
Abstract 
While the COVID-19 pandemic significantly disrupted urban 

mobility in general, its effects on spatio-temporal foot traffic pat-
terns remain insufficiently explored. This study addresses this 
issue by analysing foot traffic dynamics across various regions of 
Charleston County, South Carolina, before, during and after the 
pandemic. We examined changes across nine distinct stages of the 
pandemic from 2018 to 2022 at the sub-county level, utilizing 
point of interest data and public health records. Various machine 

learning models, including Random Forest, were employed to pre-
dict foot traffic trends, achieving high predictive accuracy with an 
𝑅2 value of 0.88. Our findings reveal varying foot traffic patterns 
across the county. Prior to the pandemic, foot traffic was generally 
consistent across county subdivisions, maintaining steady levels 
in each area. The onset of the pandemic led to significant decreas-
es in foot traffic across most subdivisions, followed by gradual 
recovery, with some areas surpassing pre-pandemic levels. These 
results underscore the need for tailored crisis management and 
urban planning, particularly in midsized counties with similar 
structures to inform more effective resource allocation and 
improve risk management in public safety during public health 
crises. 

 
 
 

Introduction 
Foot traffic data provides insight into public responses to 

health advisories, perceived risks, and the broader impact of the 
pandemic on daily routines (Bonaccorsi et al., 2020; Gursoy & 
Chi, 2020). The COVID-19 pandemic significantly disrupted 
communities around the world, affecting social interactions and 
mobility patterns (World Health Organization, 2023). Urban areas, 
once vibrant, became desolate as governments enforced stay-at-
home orders, halting normal traffic and leaving public spaces 
empty (Google LLC, 2020). The shift to work at distance drasti-
cally reduced commuter traffic (DeFilippis et al., 2020), while 
healthcare facilities experienced increased activity due to the 
surge in patients (Bartsch et al., 2020). These disruptions were 
most visibly reflected in altered foot traffic patterns. As the pan-
demic progressed, distinct stages emerged, each associated with 
specific health advisories and restrictions, which appeared to 
influence mobility patterns (Google LLC, 2020). Governments 
implemented various measures—mask wearing mandates, social 
distancing and vaccination campaigns—that factored in shaping 
societal behaviour and mobility dynamics, though the relationship 
between these measures and changes in foot traffic is complex and 
multifaceted. 

Previous studies have explored the impact of COVID-19 on 
mobility, providing valuable insights across various contexts and 
scales. Warren & Skillman (2020) examined global and national 
reductions in mobility using anonymized mobile device data, 
highlighting the broad effects of behavioural changes and govern-
mental restrictions. Similarly, Gao et al. (2020) mapped county-
level mobility pattern changes in the United States (U.S.) reveal-
ing consistent patterns across many states. However, these studies 
primarily focus on macro-level perspectives, whereas our research 
diverges by concentrating on the sub-county level for a more 
localized analysis of foot traffic patterns. 

A recent study by Arambepola et al. (2023) analysed fine-
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scale mobility changes in 26 U.S. cities revealing how local demo-
graphic and policy factors influence mobility patterns. While their 
findings highlight urban mobility dynamics, they do not capture 
the sub-county intricacies that can significantly affect foot traffic 
patterns. Our study addresses this gap by emphasizing localized 
mobility patterns within Charleston County’s distinct subdivisions. 
Moreover, Elarde et al. (2021) utilized dwell-home-time (the dura-
tion of time an individual spends at home) as a measure to reflect 
mobility changes during COVID-19 across various counties in the 
US. Although their analysis offers valuable insights, it adopts a 
broad approach that primarily identifies correlations among coun-
ties. In contrast, our research not only focuses on visit counts but 
also incorporates individual dwell time data at different locations, 
providing a multi-dimensional perspective on how the duration of 
visits changed during the pandemic (Allard et al., 2023). 

Pan Y et al. (2020) focused on short-term daily mobility across 
the U.S. from March to May 2020 to examine the immediate 
effects of COVID-19 on mobility patterns. Similarly, Angel et al. 
(2023) analysed pedestrian traffic and walking patterns in Israel 
during the pandemic from January to July 2020. While these stud-
ies offer valuable perspectives on mobility changes, our research 
spans a broader time frame from January 2018 to September 2022, 
allowing us to capture both immediate and sustained shifts in 
mobility patterns. In terms of pandemic staging, Tegally et al. 
(2022) conducted a global mobility study indicating that the waves 
of the pandemic suggest the need for fine-staging. Stasi et al. 
(2020) divided the pandemic into four stages from a pharmacolog-
ical perspective. In contrast, we introduced a more granular nine-
stage model based on local COVID-19 cases, deaths and govern-
ment responses. This approach captures subtle variations in foot 
traffic across different phases of the pandemic, allowing for a more 
nuanced understanding of mobility dynamics. 

This study addresses the gaps in understanding both short-term 
and long-term impacts of the COVID-19 pandemic on foot traffic 
by providing a fine resolution and stage-by-stage analysis over a 
five-year period and offering a detailed, extended analysis of 
mobility patterns at the sub-county level. To the best of our knowl-
edge, this is the first study to analyse the spatial and temporal vari-
ations in foot traffic with high spatial resolution for distinct stages 
of the pandemic, including before and after. Our research aimed to 
understand how foot traffic patterns evolved across regions during 

the various stages of the pandemic, while also evaluating the per-
formance of predictive models. These models can be leveraged in 
future studies to evaluate predictive power and relationships 
among features, ultimately informing more effective public health 
and urban planning strategies during similar crises. The insights 
gained from this study also offer valuable guidance for optimizing 
resource allocation in cities and enhancing risk management in 
public safety, helping policymakers better respond to mobility 
changes in future public health emergencies.  

 
 
 

Materials and Methods 
Charleston County, South Carolina (SC), USA offers a repre-

sentative case for studying pandemic-induced changes in foot traf-
fic thanks to its diverse mix of residential, commercial, and tourist 
zones (Charleston County Development, 2023). We used county-
level COVID-19 data obtained from USAFacts.org. that provides 
detailed weekly reports of both COVID19 cases and death num-
bers in Charleston County. This dataset allowed us to correlate 
changes in foot traffic patterns with shifts in the local severity of 
the pandemic, providing meaningful context to our mobility data. 

Spatial and temporal scope 

Study area 
Charleston County, located in south-eastern SC, covers 

approximately 1,358 mile2 (3,517 km2) with a population exceed-
ing 400,000 individuals (U.S. Census Bureau, 2022). The county’s 
geographical coordinates range from 79.267946 to 80.453629 in 
longitude and from 32.493328 to 33.215136 in latitude. For this 
study, we divided the county into 10 district regions based on 
delineations provided by the U.S. Census Bureau, as detailed in 
Table 1. 

Time periods 
To better analyse the impact of COVID-19 on foot traffic in 

Charleston County, we divided the study period into nine distinct 
stages, as detailed in Table 2. These stages were defined based on 
the trends in COVID-19 cases and deaths, as shown in Figure 1, 
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Table 1. Key traits of regions in Charleston County. 

Region                                      Description 

Mount Pleasant                               Predominantly residential, characterized by a scenic suburban lifestyle with a growing community. 
Charleston Downtown                    The most densely populated area, with bustling tourism and a wide range of commercial establishments. 
Kiawah Island-Seabrook Island      Exclusive residential communities dominated by natural beauty with limited commercial development, with sparse  
                                                         population due to seasonal residents. 
West Ashley                                     Diverse suburban residential area, with commercial centres and shopping districts. 
Johns Island                                     Rural residential community with limited commercial presence characterized by spacious properties and natural landscapes. 
North Charleston                             Primarily suburban residential area balancing between residential sparsity and industrial zones, with military bases and 
                                                         some commercial areas. 
Wadmalaw Island                            Sparsely populated residential area with limited commercial development. 
Ravenel-Hollywood                        Quiet, residential region with limited commercial establishments and a mix of housing types with emphasis on residential 
                                                         sparsity and rural living. 
James IslandSuburban community offering a blend of residential neighbourhoods featuring some commercial areas and easy access to 
                                                         outdoor amenities. 
McClellanville                                 Small coastal town with limited commercial activity and residential focus including historic homes surrounded by nature. 



with data sourced from the South Carolina Department of Health 
and Environmental Control (DHEC) and Charleston County 
COVID-19 updates (South Carolina Department of Health and 
Environmental Control, 2023a). The segmentation into stages was 
based on key events in the pandemic, including the initial out-
break, peaks in infection rates, the introduction of restrictions, vac-
cination efforts and the emergence of new variants. This approach 
is consistent with established epidemiological studies and public 
health reports, which similarly segment the pandemic timeline to 
reflect its major phases (Centers for Disease Control and 
Prevention, 2021; Huang, 2021; WHO, 2021). 

Data collection 

Point of interest (POI) data 
Our study utilized POI data, sourced from SafeGraph 

(https://www.safegraph.com/), a leading data company known for 
its rich anonymized location data repository, and Dewey Data 
Platform, a provider of U.S. consumer foot traffic data 
(https://www.deweydata.io/). Our data spans from January 2018 to 
May 2022. SafeGraph accounted for the records prior to February 
2022, while data from the period from February to September 2022 
were sourced from Dewey, which primarily aggregates SafeGraph 
data for academic use. The transition was due to changes in data 
access budget and availability. The POI data include location-spe-
cific information such as latitude, longitude, raw visit counts, and 
median dwell times. These data were collected through mobile and 
web-based sources, utilizing principles of participatory sensing 
(SafeGraph; Tonekaboni et al., 2019; Figure 2). 

Administrative boundaries data 
The delineation of subdivision boundaries within Charleston 

County, such as North Charleston, Charleston Downtown, Mount 
Pleasant, among others, was attained from the US Census Bureau’s 
Topologically Integrated Geographic Encoding and Referencing 
(TIGER) line database (U.S. Census Bureau, 2022). 

Public news and policy updates 
News articles and official announcements serve as indispens-

able resources for understanding the progress and response to the 
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Table 2. Summary of pandemic stages and their descriptions.  

Stage                                   Start Date          Descriptions according to DHEC [18] [19] [23] 

Pre-pandemic [A]                    01-01-2018            Period providing a normalcy baseline for comparison. 
Early pandemic [B]                 03-06-2020            Initial COVID-19 cases in South Carolina and Charleston’s inaugural COVID-19 updates. 
Surge [C]                                  07-01-2020            Sudden increase in COVID-19 cases, with the emergency ordinance requiring face coverings in public 
                                                                                areas. 
Restriction [D]                         10-01-2020            South Carolina’s COVID-19 vaccination plan’s release signifying proactive measures, including mask  
                                                                                wearing mandates, curfew and capacity limits on businesses. 
Initial vaccination [E]              01-06-2021            Phase 1 of vaccination stated in South Carolina; all frontline health workers urged to schedule  
                                                                                vaccine appointments. 
Expanded vaccination [F]       05-03-2021            Phase 2 of vaccination started in SC; appointments available to all instate residents age 16 and above. 
Virus variants [G]                    08-27-2021            Pervasive Delta and Omicron variants in Charleston; above 6,000 daily COVID-19 cases for the first time 
                                                                                since Jan.15.2021 
Final vaccination [H]               01-01-2022            Second and third vaccine doses encouraged. 
Post-pandemic [I]                    05-01-2022            Cases numbers decline and public announcements gradually cease: gradual closure of DHEC-managed  
                                                                                vendor testing sites. 

DHEC, Department of Health and Environmental Control;. 

Figure 1. Weekly New COVID-19 cases and death counts from 
January 2018 to June 2022.

Figure 2. Distribution of walkable points of interest in Charleston 
County, SC, USA.



COVID-19 pandemic at a local level. We gathered pertinent infor-
mation from DHEC (2023b) and the Charleston County website 
(City of Charleston, 2023). 

Data preprocessing 
Our dataset, encompassing nearly 70 attributes, includes data 

from commercial establishments (c), walkable places (wp), and 
general points of interest (g). Given our focus on wp data, which 
consists primarily of geometry data points like enclosed areas (both 
outdoor and indoor), we aimed to track mobility volume in loca-
tions likely to incorporate walking behaviour. While it is acknowl-
edged that some of these locations may involve driving, our prima-
ry interest lies in understanding foot traffic volume rather than 
strictly tracing physical patterns. A rigorous cleaning process was 
necessary to address inconsistencies arising from the dataset’s dual 
origin from the SafeGraph and Dewey platforms. We employed 
systematic harmonization techniques to ensure uniform data density 
across the timeline, providing a solid foundation for analysing foot 
traffic patterns specifically within wp places. During the data 
refinement process, features irrelevant to our research focus were 
excluded. Specifically, columns with minimal variances, such as 
device type and non-North American origin, were removed. 
Additionally, columns unique to data providers, like ’place key,’ 
were omitted due to challenges in accessing original Application 
Programming Interfaces (APIs). High-granularity metrics, such as 
hourly foot traffic and polygon representations, were also bypassed 
to maintain the focus on overarching trends. We used geocoding 
techniques, including the Point-in-Polygon method (Longley et al., 
2015), to address spatial data inconsistencies by verifying and cor-
recting geographic labels against the TIGER/Line shapefile. This 
process ensured that all data points were accurately aligned with 
Charleston County’s official boundaries. 

Feature engineering 
In preparing the data for analysis, we focused on enhancing 

geographic accuracy and standardizing labels. The ’city’ column, 
which initially contained discrepancies and colloquial names, was 
refined by cross-referencing longitude and latitude coordinates 
with the TIGER/Line shapefile. This ensured that each data point’s 
location was correctly aligned with official designations, enhanc-
ing the dataset’s reliability. 

Outlier detection was another important aspect of feature engi-
neering. While the Interquartile Range method flagged locations 
like Charleston International Airport as outliers due to high foot 
traffic, these were retained and contextualized as genuine reflec-
tions of urban dynamics. We also established ‘Stage 0’ as a pre-
COVID baseline, which was essential for standardizing foot traffic 
counts across different stages of the pandemic. Categorical fea-
tures such as city, street name, and location name were label-
encoded. Missing values for street names and region names were 
filled in based on longitude, latitude and place names, ensuring 
completeness and accuracy in the dataset. 

Model construction 
For the model construction, the dataset was split into training 

and testing sets, with 70% of the data used for training and 30% for 
testing. This split allowed for sufficient data to train the models 
while reserving a portion to evaluate their generalization perfor-
mance. To ensure robust model evaluation, we performed a 5-fold 
cross-validation, where the dataset was divided into five parts, with 
each part used for testing, while the others were used for training. 

This method helped to reduce potential bias and provided a more 
accurate assessment of model performance. The primary objective 
was to predict the visit counts of a location within a week, using 
independent variables such as longitude, latitude, region name, 
street name, date and location. Multiple models were considered in 
this analysis, including Random Forest, Decision Tree, K-Nearest 
Neighbour (KNN), Gradient Boosting, Lasso and Linear 
Regression. Each model’s performance was evaluated based on its 
ability to accurately predict weekly visit counts, with a particular 
focus on minimizing prediction errors and maximizing R2 values. 

 
 
 

Results 

Foot traffic dynamics 
Our study revealed that the COVID-19 pandemic significantly 

impacted the foot traffic dynamics within Charleston County as 
indicated by the colour legend in Figures 3 and 4. Prior to the pan-
demic, foot traffic was generally consistent across various subdivi-
sions, maintaining steady levels in each area. However, the onset 
of the pandemic marked a notable decrease in foot traffic across all 
subdivisions. Despite this initial decrease, foot traffic gradually 
began to show signs of recovery, eventually returning to pre-
COVID levels, and in some instances, surpassing them. 
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Figure 3. Data flowchart. 
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Pre- and early pandemic stages 
During the pre-pandemic stage, foot traffic across all regions 

remained stable, with standardized average weekly visit counts 
centered around zero, reflecting deviations from a normalized 
baseline rather than actual visit numbers. As we transitioned into 
the early pandemic stage, there was a decline in movement due to 
public health precautions. At 40% below pre-pandemic levels, 
downtown Charleston experienced the largest drop in foot traffic, 
while Mount Pleasant, North Charleston, West Ashley and James 
Island experienced about a 20% decline. However, other areas, 
such as McClellanville, Ravenel-Hollywood, and Kiawah Island-
Seabrook Island had minimal changes. 

Surge and restriction stages 
During the surge phase, foot traffic patterns varied by location. 

Downtown Charleston and West Ashley experienced substantial 
reductions, falling to 40.2% and 30.7% below pre-pandemic lev-
els, respectively. In contrast, areas such as Kiawah Island-
Seabrook Island maintained relatively stable traffic, with changes 
ranging from a 9.1% increase to a 21.1% increase compared to pre-
pandemic levels. The restriction phase brought an additional 
decline in foot traffic across all cities relative to the surge phase, 
although vaccination efforts began to show signs of recovery in 
foot traffic volume. 

Vaccination and virus variants stages 
Foot traffic increased consistently across cities during this peri-

od. North Charleston experienced an increase of approximately 
4.9% than restriction stage during the initial vaccination stage, fol-
lowed by a 5.3% rise from initial vaccination stage to expanded vac-
cination stage. Downtown Charleston experienced a significant rise, 
approaching pre-pandemic levels. Despite this recovery, the variants 
stage introduced a minor decline in foot traffic in various regions. 

Post pandemic stage 
Many regions, particularly Downtown Charleston and West 

Ashley, experienced notable increases in foot traffic in the post-
pandemic stage. Downtown Charleston and West Ashley reached 
levels 70.0% and 39.6% above pre-pandemic levels, respectively. 
Conversely, McClellanville showed a more modest recovery, with 
traffic around 9.0% above pre-pandemic levels. North Charleston 
and James Island faced difficulties, with traffic reaching only 14% 
and 10% below pre-pandemic levels. 

Dwell time alterations 
The COVID-19 pandemic significantly altered the median 

dwell time in various subdivisions of Charleston County, as shown 
in Figure 5. For this analysis, data from Wadmalaw Island - a rural, 
sparsely populated area dominated by agricultural land use and 
limited commercial development - was excluded due to identified 
irregularities and consistently low foot traffic volume. 
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Figure 5. Median dwell time in minutes for each region during the pandemic within Charleston County SC, USA.

Figure 4. Standardized average weekly visit counts during the pandemic for each region within Charleston County, SC, USA. 

                                                                               [Geospatial Health 2025; 20:1363]                                                            [page 217]



Pre and early pandemic stages 
During the early stages, median dwell times decreased noticeably. 

For instance, in Mount Pleasant, the dwell time dropped from 29.0 
minutes in Stage A to 23.0 minutes in Stage B, while in Charleston 
Downtown, it declined from 37.0 minutes to 31.3 minutes. 

Surge and restriction stages 
As the pandemic progressed, some areas adapted by increasing 

their dwell times. The dwell time in Charleston Downtown, for 
instance, rose to 37.0 minutes by Stage B, while West Ashley 
maintained relatively stable times, with minor changes around 31.0 
minutes. 

Vaccination and virus variants stages 
With the onset of vaccinations, median dwell times generally 

stabilized. However, responses varied: Ravenel-Hollywood expe-
rienced fluctuations, peaking at 35.0 minutes in Stage H, while 
Mount Pleasant reached only 31.0 minutes by the same stage. 

Post-pandemic stage 
In the post-pandemic stage, the dwell time in different regions 

diverged. Kiawah Island-Seabrook Island saw a decline to 12.0 
minutes, while Johns Island experienced a significant resurgence, 
increasing its median dwell time by approximately 77%, from 19.2 
minutes to 34.0 minutes. 

Model evaluation 
In evaluating model performance, we utilized several key eval-

uation metrics, including Mean Absolute Error (MAE), Root Mean 
Squared Error (RMSE), Standardized Mean Squared Error 
(SMSE), and R squared (R2). These metrics were selected to quan-
tify prediction errors and assess how well each model captured the 
underlying patterns in the data. Cross-validation was also used to 
minimize potential biases. The results of these evaluation perfor-
mances are presented in Table 3. The Random Forest model out-
performed all others investigated, achieving an MAE of 8.92, indi-
cating precise predictions with minimal error. The RMSE of 13.81 
further demonstrated the model’s effectiveness in reducing large 
prediction errors. Additionally, the SMSE score of 0.21 and R2 

value of 0.88 underscored the model’s ability to explain 88% of the 
variance in the outcome, making it the most reliable model among 
others. While still reasonably accurate with an R2 of 0.74, the 
Decision Tree model exhibited higher errors, with an MAE of 
11.93 and an RMSE of 21.24. The KNN model demonstrated mod-
erate performance, with an R2 of 0.53, MAE of 17.25, and RMSE 
of 26.86 indicating a greater degree of error in its predictions. 
Gradient Boosting and the linear models (i.e. Lasso and Linear 
Regression) performed poorly, with the lowest R2 values and the 
highest errors, reflecting their limited suitability for this predictive 
task. Feature importance analysis of the Random Forest model 
revealed that the encoded location name and encoded city were the 
most significant predictors, with a feature importance score of 
0.308 and 0.175, respectively. This emphasizes the critical role that 
location characteristics play in determining foot traffic patterns. 
Geographical coordinates also emerged as important factors, with 
feature importance scores of 0.183 and 0.174, respectively. 
Temporal variables, including month (0.051), stage (0.038) and 
year (0.027); as well as encoded street names (0.058) and encoded 
sub-county name (0.22), were also influential, highlighting the 
combined effect of spatial and temporal elements on foot traffic 
dynamics. 

 
Discussion 

Our analysis based on POI data on foot traffic collected during 
different stages of the COVID-19 pandemic, along with spatial 
data for each region revealed significant variations in foot traffic 
volume and duration across different areas and stages of the pan-
demic. The predictive models, particularly the Random Forest 
model, demonstrated strong performance, with feature importance 
analysis highlighting the considerable influence of geographical 
features of the city indicating that foot traffic dynamic is highly 
region-specific. These results thus reinforce the need for policies 
that are tailored to the unique characteristics of each area, informa-
tion that would help public health strategies and urban planning to 
better manage the impact of future, similar crises. 

The superior performance of the Random Forest approach like-
ly stems from our dataset’s non-linear and heterogeneous nature. 
Its ensemble structure—that combines multiple decision trees 
trained on different subsets of data and features—effectively 
reduces variance and fits well with our data, which span a long 
period and reflect region-specific and continuous fluctuations in 
visit counts. Despite rigorous data cleaning and minimal extreme 
outliers, the wide value range of dataset and local variability pose 
modelling challenges that Random Forest was particularly effec-
tive in handling. In contrast, Gradient Boosting underperformed, 
which was most likely due to the sequential learning process. 
Given the shifting nature of foot traffic during a multi-stage pan-
demic, boosting may result in overfit with regard to short-term 
noise rather than capturing broader trends. Simpler models like 
Linear Regression assume linearity and independence among fea-
tures, which are less suited for the interactive and region-specific 
patterns observed. Similarly, model like KNN scales poorly and 
require sensitive tuning for our large and mixed-type datasets fur-
ther limiting their effectiveness. 

The findings of this study offer a transferable framework for 
understanding mobility dynamics in other midsized urban areas 
during public emergencies. Cities, such as Savannah (Georgia), 
New Orleans (Louisiana), Nashville (Tennessee) and St. Augustine 
(Florida), share similarities with Charleston in terms of their 
reliance on foot traffic and tourism (Glaeser, 2011). Extending this 
methodology to other metropolitan areas could inform practical 
policy applications particularly during public health crises. For 
instance, understanding how mobility patterns fluctuate in differ-
ent urban contexts can inform strategic placement and scheduling 
of vaccination sites, optimize emergency response services, and 
identify high-risk zones based on delayed mobility recovery. These 
insights are especially valuable when governments must allocate 
limited resources under tight timeframes. Understanding regional 
differences in foot traffic can help avoid both “resource starvation” 
in underserved areas and “waste” in locations with low demand, 
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Table 3.  Model evaluation metrics. 

Model                                  MAE         RMSE       SMSE R2 

Random forest                             8.92              13.81             0.21 0.88 
Decision tree                              11.93             21.24             0.31 0.74 
K-Nearest neighbours                17.25             26.86             0.45 0.53 
Gradient boosting                      20.88             29.45             0.67 0.33 
Lasso                                          24.71             32.00             0.75 0.18 
Linear regression                       24.15             32.93             0.80 0.19 
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enabling need-based distribution strategies Liang et al., 2023). 
Extending this approach can help to better understand the spatial 
disparities and behavioural shifts triggered by public health crises 
in tourist-dependent urban environments. 

Compared to existing literature, such as studies by Warren & 
Skillman, 2020 and Pepe et al., 2020, which primarily focused on 
macro-level mobility trends or national contexts, our study offers a 
more granular, sub-county level analysis. While prior research has 
explored reductions in mobility during the pandemic, our study 
differentiates itself by examining spatial and temporal variations in 
foot traffic within a mid-sized county over distinct stages of the 
pandemic. Additionally, by incorporating both visit counts and 
median dwell times, our study provides a more nuanced view of 
how different regions responded to various stages of the pandemic. 
Different responses across neighbourhoods highlight the need for 
tailored city planning. Areas with significant foot traffic drops, 
such as Downtown Charleston and Wadmalaw Island, might bene-
fit from better-located healthcare services in future crises (Pan A. 
et al., 2020). Temporary facilities, like drive-through testing sites, 
could be considered in areas with decreased mobility to enhance 
access to essential services (Noland et al., 2023). Moreover, the 
shifts in mobility suggest that policy measures may have varied 
impacts. Areas like McClellanville and Ravenel-Hollywood, with 
stable foot traffic, might need more localized strategies or stricter 
regulations (Hsiang et al., 2020). A tiered approach to restrictions 
based on local conditions might help balance public health and 
economic activity more effectively. Furthermore, mobility changes 
may reflect different responses to public health messaging (Bavel 
et al., 2020). Thus, some areas, like Kiawah Island-Seabrook 
Island, might be more responsive, suggesting effective messaging. 
Tailored communication to address local concerns and promoting 
responsible behaviour during high-mobility periods could be 
important for future public health efforts (Chang et al., 2021). 

Despite the strengths of mobility data from SafeGraph and 
Dewey, several equity concerns warrant careful attention since 
they are derived from smartphone-based application usage, which 
introduces selection bias. Previous studies have shown disparities 
in mobile device ownership and app usage across age, race and 
socioeconomic status (Conston et al., 2021; Li et al., 2023). Older 
adults, lower-income individuals and minority populations—
groups often at greater health risk during public crises—are under-
represented in such datasets. Moreover, sampling rates have histor-
ically skewed higher in urban areas compared to rural ones (Li et 
al., 2023). Still, at finer spatial resolutions, such as census tracts or 
block groups, data representativeness becomes less reliable, espe-
cially in areas with poor network coverage or limited device pene-
tration. These gaps pose challenges in using mobility data to 
inform public health decisions, particularly when allocating 
resources like testing or vaccination sites as they may inadvertent-
ly overlook communities most in need. 

Within Charleston County, mobility disparities may be espe-
cially pronounced due to stark geographic and demographic 
divides. Predominantly white areas like Johns Island contrast 
sharply with majority-Black areas, such as parts of North 
Charleston, where socioeconomic vulnerabilities are more concen-
trated. In these under-resourced neighbourhoods, low-income res-
idents—especially essential workers—may have limited flexibility 
to reduce mobility during public health crises, placing them at 
greater risk. As race and income are strongly correlated with 
mobility patterns during emergencies (Roy et al., 2021; Deng et 
al., 2021), future research should integrate demographic indicators 

to better understand and mitigate these disparities. Moreover, 
resource allocation and public communication strategies should 
not solely rely on mobility data, which reflects only digitally con-
nected populations. Underrepresented areas may require interper-
sonal outreach—such as extended in-person announcements or 
door-to-door communication—to ensure equitable access to criti-
cal information and services. While digital platforms dominate 
modern communications, intentional efforts must remain in place 
to support communities with limited access to technology or for-
mal information networks (Coston et al., 2021). 

Limitations and future works 
This study has several limitations that warrant consideration. 

First, the study relied on a single data source, which may limit the 
scope of the analysis. Incorporating additional data sources, such 
as mobility data from different providers or integrating real-time 
traffic information, could enhance the robustness of the findings. 
Second, while the analysis focused on Charleston County, the find-
ings may not fully generalize to other regions with different demo-
graphic, geographic, or economic characteristics. Expanding the 
study to include multiple regions could provide a more compre-
hensive understanding of foot traffic dynamics across diverse 
urban areas. Additionally, handling incomplete data remains a 
challenge, and more advanced techniques, such as imputation 
methods could be applied to address missing values and improve 
data completeness. Future work could also explore the influence of 
external factors, such as local news events, public health 
announcements, or traffic disruptions, to provide a more nuanced 
understanding of public behaviour during crises. Incorporating 
such factors would allow for better contextualization of foot traffic 
patterns and improve the predictive power of the models. 

 
 
 

Conclusions 
Foot traffic is a vital indicator of urban health, economic activ-

ity and social engagement, with patterns that can shift dramatically 
in response to events like pandemics. Conducted in a representative 
midsize U.S. county, this study offered an in-depth analysis of foot 
traffic dynamics across diverse regions throughout various stages of 
the COVID-19 pandemic. Significant variations in foot traffic pat-
terns were observed, with some areas showing marked reductions, 
others increases, sometimes even surpassing pre-pandemic levels. 
These fluctuations underscore the inherent adaptability and hetero-
geneity across different types of communities, extending from 
densely populated urban centres to more secluded rural and subur-
ban locales. The study enhances our understanding of how individ-
uals’ time spent at various locations varies, emphasizing the need 
for region-specific crisis management and urban planning interven-
tions. The Random Forest model exhibited remarkable predictive 
accuracy (R2=0.88) in predicting foot traffic dynamics. 
Collectively, these results offer valuable contributions to city plan-
ning, policy-making, and public health suggesting a framework for 
targeted interventions and resilience planning for future challenges. 
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