ity over the study period was spatially clustered in certain coun-
ties. Moran’s I statistic (0.18) showed that the COPD mortality 
rates increased with LSTnt, with the strongest spatial association in 
the eastern and south-eastern counties. The FCR model success-
fully predicted mortality rates in the study area using LSTnt values, 
achieving an R² value of 0.68, which accounted for COPD mortal-
ity rates independently. Policymakers in the United States could 
use the findings of this study to develop long-term spatial and 
health-related strategies to reduce the vulnerability to global 
warming of patients with acute respiratory symptoms. 

 
 
 

Introduction 
Chronic Obstructive Pulmonary Disease (COPD) is a hetero-

geneous lung condition characterized by chronic respiratory 
symptoms (dyspnoea, cough, sputum production and/or exacerba-
tions) due to airway abnormalities (bronchitis, bronchiolitis) 
and/or alveolar injury (emphysema) that cause persistent, often 
progressive airflow obstruction (Celli et al., 2022; Htwe et al., 
2023) It is a not fully reversible disorder characterized by progres-
sive airflow limitation associated with an abnormal inflammatory 
response of the lungs to noxious particles or gases (Bracke & 
Brusselle, 2015). According to the World Health Organization 
(WHO), the most common symptoms are difficult breathing, 
chronic cough (sometimes with phlegm) and a feeling of tiredness, 
symptoms that can quickly get worse (WHO, 2023a). People with 
COPD are also exposed to a higher risk of other health problems, 
such as respiratory infections, heart problems, lung cancer and 
lung arterial hypertension (WHO, 2023a), which often lead to 
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depression and sometimes mental health setbacks (Hurst et al. 
2020). By causing more than 3.3 million deaths worldwide (WHO, 
2023b), and increasing in prevalence (Cushen, Morgan, & Summer 
2017; Tourre et al., 2022), COPD is now the third leading cause of 
death worldwide. Indeed, COPD affects more than 15 million 
Americans and accounts for most of the deaths from chronic lower 
respiratory diseases, which in 2020 was the sixth leading cause of 
death in the United States (U.S.). According to the Centers for 
Disease Control and Prevention (CDC) in the U.S., more than 
150,000 Americans die from COPD each year – that is 1 death 
every 4 minutes (CDC, 2023). Although this disease is almost 
completely preventable, it still poses a public health threat. 

COPD exacerbations can be triggered by increased dyspnoea, 
reduced lung function, poorer quality of life, and prior exacerba-
tions; comorbidities, e.g., cardiovascular events, depression and a 
history of gastroesophageal reflux or heartburn. In addition, it can 
be elicited by demographic characteristics, such as sex and age and 
is often associated with biomarkers, e.g., elevated white blood cell 
counts (Hurst et al., 2020). According to previous studies, people 
aged 65 years or older (men in general), habitual tobacco smokers 
and people with a history of asthma are more likely to die from 
COPD (American Lung Association, 2023; CDC, 2023). Several 
of these and other previous studies have reported outdoor air pol-
lution as a major risk factor, which is estimated to cause 43% of all 
COPD deaths (Hansel et al., 2016; Sama et al., 2017; WHO, 
2023b; CDC, 2023). For example, a study in China showed that 
increased concentrations of airborne pollutants composed of par-
ticular matter less than 2.5 µm (PM2.5) and chemical elements, such 
as SO2, NO2, O3 and CO are significantly and positively associated 
with COPD mortality rates (Chen et al., 2021).  

The long-term shifts in temperature and weather patterns 
(Lovejoy, 2013), commonly referred to as Climate Change, is an 
important public health issue, especially with regard to diseases 
affecting the respiratory system (Tran et al., 2022). Since 1901, the 
average surface temperature across the contiguous U.S. has risen at 
an average rate of 0.17°F (0.09°C) per decade and the years 2012, 
2016 and 2020 were among the warmest years of the last decades 
(National Centers for Environmental Information, 2023). Higher 
mean temperatures are recorded each year, and more people are 
being affected by climate-sensitive diseases as well as natural dis-
asters caused by climate change. Approximately 250,000 deaths 
per year are expected to occur over the next few decades in 
response to more frequent extreme weather events (Mertes et al., 
2021). Indeed, many studies set Climate Change as an important 
risk factor for COPD-associated exacerbation and mortality (Hess 
et al., 2009; D’Amato et al., 2014; Sama et al., 2017; de Miguel-
Díez et al., 2019; Duan et al., 2020; Ozturk et al., 2023). Among 
climatological factors, precipitation, humidity and wind are direct-
ly related to the temperature variations both in the short and the 
long term (Subramanian et al., 2023). Human activities have been 
the main driver of Climate Change, primarily due to burning fossil 
fuels like coal, oil and gas that produce CO2 blocking heat radiation 
from Earth into space (Mertes et al., 2021), a fact that increases the 
problem in settlements where current populations are exposed to 
severe health-related threats (Duvat et al., 2021). 

Environmental factors such as Climate Change have long been 
associated with chronic respiratory diseases (Shiau et al., 2023) 
and these consequences are linked to serious health risks, particu-
larly for vulnerable groups like the elderly (Tilstra et al., 2022). 
The association between temperature variations and COPD mortal-
ity has been studied extensively (Hansel et al., 2016; Tian et al., 

2021; Fu et al., 2022; Tran et al., 2023). Gu et al. (2022), using a 
quasi-Poisson generalized linear regression model, found that 
exposure to extreme temperature in Hangzhou City, China was 
associated with increased COPD mortality, thereby confirming the 
results by a previous study (Tian et al., 2021) in 21 cities of 
Guangdong Province, South China, who used a similar approach 
but based on a distributed lag nonlinear model. Several studies 
confirm that also colder temperatures are associated with higher 
COPD mortality (Donaldson et al., 2012; Jenkins et al., 2012; 
Viggers et al., 2013; McCormack et al., 2017). For example, a 
study in 6 metropolitan cities in Taiwan concluded that the mortal-
ity risk of COPD in elderly men was significantly associated with 
extremely low temperatures (Zafirah et al., 2021). A study in 
Weifang City, China, Diao et al. (2021) found that the combination 
of air pollution and low temperature increases the COPD mortality 
risk. Another study in Taiwan, showed that climate change 
increased COPD severity and mortality (Chuang et al., 2022). In a 
study in Jiading District, Shanghai, China, Peng et al. (2021), 
using Geographically Weighted Logistic Regression (GWLR), 
confirmed that extremely low temperatures increased COPD mor-
tality, while Tran et al. (2023) found a negative correlation 
between COPD mortality and temperatures ranging between 3.8° 
and 29.9°. Thus, results regarding the impact of low and high tem-
peratures on COPD vary across different geographies (Duan et al., 
2020; Sama et al., 2017). 

During the last few years, remote sensing data have increasing 
been used in monitoring, spatial predictive modelling, surveil-
lance, and risk assessment with respect to human health (Alvarez-
Mendoza et al., 2020). However, a knowledge gap is evident in the 
previous studies on COPD mortality: the impact of long-term 
change of night-time land surface temperatures (LSTnt) on COPD 
mortality remains unclear. Additionally, it is unknown if such 
impact varies across a large-scale territory. The reason for the use 
of LSTnt is that this satellite-generated variable is a well-estab-
lished proxy to measure and confirm Climate Change in a specific 
geographical area. The use of U.S. counties for case study was 
taken as it represents a very large area, for which long-term reliable 
data on both LSTnt and human cases are available.  

In our study, we prioritized the understanding of local relation-
ships between Land Surface Temperature (LST) and COPD mor-
tality rates rather than addressing all well-known risk factors 
superficially. Analysing LST is crucial as it directly affects heat 
stress, influences air quality through the formation of pollutants 
and reflects regional temperature variations, all of which influence 
respiratory health strongly, especially within the context of 
Climate Change (Hansel et al., 2016; Fu et al., 2022; He et al., 
2022). By narrowing our focus, we aimed to provide a more 
nuanced analysis of how LST specifically contributes to respirato-
ry health outcomes, allowing us to uncover local variations and 
interactions that may be overlooked when considering the broader 
risk. This concentrated approach offers insights essential for devel-
oping targeted public health interventions and advancing our 
understanding of the complex dynamics between climate and 
health. This study is significant as it investigates the relationship 
between LSTnt and COPD mortality rates, thereby explaining the 
implications of climate change on public health. Given the increas-
ing frequency of extreme heat events and changing climate pat-
terns, understanding how LST influences respiratory health out-
comes is essential for developing effective public health interven-
tions. By isolating the impact of LST, this research aims to inform 
strategies for mitigating health risks associated with rising temper-
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atures, ultimately contributing to the enhancement of public health 
resilience in the context of climate change.  

This study aimed to i) disclose the general geography of COPD 
between 2001 and 2020 in the U.S.; ii) measure the spatial corre-
lations between LSTnt and COPD mortality rates; iii) develop a 
COPD mortality prediction model based on LSTnt; and iv) identify 
high-risk areas. 

 
 
 

Materials and Methods 

Data 

Geospatial data 
County-level population data including geographic boundaries 

of the contiguous states were acquired from the U.S. Census 
Bureau (United States Census Bureau 2022). The EPSG:4326 - 
WGS 84 projection system was used for projecting all the formats 
of Geographical Information Systems (GIS) layers of the study 
area based on World Geodetic System 1984 ensemble. We used 
this projection system because the contiguous U.S. ranges from 
approximately 24.52N to 49.38N latitude and 66.95W to 124.77 W 
longitude (Geodatos 2023).  

 

COPD mortality data 
The COPD mortality rate for the period 2001-2020 among the 

population ≥25 years old was used as the dependent variable. The 
reason for the choice of the data for this age group is that that over 
99% COPD in the U.S. occurs in this age group. In 2020, for exam-
ple, the rate of COPD mortality was substantially higher among 
older age groups (CDC, 2023). The U.S. CDC provides county-
level, age-adjusted death rate from COPD among ≥25 years olds 
for the years 2001-2020 (CDC, 2023). Death from COPD in this 
presentation was defined based on codes from the tenth revision of 
International Classification of Diseases (ICD-10), i.e., chronic 
bronchitis (J40-42), emphysema (J43) and other chronic obstruc-
tive pulmonary disease (J44). Rates were age-adjusted by direct 
methods using the U.S. Standard Population for the year 2000, a 
measure that can was also used to assess mortality trends over time 
and identify high–risk populations by area (CDC, 2023).  

To ensure the quality and reliability of the COPD and geospa-
tial data in this study, we obtained county-level population and 
COPD mortality data from trusted organizations, specifically the 
U.S. Census Bureau and CDC. The former follows strict statistical 
quality standards during data collection and reporting, covering 
planning, collection, processing, and dissemination stages to 
uphold high data integrity. Similarly, the CDC implements rigor-
ous data management protocols to ensure the reliability of its 
health statistics, which are vital for public health planning and 
intervention. Utilizing data from these authoritative sources bol-
sters the credibility of our findings and contributes to a robust evi-
dence base for understanding COPD trends and their implications 
for public health. 

LSTnt data 
The 8-Day global package of the moderate resolution imaging 

spectroradiometer (MODIS)’s LST/Emissivity (MOD11A2, ver-
sion 6.1) generated by the Terra and Aqua satellites was extracted 
from the National Aeronautics and Space Administration 

(NASA)’s remote sensing data collection of the land processes dis-
tributed active archive center (LP DAAC) at the U.S. Geological 
Survey (USGS) EROS Center using the Google Earth Engine 
(GEE) platform (NASA LP DAAC and DAAC 2023). This pack-
age provides an average 8-day, per-pixel LST and emissivity with 
a 1.2-km spatial resolution (giving a 1.2 by 1.2 km grid). Each 
pixel value in the MOD11A2 is a simple average of all the corre-
sponding MOD11A1 LST pixels collected by the two ground track 
repeat periods of the Terra and Aqua satellites within each 8-day 
period. The quality control assessments, observation times, zenith 
view angles, clear-sky coverage and emissivity data are provided 
together with the LSTnt data (Wan, Hook, & Hulley, 2021). The 
contagious U.S. area covers 8,080,47 km2, 3% of which classified 
as urban and home to 83% of the total population (Center for 
Sustainable Systems 2019). At night-time, rural areas show lower 
temperatures than the built-up (urbanized) areas (Bounoua et al., 
2017). However, excessive solar radiation during the day can cor-
rupt LST readings since the presence of vegetation has a signifi-
cant impact on the local surface temperature (Rasul, Balzter, & 
Smith, 2016). A more reliable indicator for comparing different 
national areas at the macro scale is therefore provided by LST 
measurement of night-time, urban heat islands (Bala, Prasad, & 
Yadav 2020). To carry out the desired analysis, all LSTnt values 
were collected for county polygons. The quality and reliability of 
the MODIS Land MOD11A2 product are maintained through sev-
eral built-in quality control measures. NASA’s LP DAAC provides 
bit-encoded Quality Control (QC) layers, which offer detailed 
information on the conditions under which the data were recorded, 
such as cloud cover and atmospheric interference. If specific con-
ditions like cloud effects are detected, the LST data are not pro-
duced to avoid unreliable readings. Additionally, the mandatory 
Quality Assurance (QA) flags indicate whether data for certain 
pixels are valid. The combination of these protocols ensures that 
the dataset remains highly accurate and reliable for scientific and 
environmental applications, particularly for measuring surface 
temperatures under diverse atmospheric conditions. 

Analysis and modelling approaches 

Mapping the COPD mortality rates 
Choropleth maps were used to map COPD mortality rates as 

well as the LSTnt trends using equal intervals and equal counts 
(quantiles) for the mapping that was based on the Open-Source 
GIS Platform (QGIS), v. 3.30.3 as described by the QGIS develop-
ment team 2016) and ArcGIS Pro, v.3.1 (ESRI, Redlands, CA, 
USA). The Getis-Ord Gi* statistic (Anselin et al., 2009; ESRI, 
2010) was utilized to identify the hotspots in the study area and 
time. Among the different methods of spatial conceptualization 
relationships for Getis-Ord Gi*, we applied the Contiguity Edges 
Corners (CEC) approach when calculating all geographical rela-
tionships as it is the most appropriate and effective for polygonal 
features.  

Spatial autocorrelation 
In this study, LSTnt was our exploratory variable. Spatial auto-

correlation is the correlation between values of a single variable 
across a spatial unit (Griffith, 2009). Among the various methods 
for measuring this correlation, global methods are more sensitive 
to departures from the null hypothesis (random distribution) 
(Anselin et al., 2009). For the detection of the spatial autocorrela-
tion of COPD mortality rates for the entire study area and time, we 

                 Article

[page 112]                                                             [Geospatial Health 2025; 20:1319]                                                                               



used the R version 4.3.1 software for the application of Global 
Moran’s I (GMI), which is generally more accurate regarding mea-
suring autocorrelation than other statistics.  

The GMI is a statistical measure used to assess the degree of 
spatial autocorrelation in a dataset, indicating whether similar val-
ues cluster together or disperse across a geographic area. The GMI 
was employed to quantify spatial autocorrelation, providing 
insights into the clustering patterns of COPD mortality across the 
U.S. counties. The GMI was computed according to Anselin et al. 
(2009): 

 

                        

(Eq. 1)

 
 

where n represents the total number of spatial units (i.e. U.S. coun-
ties); xi the COPD mortality per 100,000 individuals for county i;  

 the arithmetic mean of the COPD mortality rates; and  wij the 
spatial weight between counties i and j. The GMI values range 
between -1 and +1, where values closer to zero indicate non-signif-
icant spatial autocorrelation, while values further from zero (either 
positive or negative) signify strong spatial autocorrelation (Anselin 
et al., 2009). In this study, the COPD mortality rate was assigned 
to each county as the value field for analysis. Using spatial analysis 
tools in ArcGIS software, the GMI was calculated to assess the 
degree of clustering in the COPD mortality data. 

Scatter plots were drawn using the ‘ggplot2’ package in R to 
show the correlation between two variables. The main goal of this 
research was not to study spatiotemporal clusters but to investigate 
the potential effect of underlying geographic factors. A positive 
spatial result would pave the way for further studies on possible 
consequences emanating from such a finding.  

Spatial correlation of LSTnt and COPD mortality rate 
Local Moran’s I detects clusters of similar values or spatial 

outliers within a geographic area, as opposed to the overall pattern 
captured by GMI. In this study, we used the bivariate Local 
Moran’s I (shown in Eq. 2) to identify the spatial correlations 
between COPD mortality rates and the annual mean LSTnt. It  
describes the statistical relationship between one variable at a loca-
tion and a spatially lagged second variable at neighbouring loca-
tions according to Anselin (2020): 

 

                        
(Eq. 2)

 
 

Ii
(XY) is the Bivariate Local Moran’s I statistic at location i, xi is  

is the value of variable X at location i,  is the value of variable Y 
at neighbouring locations j,  is the mean of variable X across all 
locations,  is the mean of variable Y across all locations, 

 is the variance of variable X and wij is the spatial 
weight matrix representing the relationship between location i and 
its neighbours j, often based on proximity or distance (Anselin 
2020; Livings & Wu, 2020)  

Bivariate local Moran’s I can be visualized and mapped using 
a bivariate Moran scatterplot that displays the relationship between 

the first variable value at observation i and the spatially lagged sec-
ond variable value at observation j, organized into four quadrants 
(Livings & Wu, 2020). We also mapped the results of bivariate 
local Moran’s I result using QGIS. 

Prediction based on the FCR model and a 
ssessment of model performance 

Spatial predictions of health variables are of great scientific 
and societal importance (Wang et al., 2017). There are several spa-
tial prediction models, such as the presence-only prediction 
(MaxEnt) model (Phillips & Dudík, 2008), the frequency ratio 
model (Addis, 2023), random forest regression (Joshi, Aliaga, & 
Teller 2023), spatial statistics model file (ESRI, 2010), logistic and 
generalized linear regression models (Martínez et al., 2022) to pre-
dict a health-related phenomena in a geographical context. 
Furthermore, even with the most suitable predictive method, it is a 
challenging to identify and develop the most accurate predictive 
model(s) (Li, 2019).  

In this study, we employed the Forest-based classification and 
Regression model (FCR) model due to its exceptional ability to 
manage complex, non-linear relationships and interactions 
between LST and COPD mortality rates. This model is adept at 
handling high-dimensional datasets and effectively addresses 
missing values, which are common in environmental health 
research (Breiman & Cutler 2014; Friedman, 2001). Additionally, 
the FCR model provides inherent feature importance metrics, 
allowing researchers to identify key predictors and gain insights 
into the impact of climate-related variables on health outcomes 
(Breiman & Cutler 2014). Utilizing this approach aims to yield 
robust findings on the influence of LST on COPD mortality while 
accounting for uncertainties in the data. 

The FCR model is a supervised machine-learning method 
developed by Leo Breiman and Adele Cutler (2014). This model 
creates models and generates predictions using an adaptation of the 
random-forest algorithm (ESRI, 2010). First, we tested and select-
ed “predict to features” as our best prediction type. Then, we used 
the U.S. counties polygon shapefile, which included our variables 
as input training features. In the next step, we introduced COPD 
mortality rates as a variable to predict and an annual mean LSTnt as 
our explanatory training variable to the FCR model. The more 
trees used, the more accurate the model prediction; the number of 
trees in our FCR model was considered to be 100. Data available 
per tree (%) was also considered to be 100. For evaluation of the 
FCR model performance, the training data excluded in the valida-
tion was 10%. The number of validations runs required to achieve 
the highest coefficient of determination, i.e., the squared root (R2), 
was set to 5. In the final step, the uncertainty parameter was also 
considered to measure the prediction interval in FCR model. 
ArcGIS Pro v.3.1 was utilized to make all predictions. Bivariate 
choropleth maps, which show the quantitative relation between 
two variables in a feature layer, were used to represent and com-
pare the FCR model parameter estimates and original values of the 
explanatory variables. This mapping method is useful for finding 
the local patterns and variations of two parameters in a single map. 
The scatterplot with R² can also be used to visualize the FCR 
model performance results. It is a widely used goodness of fit mea-
sure (0 to 1 range) for linear regression models to measure the 
strength of the relationship between the model and the dependent 
variable on a convenient 0 – 100% scale (Di Mari, Ingrassia, & 
Punzo 2023). The QGIS and ArcGIS Pro packages were used to 
visualize our final model results. 

x

x
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x
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Results 

Spatiotemporal patterns of the COPD mortality 
rate 

Between the years 2001 and 2020, there were 66,024 con-
firmed cases of COPD in the U.S. The average rate was 73.9 per 
100.000 adults older than 25 years and the Standard Deviation 
(SD) was 16.8. The highest average rate was recorded for 2008 
(78.1) and the lowest for 2004 (69.07). In 2001, the average COPD 
mortality rate was 71.2 per 100,000, which had dropped to 69.7 per 
100,000 in 2020. However, the total period rate, equivalent to 2.7 
per 100,000 people, was higher than in 2001. Our analysis showed 
that males in study time had a higher COPD mortality rate (90.9 
per 100,000). Figure 1, shows the spatial distribution of an age-
adjusted death rate from COPD per 100.000 population in the 
3,108 contiguous U.S. counties using the “equal interval” mode of 
choropleth mapping. As seen in this map, the COPD mortality 
rates varied considerably spatiotemporally. For example, some 
counties of West Virginia and Kentucky have had high mortality 
rates in most years. Figure 2 shows the average rate range for all 
the total study period, with rates varying from about 27 to 160 per 

100.000. As shown in Figure 2B, the COPD mortality rates vary 
geographically across the U.S. counties, with hotspots and 
coldspots, e,g., many Kentucky counties not only experienced high 
mortality rates but also hotspots. Global Moran’s I statistic showed 
a value around 0.85, (SD=79.26, p<0.001), with an expected value 
of 0.00 and a variance of 0.00. The spatial autocorrelation analysis 
of the 20-year average COPD mortality rates in the study area is 
illustrated in Figure 2C. The test results indicate that the COPD 
mortality rates exhibit clustering patterns, with both high and low 
rates observed. This study examined whether high mortality rates 
in some counties were possibly associated with changes in LSTnt. 
To discover this correlation, local statistics were applied as the 
next step. 

Spatial distribution and LSTn changes  
Figure 3, shows the spatial distribution of the annual mean 

LSTnt values over the study area. These maps show each year’s 
annual mean LSTnt values in degrees Celsius for each cell, thus 
producing high-resolution images (1.2x1,2 km). Based on these 
spatiotemporal maps, annual average values of LSTnt in the study 
area were seen to vary in a range covering from about -13°C to 
27°C. The mean annual LSTnt for the study area over the study 
period was 23, rising from 20.95 in 2001 to 22.0 in 2020. On the 
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Figure 1. The spatial distribution of the annual average COPD mortality rates (both sexes) per 100.000 population across contiguous 
United States counties for the period 2001 to 2020.
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other hand, however, some years, e.g., 2019, had unusually high 
mean LSTnt values. 

Figure 4A depicts the average of the annual mean LSTnt values. 
The results show that the annual mean LSTnt values for the entire 
study area varied from about -11°C to 21.2°C, naturally with the 
highest mean LSTs (higher than 19 °C) in the South and Southeast. 
The average LST value calculated per county in 2001 was 7.3°C, 
a value that had risen to 8.4°C in 2020. Throughout the study peri-
od, the average annual LSTnt was 8.0°C, which was 0.8°C higher 
than in 2001. Thus, overall, the LSTnt increased over the period of 
the study. 

Figure 4B shows the West (37.97 W) - East (76.55 East) profile 
of the annual LSTnt average from 2001 to 2020. Based on this pro-
file, annual mean LSTnt values varied from -5.99 °C to 15.8°C 
across the profile line. Figure 4C shows the North (48.99 N) - 
South (26.05 S) annual profile, with LSTnt values varying from -
3.0°C to 21.1°C. This profile clearly illustrates that the annual 
mean LSTnt values during the study period were higher in the 
southern half of the U.S., beginning at latitudes just below 40˚N. 
The annual mean of 20-year LSTnt values map can thus be used as 
a predictor variable to examine the spatial relationships between 
the annual, mean LSTnt values and COPD mortality rates in the 
study area. 

Figure 5 shows the average LSTnt difference from the begin-

ning (2001) until the end (2020) of the study period based on the 
change of raster pixel (cell) values extracted from the MODIS 
images for those two years. As seen in Figure 5A, the change val-
ues varied from a minimum of about -12.5°C to a maximum of 
8.9°C for specific places. In different counties, the mean changes 
varied from about   -3.0°C to about 4.0°C. As demonstrated in 
Figure 5B, the changes in the eastern counties were higher than 
those in the western counties, with the LSTnt values in most coun-
ties of Missouri, Illinois, Indiana, New York, Florida and 
Mississippi showing increases. This indicates that these states had 
significant LSTnt changes throughout the 20 years under study. As 
seen in the map, the annual mean LSTnt change can also be used as 
another predictor variable to investigate the spatial relationships 
between annual mean LSTnt change values and COPD mortality 
rates as mentioned in the next section. 

Relationships of LSTnt and the COPD mortality 
rates 

Global spatial correlation 
Before performing local correlation analysis, we tested the 

global spatial correlation between COPD mortality rates and study 
predictors by applying bivariate GMI to measure the spatial corre-

                                                                                                                                Article

                                                                               [Geospatial Health 2025; 20:1319]                                                            [page 115]

Figure 2. The 20-year-annual average COPD mortality rates per 100.000 population. (A) Spatial distribution map of rates across contigu-
ous United States counties; (B) hotspots and coldspots of mortality rates calculated using Getis-Ord Gi* statistic; (C) the results of Global 
Moran’s I scatter plots of the spatial autocorrelation.



lation between the average of COPD mortality rates and predictor 
variables (i.e., LSTn mean and LSTnt change) for the study area 
resulting in I = 0.18, p <0.05 and the z-score=22 with a confidence 
level of 95%. The null hypothesis was rejected because of the spa-
tial correlation between COPD mortality rates and the 20-year 
mean of LSTnt values. These tests were also performed to measure 
the correlation between LSTnt change and the COPD mortality 
rates. We found that there was no spatial correlation between LSTnt 

change values and COPD mortality rates in the study area during 
this period. The LSTnt changes (rise and fall) were not associated 
with the COPD mortality rates. Given these findings, we per-
formed a local analysis and developed a prediction model with the 
mean of LSTnt values and the COPD death rates as dependent and 
predictor parameters. 

Local spatial correlation 
Figure 6 shows the results of the exploration of the local spatial 

correlation of spatially lagged 20-year average of COPD mortality 
rates and the 20-year mean LSTnt in the study area. The intensity 
of the spatial correlation of the two variables was statistically sig-
nificant in many counties, i.e., 366 counties with p<0.001 (99% 
CI), 426 counties with p<0.01 (95% CI) and 553 counties with 
p<0.05 (95% CI), so the null hypothesis was rejected (Figure 6A). 
The cluster map in Figure 6B represents the spatial correlation pat-

terns of the two variables. In areas shaded in red, the values of the 
two variables were high in contrast to the areas shaded in blue, 
where they were low. In 19 states, (38.8% of the total), most coun-
ties were found to be in High-High clustered areas, e.g., Texas, 
Oklahoma, Arkansas, Kentucky, West Virginia, and Georgia. In 
contrast, Minnesota, Wisconsin and Utah were among states where 
most counties were located in Low-Low clusters. 

Spatial prediction and model performance 
Based on the annual mean of LSTnt an explanatory variable in 

this study, spatial prediction of the COPD mortality rates was 
attempted by applying the FCR model. With an R² of 0.78, a p-
value less than 0.001, and a standard error approaching zero based 
on the model training diagnostics, the FCR model effectively 
explained the spatial predictions of COPD mortality in the study 
area. Figure 7A shows this based on natural breaks (Bajjali, 2023) 
and the choropleth approach. According to this prediction map and 
based on the twenty-year average of mortality rates and LSTnt, 
some counties should experience higher rates, e.g., counties in 
Kentucky, West Virginia, Maryland and Texas, which are among 
those most likely to move in this direction. 

Figure 7B, shows the line chart of prediction intervals based on 
FCR model uncertainty parameters. The fields, ending with P05 (in 
green) and P95 (in blue), represent the upper and lower bounds of 
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Figure 3. The spatial distribution maps of annual, mean LSTnt across contiguous United States for the years 2001 to 2020 based on MODIS 
data.



the prediction interval. For example, for Chaves County, New 
Mexico, the Federal Information Processing Standards code 
(FIPS) = 35005), the upper and lower bounds of the prediction 
interval are 100 and 86 per 100.000 population. For any new obser-
vation within this area, the value would be expected to fall with 
90% confidence, given the same explanatory variables. Based on 
the FCR model, mortality rates were predicted to be higher than 
normal in more than 47% of counties (estimated mean = 74). 

The FCR model must be calibrated and validated to accurately 
predict rates. Bivariate map and scatter plot were used for model 
calibration and validation of predicted rates (as described in the 
model validation section). The bivariate map was used to quantify 
the degree of spatial agreement between two continuous valued 
fields (“predicted rates” and “original rates”) in a single map. 
Figure 8A shows the spatial distribution bivariate maps of the local 
spatially varying predicted rates and the original rate values, which 
are aggregated at the county scale. This bivariate map shows that 
there is strong agreement between original and predicted rates. 
Areas shaded in dark brown are counties where COPD mortality 
“original rates” and “predicted rates” match. Using the scatterplot, 
the goodness of fit between FCR model predictions and reality was 
validated in the study area based on FCR model diagnostics. The 
model accurately predicted 68% of the relationship with an R2 
value of 0.68 (Figure 8 B). 

Discussion 
According to our findings, the spatial distribution of COPD 

mortality rates in the contiguous U.S. was not distributed homoge-
neously. We identified significant hotspot counties where rates 
were clustered, a spatial heterogeneity with respect to COPD mor-
tality rates that was confirmed at the 0.85 level by Moran’s I. 
Presumably, various risk factors may have contributed to this geo-
graphic clustering, notably, counties in southern states, such as 
Kentucky, West Virginia and Oklahoma, all of which ranked high 
with regard to COPD mortality. These counties have also been 
identified in previous studies (Dwyer-Lindgren et al., 2014; Liu et 
al., 2020) as having high smoking prevalence rates. A CDC report 
(2020) covering 2016 to 2020 showed that these counties were 
among those with high rates of lung and bronchial cancer (>40 per 
100.000 people). However, according to Liu et al. (2020) note that 
these counties also have high amounts of air pollutants including 
PM2.5, while the National Institutes on Minority Health and Health 
Disparities (NIMHD) refers to other papers reporting high poverty 
rates, (NIMHD, 2023) and CDC (2023) reports high rates of asth-
ma prevalence among adults in these same areas, so the problem is 
clearly multifactorial. We found that mortality rates were higher in 
most urbanized areas. According to Bounoua et al. (2017), urban-
ization added an annual warming of 1.1Co. Increases in urban sur-
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Figure 4. The spatial distribution of LSTnt average values in the contiguous U.S. (A) Low to high range values of the annual mean LSTnt 
based on MODIS 1.2 km-resolution images; (B) North to South profile line of annual mean LSTnt values; (C) West to East profile line of 
annual mean LSTnt values.



face temperature lead to higher frequency and severity of heat 
waves in most urbanized areas and cities, and this must also affect 
the population’s health. The Health Equity Report from the 
Department of Health and Human Services, Health Resources and 
Services Administration (2020) shows high poverty rates in some 
states e.g., Kentucky and Georgia, which we identified as areas 
with high COPD mortality rates. The findings on the spatial distri-
bution of COPD mortality rates reveal significant geographic dis-
parities, particularly in southern states like Kentucky, West 
Virginia, and Oklahoma, where rates are clustered. This under-
scores the multifactorial nature of COPD. In addition to other sig-
nificant risk factors for COPD mortality, several should be consid-
ered, including genetic predisposition, occupational exposures to 
harmful substances, chronic respiratory infections, limited access 
to healthcare, poor nutritional status, mental health conditions, pas-
sive smoking, broader socioeconomic factors (American Lung 
Association, 2024), Climate Change, and urban planning.  

This study focused primarily on the relationship between LST 
and COPD mortality. However, other significant risk factors for 
COPD, including smoking and pollution, were not included in the 
analysis. These factors are known to play a critical role in COPD 
outcomes, and their exclusion may limit the interpretation of the 
results reported here. For example, we compared maps from the 
U.S. Census Bureau and the Behavioral Risk Factor Surveillance 

System (BRFSS) (Ney, 2023; Wu et al., 2020) highlighting areas 
with high air pollution or smoking rates to the map displaying 
higher COPD mortality rates. We found that many areas with high 
air pollution or elevated smoking rates exhibit similar patterns to 
those with high COPD mortality. This suggests that areas with high 
air pollution or smoking rates may experience elevated COPD 
mortality rates irrespective of the LST patterns. 

Addressing these diverse factors can lead to a more compre-
hensive understanding of COPD risk and inform targeted public 
health interventions. These insights highlight the need for targeted 
public health interventions and policies in high-risk areas, promot-
ing smoking cessation, improving air quality, and addressing 
health disparities. Additionally, the study emphasizes the impor-
tance of considering local context in health strategies and opens 
avenues for further research into the mechanisms behind the 
observed clustering, ultimately enhancing understanding and 
informing future public health initiatives. 

The increased average, annual LSTnt values found by our study 
over the 2001-2020 period are in line with the National Centers for 
Environmental Information report (NIMHD, 2023), which has 
confirmed that the mean surface air temperature in the contiguous 
U.S. increased at an average rate of 0.17°F (0.09°C) per decade. 
Accelerated urbanization and urban sprawl are significant compo-
nents of land cover, land use and local climate change in the U.S. 
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Figure 5. The spatial distribution of annual, mean LSTnt change values with difference between 2001 and 2020 as start and end dates in 
contiguous United States counties. (A) Annual mean LSTnt values from low to high values; (B) annual mean LSTnt change values col-
lected for the counties. 



(Bounoua et al., 2018). Therefore, presumably, human-caused 
environmental changes and activities in the form of construction 
and new developments are among the most crucial drivers of the 
LSTnt increase noted in our study.  

Built-up areas are well-known for having higher temperatures 
than their rural surroundings and this urban heat island effect has 
been observed to raise the LSTnt of cities by about 2.0 to 5.0°F (1.0 
to 3.0°C) (NASA, 2023). Counties identified as areas with the 
highest LSTnt changes in this study, are also those where peri-urban 
and urban expansion have taken place according to the Global 
Human Settlement Layer (GHSL) study (Kemper et al., 2017). The 
rise of LSTnt is due to the presence of asphalt, concrete, stone, steel 
and other surfaces that absorb heat and disrupt the natural cooling 
effect provided by vegetation (Bounoua et al., 2015). Human 
activities have also led to loss of land cover, changes in land mor-
phology, fires and deforestation, e.g., in U.S. counties with high 
rates of LSTnt, 7.2% of the tree cover was lost from 2001 to 2022 
(Zanin & Sillère, 2015). According to the same report, deforesta-
tion and wildfire incidents directly contributed to the rise in envi-
ronmental contaminants and the deterioration of respiratory dis-
eases. Our results confirm that the nationwide mean of high COPD 
mortality rates and the increasing annual mean LSTnt are positively 
associated. In addition, the highly significant local spatial correla-
tion in 38% of all counties emphasize the important role of temper-
ature in this scenario, a finding consistent with various studies 
indicating that rising temperatures are accompanied by increasing 

COPD mortality rates (Almetwally et al., 2020; Tian et al., 2021; 
Fu et al., 2022; Gu et al., 2022). Indeed, increasing temperature at 
night, increases the mortality rates among people with respiratory 
diseases. Thus, ambient heat during the night may interrupt the 
normal physiology of sleep. Less sleep can then lead to an ineffec-
tive immune system and a higher risk of both acute and chronic ill-
nesses (He et al., 2022).  

The absence of significant correlation between LSTnt change 
rates and COPD mortality rates was an unexpected finding. This 
could be due to new construction or urban growth in general 
(Levitt & Eng, 2021), which is known to increase LSTnt levels. 
Another reason is that most counties characterized by changes in 
LSTnt are located in areas undergoing land cover changes, such as 
deforestation with large-scale impact on vegetation as reported in 
the last 20 years (Global Forest Watch, 2023). While low COPD 
mortality rates were seen during the study period in newly con-
structed areas with low population density and impervious surface 
areas, counties with high LSTnt changes and built-up area growth 
rates may be considered as likely places in the future to record 
health problems, including COPD. 

The study presents several novel findings related to COPD 
mortality rates, particularly by identifying significant hotspot 
counties with clustered mortality rates. It highlights an average 
increase in annual land surface temperature (LSTnt) from 2001 to 
2020, emphasizing the importance of local temperature changes. 
Additionally, a positive correlation was established between rising 
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Figure 6. Spatial correlation between COPD mortality rates and annual mean LSTnt across the contiguous United States. (A) P-values 
(B) Clusters. 



temperatures and COPD mortality rates, aligning with existing 
research while offering county-level insights into climate change 
as a contributing risk factor for respiratory diseases. These findings 
enhance the understanding of the spatial distribution of COPD 
mortality and underscore the need for targeted public health inter-
ventions in high-risk areas. 

Limitations and future research directions 
In spite of strengths, such as the identification of COPD mor-

tality hotspots across U.S. counties based on LSTnt trends and 
changes over 20 years, extracted by remote sensing, for which a 
validated FCR model was used to predict precise estimates of 
COPD mortality rates, some limitations must be acknowledged. 
This study primarily examined the spatial correlation between LST 
and COPD mortality rates. However, incorporating other critical 
risk factors—such as air pollutants, smoking rates, vegetation, land 
cover changes, and environmental hazards (e.g., floods and 
fires)—as control variables would offer a more comprehensive 
understanding of how climate change impacts COPD mortality. 
The absence of these control variables in the current analysis 
means that the true effect of climate change on COPD mortality 
may not be fully captured. Including these factors could potentially 
modify the relationship between LST and COPD mortality. 

Second, we used remotely sensed data for correlation measure-
ment. The use of synoptic and real-data aggregated from weather 
stations may show different results that we did not address. Finally, 

the FCR model that has been used in this study was providing suit-
able results. However, it does not consider the long and defined 
time period for future predictions and uses previous or present 
space-time evidence. In future studies, models that consider long-
time predilections should be used. However, access to projected or 
modelled LSTnt values for certain periods must be assured. Further, 
climate changes can create very complex environmental effects 
from different dimensions, which are necessary to investigate to 
face their possible risks for public health. In future research, infor-
mation on environmental factors, such as land cover change, air 
pollutants and environmental hazards, should be taken into account 
in detailed spatial relationships and predictions to better inform our 
understanding of climate and environmental changes to public 
health as well as respiratory diseases. Based on the findings of this 
research, we present some strategies to reduce the vulnerability 
caused by climate change. These predictions should help local 
public health authorities in planning and allocating resources with 
a focus on the counties at the highest risk. 

Policy implications 
Reducing or preventing vulnerability caused by climate change 

requires the use of integrated solutions (Lin et al., 2021). The find-
ings regarding COPD mortality rates and their connection to fac-
tors, such as land surface temperature highlight the urgent need for 
integrated strategies to reduce vulnerabilities related to climate 
change. Key implementations should involve long-term initiatives 
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Figure 7. Prediction map of the COPD mortality rates based on the annual mean LSTnt. (A) Spatial distribution of mortality rates by coun-
ty; (B) Prediction interval chart of predicted rates. Note: Blue bars indicate higher than the predicted average values and green bars lower 
than these values.



focused on preventing deforestation and promoting reforestation, 
alongside the incorporation of nature-based solutions like green 
roofs and urban gardens to bolster urban resilience. Integrating 
green technologies into urban planning can significantly mitigate 
heat islands and enhance air quality. Furthermore, aligning these 
environmental strategies with social welfare and healthcare pro-
grams is essential to provide comprehensive support for at-risk 
communities. Effective collaboration among stakeholders, includ-
ing local governments, health organizations, and community 
groups, will be crucial in addressing the multifaceted challenges 
posed by climate change, ultimately improving respiratory health 
outcomes for vulnerable populations. Engaging with local commu-
nities in these initiatives ensures that strategies are tailored to spe-
cific needs and contexts, thereby enhancing their effectiveness and 
sustainability. 

Conclusion 
This study predicted COPD mortality rates based on historical 

mean LSTnt trends across U.S. counties. With an R2 of 0.78, the 
FCR model accurately explained spatial predictions of COPD mor-
tality based on the annual mean of LSTnt and the model used in this 
study predicted the likelihood of COPD mortality rates. However, 
the severity of this association varied spatially and some counties 
were more effected than others. Furthermore, areas with severe 
recent LSTnt changes did not necessarily have high mortality rates. 
As a result, recent LSTnt and environmental changes may have a 
delayed, long-term impact on COPD patients. This study findings 
could help people in charge of health and spatial policy to establish 
long-term policies and plans for lowering vulnerability to climate 
change.  
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Figure 8. Correlation between the original and predicted values of the COPD mortality rates of United States counties based on the FCR 
model. (A) Spatial distribution bivariate map of original and predicted values; (B) Scatterplot measures the goodness of the fit of FCR 
model results. 
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