
Abstract 
The malaria burden remains largely concentrated in sub-

Saharan Africa. South Africa, a country within this region, has 
made significant progress toward malaria elimination. However, 
malaria continues to be endemic in three of its nine provinces: 
Limpopo, Mpumalanga, and KwaZulu-Natal (KZN), which are 
located in the northern part of the country and share borders with 
Botswana, Zimbabwe, and Mozambique. This study focuses on 
KZN, where district municipalities report monthly malaria cases 
ranging from zero to 8,981. Fitting Bayesian zero-inflated models 
in the INLA R package, we assessed the effects of various climate 
and environmental variables on malaria prevalence and spatio-tem-
poral transmission dynamics from 2005-2014. Specifically, we 
analyzed precipitation, day and night land surface temperature, the 
Normalized Difference Vegetation Index (NDVI), the Enhanced 
Vegetation Index (EVI) and elevation data for KZN local munici-
palities. Our findings indicate that the best model was the Zero-
Inflated Negative Binomial (ZINB) and that at 95% Bayesian 
Credible Interval (CI), NDVI (0.74; CI (0.95, 3.87) is significantly 
related to malaria transmission in KZN, with the north-eastern part 
of the province exhibiting the highest risk of malaria transmission. 
Additionally, our model captured the reduction of malaria from 
2005 to 2010 and the following resurgence. The modelling 
approach employed in this study represents a valuable tool for 
understanding and monitoring the influence of climate and envi-
ronmental variables on the spatial heterogeneity of malaria. Also, 
this study reveals the need to strengthen the already existing cross-
border collaborations to fortify KZN’s malaria elimination goals. 

 
 
 

Introduction 
Malaria remains one of the most problematic vector-borne dis-

eases in Africa despite long-term efforts fighting the disease. In 
2023, the World Health Organization (WHO) reported 263 million 
malaria cases in the world, an increase of 11 million compared to 
2022 and to 14 million in 2021 (WHO, 2024). Despite efforts 
eliminate this disease from its territory, South Africa has not been 
exempt from the rising case numbers, with most cases occurring 
along its northern borders with Mozambique, Zimbabwe and 
Botswana (Maharaj et al., 2019; Tsoka-Gwegni, 2022). One of 
these initiatives is the Southern Africa Development Community 
(SADC) Malaria Elimination Eight initiative (E8) established in 
2009 with Angola, Botswana, Eswatini, Mozambique, Namibia, 
South Africa, Zambia and Zimbabwe with the goal to eliminate 
malaria from the 8 member countries by 2030 (Sikaala et al., 
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2024). The northern regions of South Africa are the primary areas 
for malaria transmission in the country (Maharaj et al., 2019). This 
region includes the provinces of Limpopo, Mpumalanga, and 
KwaZulu-Natal (KZN), which share borders with Mozambique, 
the country that is the fourth major contributor of malaria cases on 
the African continent (WHO, 2023). The malaria parasite respon-
sible for over 90% of malaria cases in the province is Plasmodium 
falciparum, with Anopheles gambiae, An. arabiensis, and An. 
funestus the major malaria vector species (Zianni et al., 2013). 
Currently, KZN has only a 2% annual incidence of malaria cases, 
most of them in people from Mozambique who temporarily come 
to the informal border market (Raman et al., 2020). This province 
experiences many imported cases driven by both formal and infor-
mal transport networks between South Africa and Mozambique. 
The continuous introduction of malaria into receptive areas by 
human population movement is a key factor in the failure of previ-
ous elimination campaigns (Tatem et al., 2013). Besides human 
population movement at the border of KZN, it is important to con-
sider the spatio-temporal delineation and prediction of malaria 
transmission, using relevant climate and environmental variables 
that could be key for malaria management programmes when 
shown as empirical maps of malaria risk and transmission. 

Climate is a very important determinant of the spatio-temporal 
heterogeneity of malaria risk and transmission (Gao et al., 2012; 
Garske et al., 2013; Githeko, 2009; Midekisa et al., 2015; Yé et al., 
2007; Zayeri et al., 2011; Zinszer et al., 2015). Temperature plays 
an integral role via complex interactions on malaria vector popula-
tion dynamics and in parasite development within the vector 
(Craig et al., 1999; Mordecai et al., 2019; Villena et al., 2022; 
Villena et al., 2024b). Rainfall is another key component that con-
tributes to malaria; its effect on malaria vector proliferation and 
malaria transmission intensity notably varies with rainfall amounts 
(Cairns et al., 2012; White et al., 2011; Zayeri et al., 2011; Villena 
et al., 2024b). 

While temperature and precipitation are widely acknowledged 
as major drivers of malaria prevalence, additional indicators, such 
as the Normalized Difference Vegetation Index (NDVI) and the 
Enhanced Vegetation Index (EVI) can also influence malaria 
dynamics by their quantification of vegetation greenness. For 
instance, studies have found that vegetation indices are positively 
correlated with mosquito abundance, mosquito community assem-
bly and malaria prevalence (DanturJuri et al., 2015; Ferraguti, et 
al., 2016; Ferraguti et al., 2024). Other important geographic and 
environmental variables that have been widely reported in the lit-
erature for their influential role in malaria transmission are eleva-
tion, relative humidity, land use and land cover (Cohen et al., 2008, 
2010; Li et al., 2013; Arab et al., 2014; Stefani et al., 2013; Zayeri 
et al., 2011).  Furthermore, non-climatic factors, including human 
population movement, urbanization, socio-economy, demography 
and malaria interventions are also very important variables that 
impact malaria transmission dynamics (Ebhuoma et al., 2017; 
Ernst et al., 2009; Tatem et al., 2013; Tatem et al., 2008; Tusting 
et al., 2013).  

In this study, we explored the relationship of climate and envi-
ronmental variables to malaria prevalence in KZN. Prevalence data 
had been collected in 14 local municipalities from 2005 to 2014. 
These data are the most extensive available on malaria prevalence 
in KZN but pose challenges for analysis due to the high number of 
non-malaria cases, since the data come from an area that it is in the 
process of malaria elimination. Reliable inferences and prediction 
of the spatio-temporal distribution of diseases depend on selecting 

an appropriate distribution for zero-inflated data. A flexible model 
that can handle the over-dispersion resulting from the excess zero 
values and still take account of the non-zero values is required 
(Neelon et al., 2010). It is important that the zero values are con-
sidered in spatio-temporal modelling when dealing with a disease 
known for its spatio-temporal heterogeneity, including absence of 
cases increasingly observed in areas with progressing malaria 
elimination campaigns. This often presents valuable information 
related to the disease, such as the detection rate as well as the 
occurrence and knowledge of the disease by the population (Arab, 
2015; Arab et al., 2008). Varieties of zero-adjusted mixed models 
are available and they include the zero-inflated negative binomial 
(ZINB) model, Zero-Inflated Poisson (ZIP) model, Poisson hurdle 
model, and the negative binomial hurdle model (Arab, 2015; Arab 
et al., 2008; Chipeta et al., 2014; Neelon et al., 2010; Villena et al., 
2024a). To address our research questions, we modelled and 
assessed the effects of precipitation, day and night Land Surface 
Temperature (LST), NDVI, EVI and elevation on malaria preva-
lence in the province of KZN. To fit our models, we used a set of 
various Bayesian spatio-temporal models that can handle zero-
inflated malaria prevalence data such as the ZINB, ZIP, Poisson 
and negative binomial hurdle models (Kiani et al., 2024; Villena et 
al., 2024a). Our models accurately modelled zero-inflated malaria 
prevalence data against various environmental factors, providing a 
robust framework for understanding and forecasting malaria 
prevalence in KwaZulu-Natal, as well as across South Africa. This 
approach offers critical insights that can inform and enhance effec-
tive malaria management and prevention strategies, particularly in 
bordering regions with varying malaria prevalence gradients, 
toward the goal of malaria elimination. 

 
 
 

Materials and Methods 

Study area 
The study took place in the three northern district municipali-

ties (Umkhanyakude, Zululand and Uthungulu) in KZN. 
Umkhanyakude includes Jozini, uMhlabuyalingana, Big Five 
Hlabisa and Mtubatuba; Zululand eDumbe, uPhongolo, Abaqulusi, 
Ulundi and Nongoma; and Uthungulu Nkandla, Mthonjaneni, 
uMfolozi, uMhlathuze and uMlalazi (Figure 1). KZN is bordered 
by The Kingdom of Swaziland and The People’s Republic of 
Mozambique in the North. It has a long shoreline along the Indian 
Ocean in the East and stretches down south-eastwards. The region 
possesses a sub-tropical climate with the majority of malaria inci-
dence observed during October to May (the rainy months), with a 
seasonal peak usually in January and March (Moonasar et al., 
2012). The average annual rainfall ranges from 500 to 2,000 mm. 
Along the coastal areas, the summer temperatures are between 
24°C to 32°C, and the mean winter temperature about 20°C. The 
Midlands generally possess a mild climate with relatively high 
summer rainfall and dry winters. The elevation of the region varies 
from sea level to over 3,000 m. The vegetation of the study area 
comprises coastal forest and thornveld along the coast. Towards 
the inlands, other forms of grassy vegetation takes over: lowveld, 
highland sourveld, Natal sour sandveld, valley bushveld and tall 
grassveld. Lowveld and thornveld characterise the low-lying hot 
and dry regions of northern KZN (Camp, 1999). 
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Data 

Malaria 
Malaria case data from January 2005 to December 2014 were 

obtained from the malaria control program of KZN. In South 
Africa, when a suspected malaria case presents, the blood smear of 
the suspected case is tested for Plasmodium using either 
microscopy or a rapid diagnostic test by a certified health officer 
(South Africa National Department of Health, 2012). If a positive 
result is obtained, patient details including patient demographics, 
the health facility where the case was reported, symptoms, malaria 
test results, diagnosis and treatment administered are entered into 
a malaria case notification form and reported to the relevant 
provincial malaria control programme. The details of malaria case 
are then fed into the malaria information system (South Africa 
National Department of Health, 2012). The distribution of malaria 
cases in KZN during the period of the study is characterised by an 
excess of areas with zero cases (about 81%) (Figure 2). 

Environmental and geographical variables 
For each local municipality, we aggregated monthly and pen-

tad, global, gridded precipitation, day and night LST, NDVI and 
EVI data from 2005 to 2014. Additionally, we included gridded 

elevation data in our models (Table 1). The raster datasets (i.e. 
Precipitation, NDVI, Elevation), which have different spatial reso-
lutions, were imported into R version 4.2.2. and resampled if need-
ed (Johnson et al., 2021). 

Data analysis and models 
A cross-correlation analysis was carried out to identify the suit-

able predictor variables to be put into the spatio-temporal models 
to guide against multicollinearity in the models and improve the 
model fit. We explored drivers of malaria transmission across a 
spatio-temporal gradient in KZN. Our malaria case data had exces-
sive zeroes beyond what a common count distribution can fit, such 
as Poisson or negative binomial. For this study, we compared zero-
inflated and hurdle models, which have been developed to handle 
zero-inflated data sets for count models like Poisson and the nega-
tive binomial. We fitted four models, the ZIP, the ZINB, the 
Poisson hurdle model and negative binomial hurdle model 
(Chipeta et al., 2014; Arab, 2015; Villena et al., 2024a).  

The ZIP model  
This is a combination of a Poisson distribution part (non-zero 

component) and a point mass at zero (zero component). The zero 
data from an observation emerges from both the point mass at zero 

                 Article
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Figure 1. Map of the study area showing the malaria-endemic areas in KwaZulu-Natal, South Africa.



and the Poisson distribution. In the ZIP model, the zero component 
assumes a probability pi and the Poisson distribution assumes a 
probability 1 - pi where i = 0, 1, 2, . . . , n. Thus, the ZIP model can 
be written as (see e.g., Chipeta et al., 2014): 

 

                                      Eq. 1 
                                                                                                

                                   
Eq. 2

 
 

where pi and λi denote the probability of zero outcomes and the 
Poisson mean of non-zero outcomes, respectively; and k denotes 
the value of possible none-zero outcomes. The effects of the pre-
dictors on the count distribution in a ZIP model can thus be evalu-
ated by equations 3 and 4. The probability of excess zeros should 
be modelled employing a logistic regression as given in Eq. 3, 
while the impact of predictors on count data without the excess 
zeros can be modelled using Poisson regression presented in equa-
tion 4. The ZIP regression model links p and λ to the predictors, 
i.e.: 

 

                                      Eq. 3 
 

                                      Eq. 4 
 

where log is the˙ natural logarithm function and the logit function 
defined as: 

                                                

The ZINB model  
This model can be described as a mixture of a mass of p for the 

excess zeros and a mass of (1 -pi) for the negative binomial distri-
bution, where 0 ≤ pi ≤ 1. Thus, the ZINB model is written as (see 
e.g., Chipeta et al., 2014): 

 

                                      Eq. 5 

 

               
Eq. 6

 
 

where i = 1, 2, . . . , n, xi and zi are d- and q- dimensional vectors of 
predictors linked to the ith subject and β and γ the corresponding 
vectors of the regression parameters, respectively. Also, pi denotes 
the probability of zero outcomes, Γ(.) is the Gamma function (i.e., 
for integer x,  Γ (x) =  (x - 1)! Γ and l denote model parameters 
linked to mean and variance such that E(Y)=  Γl and Var(Y)=  Γl 
(1+). 

The Poisson Hurdle model 
This model represents a two-part approach. The hurdle or 

logistic regression part models the zero vs. non-zero counts to 
obtain the zero probabilities. The second part is the zero truncated 
Poisson or regression part used to model the non-zero counts. 
Thus, the Poisson Hurdle model can be written as described by 
Chipeta et al., (2014): 

 

                               
Eq. 7

 

                            
Eq. 8
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Table 1.  Environmental, and geographical variables. 

Variable           Description                                                                                                         Temporal          Spatial                Source 
                                                                                                                                                       resolution        resolution                    

Precipitation           Pentad global gridded precipitation                                                                                                        Month             2.5 X 2.5 degree         NOAA-NCEP 
LSTD                      Radiated daytime temperature at the Earth’s surface                                                                              8-day                       1 km                USGS-LP DAAC 
LSTN                      Radiated nighttime temperature at the Earth’s surface                                                                           8-day                       1 km                USGS-LP DAAC 
NDVI                      Measure of chlorophyll content as amount of vegetation ‘greenness’                                                  16-day                     250 m               USGS-LP DAAC 
EVI                          Quantified vegetation ‘greenness’ corrected for atmospheric conditions and canopy background     16-day                     250 m               USGS-LP DAAC 
Elevation              Expressed as the Digital Elevation Model (DEM)                                                                                              1 km              NOAA-GLOBE 
NDVI, the normalize difference vegetation index; EVI, the enhanced vegetation index; NOAA-NCEP, National Oceanic and Atmospheric Administration – National Centers for 
environmental Prediction; USGS-LP DAAC, U.S. Geological Survey – Land Processes Distributed Active Archive Center; NOAA-GLOBE, National Oceanic and Atmospheric 
Administration – Global Land One-km Base Elevation.  

Figure 2. The counts of malaria cases in uMkhanyakude, 
uThungulu, and Zululand districts, South Africa (2005-2014).



 
where symbols are those given above, with pi modelling all zeros. 
For this model, logistic regression should be employed in model-
ling the probability of zeros (Eq. 3), while the Poisson regression 
is the choice model to evaluate the impacts of predictors on posi-
tive count data (Eq. 4). 

 

                            Eq. 9 

 
Eq. 10

 
 
The logistic regression should be employed in modelling the 

probability of zeros (Eq. 3), while the negative binomial regression 
is the choice model to evaluate the effects of predictors on count 
data (Eq. 4). 

Bayesian fitting of the spatio-temporal model  
The Bayesian inference intuitively supports a hierarchical 

model approach, the implementation of which allows suitable data 
sampling variability, parameter uncertainty and likely spatial and 
temporal dependencies. Therefore, the effects of spatial and tem-
poral dependencies are accounted for in the developed zero-inflat-
ed models. To this end, we formulated a hierarchical model for 
count data Yi ’s (for i =1, ..., n ) and predictor variables  Xi, ..., Xp  
following three modelling stages: i) data model, ii) process model 
and iii) parameter model (Arab, 2015).  

i) The data model is written as: 
 

 
Eq. 11

 
 
Let P (yi|i, p) represent the probability mass function of a zero-

inflated or hurdle distribution with model parameters 𝜃i ’s and mix-
ture probability p. 

ii) The process model is written as: 
 

 
Eq. 12

 
 

where S(.) represents a function specified based on the conditions 
on 𝜃i’s; βi the spatial regression coefficients for the specified pre-
dictors Xi, ..., X p; 𝛾i noise measurement; parameters 𝛾 = (𝛾1, …., 
𝛾n) the noise measurement based on the spatial dependence such 
that: 

 

 
Eq. 13

 

 Eq. 14 
 

where  represents the covariance matrix that explains the measure 
of the relationship each observation has with its neighbours (i.e. 
the spatial dependence of the data) and φ a function of the strength 
of spatial relationship over spatial locations.  With  defined based 
on the geostatistical structure of the data and the spatial correlation 
specified based on an exponential covariogram model such that: 

 

 Eq. 15 
 

where a symmetric spatial correlation is assumed based on the 
Euclidean distance between data points d and a spatial range 
parameter, with φ a function of the strength of spatial relationship 
over spatial locations.  

iii) The parameter model: 
The Bayesian approach regards parameter models as the prior 

distributions for the set of unknown parameters (e.g., βi’s, τ and σ2). 
This prior distribution and the traditional likelihood are combined 
to obtain the posterior distribution of the parameter of interest 
based on the statistical inference using Integrated Nested Laplace 
Approximation (INLA) via the Gaussian Markov Random Field 
(GMRF) (Blangiardo & Cameletti, 2015; Held et al., 2010; Rue et 
al., 2009). In this model, a flat non-informative prior distribution 
with a small mean and large variances were specified to all the 
unknown parameters. Refer to Ntzoufras (2008) and Gelman and 
Hill (2006) for more reviews on prior determination processes.  

The cross-correlation matrix in Table 2 shows high correlation 
between LSTN and Log-Precip, LSTN and day LSTD, NDVI and 
EVI and night LSTN and EVI. Thus, LSTN and EVI were dropped 
so that a parsimonious model can be achieved, while Precipitation, 
LSTD, NDVI and Elevation were subsequently employed in the 
formulation of the spatio-temporal models. We fitted each spatio-
temporal model using the R-INLA package (https://www.r-
inla.org/; Rue et al., 2099) in R (R Development Core Team, 
2017). INLA is a method for approximate Bayesian inference that 
supports the evaluation of posterior margins in hierarchical models 
with latent random processes (Blangiardo & Cameletti, 2015; Held 
et al., 2010; Gosoniu et al., 2009; Rue et al., 2009). The best model 
was selected based on the values of the deviance information cri-
terion (DIC) and the Watanabe-Akaike Information Criterion 
(WAIC) as mentioned by Spiegelhalter et al. (2002). Using INLA 
and Stochastic Partial Differential Equations (SPDE), we built a 
mesh made up of triangles across the area of interest (study area) 
to evaluate the spatial fields (Figure 3). 

 
 

                 Article

Table 2.  Correlation matrix of the predictor variables. 

                                     Log-Precip            Log-Elev                    LSTD                  LSTN                         NDVIccc                          EVI 

Log-Precip                            1.00000                    -0.02719                       0.48802                    0.69111                              0.50125                             0.54121 
Log-Elev                                                                 1.00000                       -0.08536                  -0.31626                             -0.24264                            -0.28981 
LSTD                                                                                                            1.00000                    0.64380                             -0.02312                            0.07314 
LSTN                                                                                                                                             1.00000                              0.54455                             0.60094 
NDVI                                                                                                                                                                                      1.00000                             0.94630 
EVI                                                                                                                                                                                                                                    1.00000 
Log-Precip, Log precipitation; Log-Elev, Log elevation; LSTD, daily land surface temperature; LSTN, land surface temperature at night; NDVI, Normalised difference vegetation 
index; EVI, Enhanced vegetation Index. 

[page 202]                                                             [Geospatial Health 2025; 20:1370]                                                                               



Results 

Model comparisons 
Based on DIC and WAIC values from the models (Table 3), the 

ZINB model (DIC = 5739.18; WAIC = 5762.25) was the best fit to 
our zero-inflated malaria prevalence dataset compared to the other 
three models. The second-best model was the negative binomial 
hurdle model (DIC = 6077.98; WAIC = 6083.60). The Poisson hur-
dle model had the weakest performance (DIC = 46053.40; WAIC 
= 66522.79). We, therefore, focused on the spatio-temporal ZINB 
model using NDVI as the only predictor variable in subsequent 
parts of the results and discussion sections (Table 4).  

Posterior inference 
The ZINB analysis results in Table 3 indicates that at 95% CI, 

NDVI is significant and lies within positive values. This implies 
that the regression parameter NDVI significantly increases the 
zero-inflation probability i.e. they are more likely to correspond to 
excess zeros. In other words, higher probability of observing a zero 
count of malaria is associated with lower NDVI (0.74; 95% CI 
(0.95, 3.87), while Precipitation, LSTD and Elevation were not sta-
tistically significant.  

The map of posterior means (Figure 4A) indicated a high risk 
of malaria morbidity in the northern central and north-eastern parts 
of the study area including the local municipalities of Jozini, 
Umhilabuyalingana, Big Five Hlabisa in the district of 
Umkhanyakude; uPhongolo, Nongoma, Ulundi in the district of 
Zululand; and uMlalazi in the district of Uthungulu. The areas with 
lowest malaria risk were the local municipalities of Mtubatuba and 
Mfolozi. The map of posterior standard deviations (Figure 4B) 
indicates the varying level of uncertainty across the province. The 
highest posterior errors across the province are at the periphery or 
borders of the local municipalities. 

The temporal random effects (Figure 5) present the estimated 
trend of malaria prevalence with associated 95% prediction inter-
vals for the district municipalities of uMkhanyakude, uThungulu 
and Zululand. We observed a constant decline of malaria preva-

lence from 2005 to 2010, after which there was a resurgence of 
malaria prevalence. The 95% CI for prediction provided informa-
tion about the uncertainty around the low and declining estimates 
of malaria prevalence in the study area.  

Summary outcome 
This study provided evidence that there is still high risk of 

malaria transmission in its northern district municipalities of KZN 
that share borders with the African countries of Mozambique and 
Eswatini. More specifically in the local municipalities of Jozini, 
Umhilabuyalingana, Big Five Hlabisa in the district of 
Umkhanyakude; uPhongolo, Nongoma, and Ulundi in the district 
of Zululand; and in uMlalazi in the district of Uthungulu. Malaria 
surveillance and response must remain a priority, as the achieve-
ment of malaria elimination in KZN is under threat from multiple 
factors such as malaria importation from neighbouring countries 
that share borders with KZN (Raman et al., 2020), climate change 
(Caminade et al., 2014), insecticide resistance (Zinszer and 
Talisuna, 2022), and the expansion in range of the Anopheles 
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Figure 3. INLA/SPDE mesh for the spatial fields.
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Table 3.  Comparison of zero-inflated spatio-temporal models based on their DIC and WAIC values. 

Spatio-temporal Model                                 DIC                                                                          WAIC 

ZINB                                                                      5739.18                                                                                 5762.25 
ZIP                                                                         45910.78                                                                               66275.76 
Negative Binomial Hurdle                                     6077.98                                                                                 6083.60 
Poisson Hurdle                                                      46053.40                                                                               66522.79 
DIC, the Deviance Information Criterion; WAIC, the Watanabe-Akaike information Criterion; ZINB, Zero inflated negative binomial; ZIP, Zero inflated Poisson. 

Table 4.  Posterior summary statistics for the zero-inflated negative binomial model for malaria prevalence in KwaZulu-Natal. 

Coefficient estimate               Standard error                     2.5th percentile                              Mean                     97.5th percentile 

Intercept                                                   8.9484                                         -18.5891                                        -0.5214                                17.4483 
Log-Precip                                               0.0763                                          -0.0741                                          0.0762                                  0.2256 
NDVI                                                       0.7411                                           0.9513                                           2.4141                                  3.8656 
LSTD                                                         0.0212                                          -0.0238                                          0.0176                                  0.0595 
Log-Elev                                                  1.5194                                          -3.2153                                         -0.1504                                 2.9024 
Log-Precip, Log precipitation; NDVI, Normalised difference vegetation index; LSTD, daily land surface temperature; Log-Elev, Log elevation. 



stephensi invasive mosquito in Africa (Sinka et al., 2020, Villena 
et al., 2022). The ZINB model was identified as the best model for 
the over-dispersed, excess zeros and the spatio-temporal depend-
encies of the malaria case data in the malarious areas of KZN after 
considering the influence of climate variables. The results of the 
posterior statistics from the ZINB model indicate a significant rela-
tionship between NDVI and malaria cases. In addition, the malaria 
spatio-temporal risk map suggests a functional malaria control sys-
tem that maintains relatively low malaria morbidity across KZN; 
however, the north-eastern part of the province still has a high risk 
of malaria transmission. These results are consistent with malaria 
risk maps developed by the South Africa department of health in 
2007 and 2013 using the geographical distribution of confirmed 
malaria cases (Morris et al., 2013). Thus, improved health manage-
ment strategies and targeted additional interventions are required 
to achieve significant malaria risk reduction amongst the most vul-
nerable areas and populations. 

Discussion 
To adequately address the issue of over-dispersion arising from 

the excess zero or zero-inflated spatio-temporal malaria data there 
is need for using appropriate models such as zero-inflated models 
and/or hurdle models. In the literature some authors find that ZINB 
models are the best to deal with zero-inflation data while others 
find that the ZIP or hurdle models are the best. For example, the 
study of Villena et al. (2024a) found that the ZINB was the best 
model to assess zero-inflated abundance of Culex quinquefasciatus 
mosquitoes which transmit avian malaria in honeycreepers in 
Hawaii. Also, a Bayesian geostatistical Zero-Inflated Binomial 
(ZIB) climatic model formulated by Giardina et al. (2012) suggest-
ed a significant relationship between NDVI and night with malaria 
in Senegal, while a study by Kasasa et al. (2013), showed how two 
different zero-adjusted models were needed to understand the 
malaria transmission patterns in a small area in Northern Ghana. 
The Bayesian geostatistical ZIB and ZINB approaches were used 
to evaluate the sporozoite rate and mosquito densities, respectively 
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Figure 4.  Posterior mean (A) and posterior standard deviation (B) of malaria prevalence in KwalaZulu-Natal, South Africa during 2005-2014.

Figure 5.  Posterior mean (blue line) and 95% credible intervals (red lines) of malaria prevalence in KwalaZulu-Natal, South Africa during 
2005-2014.
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revealing that a significant spatio-temporal heterogeneity of ento-
mological inoculation rate estimates and malaria transmission 
intensity existed in the small area (Kasasa et al., 2013). 

The ZIP model, on the other hand, was a suitable model for 
mapping malaria incidence data with excess zeros in Afghanistan 
(Alegana et al., 2014) and Northern Namibia (Alegana et al., 
2013). Similarly, the ZIP model was considered the desirable 
model for developing a spatio-temporal HIV/TB model in South 
Africa’s Northeast (Musenge et al., 2013), and an HIV model in 
New York, USA (Musal and Aktekin, 2013) using mortality data 
with excess zeros. Alegana et al. (2013) also employed a Bayesian 
ZIP approach to model the malaria incidence risk in northern 
Namibia, considering tropical rainfall measuring data on rainfall, 
temperature suitability and EVI data. The multivariate analysis 
revealed that only EVI was significant and the predicted malaria 
risk map suggested that areas bordering Angola and Zambia were 
at the highest risk of malaria transmission. A similar study was 
conducted in Afghanistan, in which the same Bayesian approach 
with climate and environmental variables was used to model the 
incidence of Plasmodium vivax and P. falciparum at the district 
level (Alegana et al., 2014). The multivariate analysis based on the 
P. vivax model revealed that only the temperature suitability index 
was significant, but none of the climatic and environmental vari-
ables were significant based on the P. falciparum model. The pre-
dicted malaria risk map suggested that the eastern and south-east-
ern Afghanistan areas bordering Pakistan were at the highest risk 
of malaria incidence. Other studies compared different zero-inflat-
ed models and the best-fit model was identified by relevant com-
parative measure(s). For instance, Neelon et al. (2010) compared 
the Poisson, Poisson hurdle, ZIP and Zero-altered Poisson models. 
Based on the DIC value and the negative cross-validatory log like-
lihood measures, the ZIP model produced the best fit model. Also, 
Arab (2015) compared the Poisson Hurdle model, ZIP, Poisson 
Hurdle with the probability, Negative binomial Hurdle, ZINB and 
Negative Binomial Hurdle models. In this case, ZIP was reported 
to have the lowest DIC value.  

The ZINB model formulated in this study, suggests that the rel-
evance of NDVI in malaria transmission modelling cannot be 
overemphasised. NDVI can be used to assess the level of green-
ness of a vegetation (Hay et al., 1998; Midekisa et al., 2012), but 
not only that, it can also serve as a proxy for precipitation, near-
surface humidity, and surface water (Hay et al., 1998; Midekisa et 
al., 2012). NDVI has been identified as the most important predic-
tor in malaria transmission modelling across sub-Saharan Africa 
(Ebhuoma & Gebreslasie, 2016). Some studies conducted across 
these countries have shown that increase in vegetation indices can 
be used to predict increase in malaria risk (Gosoniu et al., 2010; 
Nygren et al., 2014; Sogoba et al., 2007). Contrarily, a previous 
study conducted in Senegal (Giardina et al., 2012) showed that an 
increase in NDVI was associated with low malaria risk. The rela-
tionship between NDVI and malaria in this study can be explained 
by the fact that NDVI has constantly been reported to be associated 
with precipitation, near-surface humidity and surface water (Hay et 
al., 1998; Midekisa et al., 2012). However, the strength or form of 
the relationship is dependent on the structure of the ecosystem. For 
this reason, the effect of rainfall in high amounts have on vector 
can also be related to high NDVI values. Although NDVI can pro-
vide information on vegetation intensity, it loses sensitivity over 
denser vegetation. In light of this characteristic, EVI is suggested 
to be a reliable substitute (Huete et al., 2002; Matsushita et al., 
2007; Viña et al., 2004). However, in this study, EVI was dropped 

in the preliminary phase of the analysis to guide against multi-
collinearity. 

The uncertainties attributed to relying solely on climatic and 
environmental determinants to predict malaria disease make it 
challenging for malaria surveillance and intervention efforts (Adu-
Prah & Tetteh, 2015). For this reason, in addition to the climatic 
and environmental inference provided by the spatio-temporal 
Bayesian ZIP modelling in this study, a map which can further 
guide the malarial interventional programmes in KZN was pro-
duced. This malaria risk map showed that there was a hotspot in 
the north-eastern region of KZN bordering Swaziland and 
Mozambique between the years 2005–2014, which supports simi-
lar patterns obtained from previously developed malaria risk maps 
(Morris, et al., 2013). Jozini and uMhlabuyalingana local munici-
palities were identified as the areas with the highest malaria trans-
mission risk. The elevated risk can, to some extent, be attributed to 
population movement between neighbouring countries, a fact that 
poses a significant challenge to achieving zero local transmission. 
Such movement patterns typically originate from regions with high 
transmission and spread to regions with low transmission. Our 
study has also certain limitations, including the lower sensitivity of 
microscopy and rapid detection tests compared to more advanced 
methods such as quantitative real-time Polymerase Chain Reaction 
test (qPCR), variations in intervention coverage, unreported 
asymptomatic cases, and confounding factors such as socio-demo-
graphic variables. 

This study provides evidence to support the renewed cross-
border collaborative efforts with the MOSASWA (Mozambique, 
South Africa and Swaziland) malaria initiative instituted in 2015 
(Moonasar et al., 2016). The initiative aims to boost the progress 
made by the participating nations towards achieving zero local 
transmission by further strengthening collaboration between rele-
vant academic institutions, sharing expertise, channelling interven-
tion resources to vulnerable populations in the region (especially 
the mobile population and border populations) and sourcing for 
long-term financial support (Moonasar et al., 2016). Additionally, 
participating nations should enhance cooperation in surveillance, 
multi-country intervention programs, and data sharing to monitor 
progress toward malaria elimination and adjust future strategies 
accordingly. In addition to the MOSASWA initiative proposed to 
facilitate KZN’s and South Africa’s malaria programme transition 
from pre-elimination to elimination, a modelling approach which 
takes account of the effects of population movement between the 
MOSASWA countries and from other malaria endemic countries is 
important. This will help understand the spatial and temporal 
implications of mobile population in high transmission areas. It 
will also serve as a guide for adequate dissemination of chemopro-
phylaxis message to mobile populations and travellers in malarious 
and non-malarious areas, and for setting up a quick response strat-
egy with regard to imported cases. Ultimately, it will result in time-
ly channelling of malaria intervention resources to handle the 
threats that may arise from potential imported cases. Also, the 
KZN malaria programme should be further strengthened and 
expanded by conducting routine genotyping of vectors, improved 
insecticide resistance monitoring, close monitoring of intervention 
resources to ensure adequate implementation, and formation of 
malaria elimination commissions to provide technical and manage-
rial guidance to malaria programmes at all levels (district, provin-
cial and national). 
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Conclusions 
The aim of the malaria programme in KZN is to develop elim-

ination strategies followed by eradication strategies. The low and 
excess zero prevalence recorded in the malarious local municipali-
ties revealed that the Bayesian spatio-temporal zero-inflated models 
can serve as a suitable tool for the relevant policy makers. Thus, 
spatio-temporal ZINB Bayesian modelling and the map produced in 
this study present valuable tools for understanding and monitoring 
the influence of climate variability on the spatial heterogeneity of 
malaria in KZN. They can play a significant role in the manage-
ment, prioritizing and allocation of intervention resources accord-
ing to transmission variabilities. Also, this study has revealed the 
importance of strengthening the already existing cross-border col-
laborations for the fortification of KZN’s malaria elimination target. 
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