
Abstract 
In association with cases of Dengue Haemorrhagic Fever 

(DHF), Indonesia’s Breteau Index has consistently fallen below 
the national standard of 95% over the past 12 years (2007–2019). 
Currently, the country relies on survey methods to map DHF 
spread, but these methods are costly and require substantial 
resource support since monitoring DHF cases necessitates consid-
ering both spatial and temporal aspects. As an alternative, we pro-
posed a pilot study utilizing a localized version of the hierarchical 
Bayesian spatiotemporal conditional autoregressive model (LHB-
STCARM) to predict the DHF cases in Makassar City, Indonesia. 
Using this approach, we examined the relationship between DHF 
and the normalized difference built-up index (NDBI), the 
Normalized Difference Vegetation Index (NDVI), and the 
Normalized Difference Water Index (NDWI) that were download-
ed from the Sentinel-2 satellite. Based on these datasets, we iden-
tified an optimal LHBSTCARM model that classified areas in 
Makassar City into distinct spatial risk groups based on the likeli-
hood of dengue occurrence. Specifically, the model identified four 
districts with low relative risk, one with high relative risk and the 
remaining districts with moderate relative risk. Incorporating 
covariates, the model also revealed that NDVI and NDWI were 
significant predictors for dengue outbreaks, whereas NDBI was 
not. Both significant covariates showed negative effects, with a 
one-unit increase in NDVI and NDWI associated with reductions 
in DHF cases by 84.5% and 81.5%, respectively. Thus, NDVI and 
NDWI are the environmental variables of choice for the prediction 
of DHF incidence. 

 
 
 

Introduction 
Aedes mosquitoes, particularly Ae. aegypti, serve as the pri-

mary vector for the transmission of the dengue virus, which causes 
Dengue Haemorrhagic Fever (DHF) in humans (Martheswaran et 
al., 2022). This arbovirus is widely recognized for its significant 
public health impact, characterized by high mortality rates and 
severe clinical outcomes (Martheswaran et al., 2022). Globally, 
dengue infections account for an estimated 2.35 million cases 
annually (Baharom et al., 2022) resulting in over 25,000 deaths 
(Martheswaran et al., 2022). While dengue has traditionally been 
endemic to tropical and subtropical regions, recent evidence indi-
cates its emergence also in temperate zones, including the conti-
nental United States (Martheswaran et al., 2022). According to the 
World Health Organisation (WHO) and scientific articles, more 
than 40% of the global population is currently at risk of this infec-
tion, with approximately 50-100 million new cases reported each 
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year across more than 100 countries (Baharom et al., 2022; 
Martheswaran et al., 2022). The European Centre for Disease 
Prevention and Control (EPDPC) reported about DHF in 2024 
(WHO, 2024), stating that more than 13 million people worldwide 
are infected (as of September 2024), with more than 8,500 deaths.  

The majority of cases are in Asia (Khaidir et al., 2022), with 
Indonesia reporting the highest number of cases from 1968 to 2010 
(Dian Maya Sari et al., 2018; Khaidir et al., 2022) and 2022 
(Supangat et al., 2023). Over the past two decades (2004–2024), 
Indonesia has significantly contributed to the regional surge in 
DHF cases. According to the Indonesian Ministry of Health, there 
were 58,301 dengue cases with 658 deaths in 2004 (WHO, 2004), 
compared to 88,593 confirmed cases with 621 deaths in April 2024 
(WHO, 2024). Notably, the number of cases surged to 119,709 by 
June 2024, representing an increase of more than 200% compared 
to April 2004. These figures highlight the escalating burden of 
DHF in Indonesia over time. 

Consistent rapid and proper epidemic detection will be helpful 
to mitigate the threat of an infectious disease outbreak before it 
reaches an even more severe level. One reason for plausible infec-
tious disease prevention is the dependence of contagious, vector-
borne diseases on environmental conditions (Ziemann et al., 2018) 
recognized through estimation and prediction based on the encour-
aging use of satellite data (Ziemann et al., 2018). Satellite-gener-
ated data can serve as the proper proxy for the environment 
(Ziemann et al., 2018) as they reliably determine and monitor land 
conditions (Ardiansyah et al., 2023; Kurniawati et al., 2023; 
Kusumaningrum et al., 2024), e.g., paddy growing.  

Ae. aegypti mosquitoes necessitate specific environmental 
conditions for breeding and survival. These mosquitoes thrive 
within a temperature range of 4 to 37 °C, with an average lifespan 
of 14 to 28 days. During their lifespan, females oviposit four times, 
producing approximately 10 to 100 eggs per oviposition event 
(Islam et al., 2021). The complete metamorphosis from egg to 
adult takes 8–10 days under optimal conditions (Susanti & 
Suharyo, 2017). The dengue virus, transmitted by Ae. aegypti, 
undergoes an incubation period of 8 to 12 days within the mosquito 
vector, while in humans, clinical symptoms typically manifest 
between 3 and 14 days post-infection (Aswi et al., 2020a; Islam et 
al., 2021). The larval stages develop in aquatic environments, pro-
gressing from eggs to pupae before emerging as adult mosquitoes 
that disperse into various habitats. Consequently, stagnant water is 
a critical breeding site for Aedes larvae (Susanti & Suharyo, 2017; 
Ziemann et al., 2018). The abundance of larvae can be quantified 
using indices such as the “Breteau Index” (Moreno-Madriñán et 
al., 2014). In addition, remote sensing technologies have proven 
effective in identifying potential breeding sites by detecting stand-
ing water (Muhsoni, 2015; Ziemann et al., 2018), such as the nor-
malized difference vegetation index (NDVI), the Normalized 
Difference Water Index (NDWI), the Normalized Difference 
Moisture Index (NDMI), or the Normalized Difference Built-Up 
Index (NDBI). 

To the best of our knowledge, satellite data have not been used 
to monitor the DHF incidences in Makassar City, Indonesia. 
Existing research has predominantly modeled DHF cases using 
covariates derived from three primary categories: i) climate vari-
ables, such as rainfall, precipitation, humidity and temperature 
(Rasjid et al., 2019; Aswi et al., 2020a; Aswi et al., 2021; Faridah 
et al., 2022; Solís-Navarro et al., 2022); ii) clinical variables, 
including White Blood Cell (WBC) count, Red Blood Cell (RBC) 
count, Haemoglobin (HGB) levels, Haematocrit (HCT) and 

Platelet (PLT) count (Aswi et al., 2020b; Anggraeni & Mahmudah 
2021; Silitonga et al., 2021); and iii) demographic and socioeco-
nomic variables, such as age, gender, population density, and edu-
cational attainment (Aswi et al., 2020b; Silitonga et al., 2021). 
However, acquiring these variables by terrestrial-based research 
entails huge financial costs or labor-intensive efforts, which may 
impact their scalability and practicality for larger-scale monitoring. 

DHF cases are usually reported as count data, and their distri-
butions are often modelled by assumption as binomial (Sukarna et 
al., 2023), Poisson (Fitri et al., 2024) or gamma (Hii et al., 2012). 
These distributions are from the basis of generalized linear mixed 
models (GLMM), including spatio-temporal models. Bayesian 
spatio-temporal (BST) modelling has been widely applied across 
diverse research domains, such as the analysis of sparse data 
(Mukhopadhyay et al., 2019), forecasting road traffic congestion 
(Alghamdi et al., 2021; Lian et al., 2023), investigating the impact 
of climate factors on dengue fever transmission (Aswi et al., 
2021), analysing temperature trends (García et al., 2023), predict-
ing tuberculosis incidence (Sukarna et al., 2021; Chen et al., 2023) 
and assessing ecosystem dynamics (Song et al., 2024). The versa-
tility of BST modelling enables its application across a broad spec-
trum of contexts, demonstrating its utility in addressing complex 
spatio-temporal phenomena. 

This study identified the optimal model for predicting DHF 
incidence by leveraging Sentinel-2 satellite imagery-derived 
indices capturing three critical environmental dimensions, namely 
vegetation density (utilizing the NDVI), surface wetness (using the 
NDWI), and built area density (employing the NDBI). The pro-
posed model is a localized hierarchical Bayesian spatiotemporal 
autoregressive model (LHBSTCARM), a statistical model used to 
analyze data that vary across both space and time, while account-
ing for uncertainty and local variations in the data structure (Lee & 
Lawson, 2016).  

 
 
 

Materials and Methods 

Study area 
The study area was Makassar and surrounding districts. 

Makassar City, located in the district of Makassar, is the capital of 
South Sulawesi Province, located in the central region of 
Indonesia. Therefore, it might be regarded as an ideal representa-
tion of the Indonesian climate. Makassar (Figure 1) is the sixth 
most populous city in Indonesia and encompasses an area of 
175.79 km², comprises 14 mainland districts and had a population 
of 1,459,412 people in 2024 (BPS-Makassar 2024). The districts of 
Makassar, Mariso, and Mamajang are classified as urban, while 
Biringkanaya, Tamalanrea, and Manggala are designated as rural, 
and the others are categorized as suburban (Figure 1). Tamalanrea 
and Makassar districts exhibit the lowest and highest population 
densities, respectively. Tamalate, Rappocini, and Biringkanaya dis-
tricts are the most extensive districts in Makassar. 

Spatiotemporal data 
The DHF data utilized in this study were obtained through a 

tripartite collaboration involving the Social Security Agency 
(Badang Penyelenggara Jaminan Sosial, BPJS), the Health Office 
of Makassar City and the community health centers (Puskesmas or 
PKM). While BPJS maintains insurance claim records encompass-
ing DHF cases, its utility as a comprehensive data source is con-
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strained by incomplete coverage of healthcare users. The Makassar 
Health Office consolidates epidemiological surveillance data from 
various healthcare facilities, including hospitals, clinics and PKM; 
however, the reporting frequency exhibits temporal inconsisten-
cies. The PKMs, as primary healthcare providers at the community 
level, offer granular, locality-specific data, though their records are 
incomplete as not all individuals affected by DHF seek treatment 
at there. This study prioritized data from the source exhibiting the 
most consistent reporting cadence and comprehensive spatial cov-
erage across the study period. 

The retrospective analysis spanned 32 months (January 2022 
to August 2024), encompassing 14 administrative districts in 
Makassar. This timeframe was strategically selected to avoid con-
founding from the COVID-19 pandemic (March 2020 to 
December 2021), which disrupted routine disease surveillance sys-
tems and healthcare-seeking behaviours. The post-pandemic peri-
od allows a more precise assessment of baseline DHF transmission 
patterns.  

Satellite-generated data 
The Copernicus Sentinel-2 satellite mission, launched by the 

European Space Agency over the period 2015-2024, consists of 
three polar-orbiting satellites aims to monitor changes in land sur-
face conditions. The satellites have a 290 km swath width a spatial 

resolution ranging from 10 to 60 meters. This resolution is higher 
than that of other widely used satellites, such as the Terra/Aqua 
pair with their Moderate Resolution Imaging Spectroradiometer 
(MODIS) and Landsat (Bergquist & Manda 2019), making it par-
ticularly suitable for studying the limited geographical extent and 
diverse topography of Makassar City. As a result, Sentinel-2 is rec-
ognized as a valuable resource for acquiring environmental data, 
especially about vegetation, water bodies and built areas. Satellite-
derived NDBI, NDVI and NDWI indices were utilized to capture 
these environmental features. These indices are calculated using 
four spectral bands as defined in previous studies (Muhsoni 2015; 
Suhet 2015) as follows: 
 

                        
Eq. 1

 
 

where: B3 represents the green part of the spectrum; B4 the red 
part; B8 the near infrared (NIR) wavelengths; and B11 the short-
wave infrared ones (SWIR-1). 

The NDBI combines SWIR and NIR providing insight into 
built areas with index values ranging from -1 (no buildings) to 1 
(densely built-up), the NDVI is a vegetation index that is calculat-
ed by combining the red wavelengths (B-4) and NIR to estimate 
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Figure 1. Mainland of Makassar City, South Sulawesi, Indonesia, with 14 districts.



the density or cover of vegetation on the land, while the NDWI is 
a wetness index that is calculated by combining the green wave-
lengths (B-3) and NIR, which is utilized to determine the land 
cover of an area with respect to the presence of water. 

Model formulation 
The LHBSTCARM demonstrates the capacity to detect spatial 

clusters characterized by distinct response patterns attributable to 
their specific geographic and temporal contexts (Lee & Lawson, 
2016). Unlike conventional approaches constrained by assump-
tions of spatial homogeneity, the model does not presuppose that 
neighbouring regions must exhibit analogous responses after 
accounting for specified covariates, thereby preserving flexibility 
in capturing localized heterogeneity.  

Localized indicates that the model allows parameters to vary 
across space instead of assuming one global model for all loca-
tions, while hierarchical, accommodates different levels of varia-
tion (e.g., across regions or time) and the conditional autoregres-
sive (CAR) part means that it is model is a type of spatial random 
effect model where the value at one location depends on the values 
at neighbouring locations, defined through a spatial adjacency 
matrix. Briefly, the LHBSTCARM approach: i) captures both spa-
tial and temporal dependencies; ii) allows model parameters to 
vary across locations, with increasing local accuracy; and iii) quan-
tifies uncertainty and can incorporate prior information by using 
Bayesian inference. 

The crude dengue Standardized Incidence Ratio (SIR), also 
referred to as Relative Risk (RR), was computed as the ratio of the 
observed to the expected number of dengue cases in a given region 
and time. The expected number of dengue cases, es,t, is calculated 
based on the overall incidence rate of dengue in the Makassar 
region and the population at risk in each respective region and time 
(Eq. 2) as follow: 

 

                          
Eq. 2

 
 
The model assumes a Poisson distribution for the reaction and 

is defined as follows: 
 

                          
Eq. 3

 

                                    
 

where Ys,t represent the observed dengue cases in the sth region dur-
ing the tth time, where s ranges from 1 to I and t from 1 to J; es,t the 
expected number of dengue cases; qs,t the relative risk of dengue in 
region s at time t, XT

s,t β the linear combination of the chosen 
covariates (fixed effects); us,t and lzs,t, serve as the latent, smooth-
ing components (representing spatially and temporally correlated 
variation and the constant group component or intercept, respec-
tively); β the vector of covariate regression parameters; and a mul-
tivariate Gaussian prior with mean zero and variance 100,000 is 
assumed. These priors were chosen based on the defaults of the 
CARBayesST package.  

Data points that are spatially and temporally adjacent (Ys,t, Yk,l) 
will exhibit automatic correlation when lzs,t = lzk,l (indicating iden-
tical intercepts), whereas they will display significantly different 
values when lzs,t ≠ lzk,l. In the context of dengue fever incidence, 

lzs,t = lzk,l permits spatially and temporally adjacent regions to 
exhibit significantly different probabilities of dengue fever occur-
rence. The intercept component of lzs,t identifies distinct groups of 
the areas characterized by high or low likelihood of dengue disease 
occurrence. It encompasses a maximum of G distinct groups orga-
nized according to priors: l1 < l2 < l3 < ... < lG. 

 

                          
Eq. 4

 
 

where l0 equals -  and lG+1 + . An observation in region s at 
time t is assigned to one of the G intercepts, denoted by Zs,t 
{1,2,3, ... G}. The model specifies the value of G, which is advised 
to be assigned a small odd number (Lee & Sarran, 2015). The case 
study presented examines the values of G = 2 and G = 3. Higher 
values were excluded because of the limited number of regions. 
The value of Zs,t is adjusted towards the central intercept value G*, 

defined as G*: G* = for even G, 
 
via the penalty function f(Zs,t): 

 

                
Eq. 5

 

                                
 
where, d represents the penalty parameter following a uniform dis-
tribution defined by the bounds Ld and Ud. In the following case 
study, the hyperparameters Ld and Ud are established at 1 and 100, 
respectively, following the recommendations by Lee and Lawson 
(2016). The smoothing component us,t is modelled using a multi-
variate autoregressive process characterized by spatial autocorrela-
tion ρS=1, which aligns with the Intrinsically Conditionally 
Autoregressive (ICAR) model (the first level of the hierarchy) 

Eq. 6 
 
The variance component τ2 follows an Inverse Gamma (IG) 

distribution, representing the second level of the hierarchical 
model. Four hyperpriors are considered for the variance compo-
nent τ2: IG(0.25, 0.0005), IG(0.50, 0.0005), IG(0.75, 0.0005), and 
IG(1.00, 0.0005), rT ~ U(01,). Parameter values were determined 
under empirical guidelines derived from methodological prece-
dents established in prior research, ensuring alignment with rigor-
ously validated practices (Lee & Lawson 2016). The value rs=1 
enforces significant spatial smoothing on mt, thereby regulating 
each distinct value (gradual change) on the surface lzs,t. 

 
 

Results 

Monthly DHF cases  
Figures 2 and 3 depict that each district exhibits a comparable 

trend (Figure 2) alongside significant variability (Figure 3). The 
temporal patterns are evident in all domains indicating the pres-
ence of a temporal component in the data. Consequently, a spatio-
temporal modelling approach was deemed appropriate for analyz-
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ing this dataset, as it effectively captures the spatial and temporal 
dynamics inherent in the observed patterns.  

Figures 2 and 3 generally illustrate an upward trend in cases, 
beginning in January and peaking in May for each year. 
Subsequently, the trend declines steadily until June, reaching its 
lowest point between September and November. The highest inci-
dence was approximately 70 cases reported in March 2024, pri-
marily in the districts of Rappocini and Tamalate. In addition, the 
districts of Rappocini, Tamalate, Panakukang, and Biringkanaya 
record between 58 and 71 monthly cases. In contrast, no cases 
were recorded in October and November for each year. 

Evaluation of the model without covariates 
The LHBSTCARM was evaluated for component configura-

tions G=2 and G=3. Model selection was conducted using the 
Watanabe–Akaike Information Criterion (WAIC) and the Mean 
Squared Error (MSE) to identify the optimal configuration. As 
illustrated in Table 1. 

Based on Table 1, the WAIC and MSE values for G=2 were 
2483 and 6.508, respectively, whereas those for G=3 were 2460 
and 6.169, respectively. The result demonstrates that G=3 yields 
lower WAIC and MSE values compared to G=2, indicating a supe-
rior model fit and predictive accuracy. Consequently, the LHBST-
CARM with G=3 was identified as the most statistically optimal 
configuration. 

The main output of the model without covariates is the district-
level RR, which serves as the basis for quantifying spatial risk 

variation. As shown in Table 2, the LHBSTCARM configuration 
with G=2 delineated four districts as high-risk, classifying the 
remaining districts as low-risk. In contrast, the G=3 configuration 
identified four districts as low-risk, one district as high-risk and 
assigned the remaining districts as moderate-risk classification. 
These results underscore the enhanced granularity of the G=3 
model, which introduces a moderate-risk category that is absent in 
the G=2 configuration, thereby enabling a more nuanced spatial 
risk assessment. Based on Table 2, a total of 418 months were clas-
sified into the medium-level group under the G = 3 clustering sce-
nario, while 27 months were categorized as low-level and only 3 
months as high-level. Ujungpandang was the only district with 
three months classified as high. The table displays a clustering 
result with a predominant classification rate of 93%. 

Monthly indices 
The index plot is informed by using descriptive plots, which 

are spatial combined with time-series plots (or spatial and temporal 
plots), histograms, and boxplots. Two different types of spatial and 
temporal plots are presented as individual and descriptive statis-
tics. The NDBI of Makassar (Figure 4) displays a proclivity 
towards thin vegetation and open land with minimal buildings 
(median NDBI = 0.06492), distributed from index -0.38195 (min-
imum or no built-up area) to 0.20358 (maximum or medium den-
sity built-up area). Figure 5 illustrates a fragile vegetation index 
(median NDVI = 0.17456) distributed across a considerable range, 
from -0.05259 (minimum, non-vegetation) to 0.57786 (maximum, 
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Table 1. Localized hierarchical Bayesian spatiotemporal conditional autoregressive model: comparative outcome without covariates. 

                         Lambda1 Outcome (CI)           Lambda2 Outcome (CI)           Lambda3 Outcome (CI)             WAIC               MSE 

M1 (G=2)              -0.1534 (-0.3744, -0.0410)                  0.8060 (0.4143, 1.3232)                                       -                                    2483.020                6.508 
M2 (G=3)              -0.9040 (-1.0060, -0.8048)                 -0.0133 (-0.0803, 0.0546)                   0.5502 (0.4773,0.6360)                  2460.622                6.169 
Lambda quantifies how much the value of a variable at a given location depends on the values at neighbouring locations; M1, Model 1; M2, Model 2; G, the number of clus-
ters: CI, credible interval; WAIC, Watanabe–Akaike information criterion; MSE, mean squared error. 

Figure 2. Number of dengue cases across the14 districts of Makassar, Jan 2022 – Aug 2024.



                 Article

[page 260]                                                             [Geospatial Health 2025; 20:1379]                                                                               

Figure 3. Descriptive analysis for dengue cases in Makassar, Jan 2022 – Aug 2024.

Figure 4. Descriptive plot of NDBI in Makassar, January 2022 – August 2024.

Table 2. Recapitulation of the number of months each district was classified into each group under G=2 and G=3 cluster scenarios (Total 
of 32 months). 

District                                                       G=2                                                                                                        G=3 
                                                               1                    2                                                         1                                     2                              3 

Biringkanaya                                                 32                                                                                        3                                         29                                   
Bontoala                                                        31                     1                                                                 7                                         25                                   
Makassar                                                       32                                                                                                                                   32                                   
Mamajang                                                      32                                                                                                                                   32                                   
Manggala                                                       32                                                                                                                                   32                                   
Mariso                                                           32                                                                                                                                   32                                   
Panakukang                                                   20                    12                                                                                                          32                                   
Rappocini                                                      21                    11                                                                                                          32                                   
Tallo                                                               32                                                                                        8                                         24                                   
Tamalanrea                                                    32                                                                                                                                   32                                   
Tamalate                                                        32                                                                                                                                   32                                   
Ujungpandang                                               10                    22                                                                                                          29                                 3 
Ujungtanah                                                    32                                                                                        9                                         23                                   
Wajo                                                               32                                                                                                                                   32                                   
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Figure 5. Descriptive plot of NDVI in Makassar. January 2022 – August 2024.

Figure 6. Descriptive plot of NDWI in Makassar, January 2022 – August 2024.

Figure 7. Correlation matrix and pairs plot of matrix correlation (upper right), histogram (diagonally), and pairs scutter (lower left).



healthy, moderate vegetation). The observed range is substantial 
(0.63039), indicating that the vegetation levels between districts 
vary considerably, from no vegetation to thin vegetation. Figure 6 
illustrates that the city of Makassar is characterized by dry condi-
tions, with a median value of -0.21538. These conditions span a 
considerable range, from a minimum index of -0.52384 (indicating 
very dry non-water) to a maximum index of 0.09987 (indicating 
slightly moist soil). The range is notable, spanning 0.62371 from 
dry to moderately moist soils. Consequently, the city’s districts 
exhibit a general dryness with varying soil moisture levels. 

Relationship between DHF and the remotely 
sensed indices 

The Pearson correlation was applied to detect the relationship 

between all study variables, particularly between dengue cases and 
indices derived from the Sentinel-2-generated data (Table 3, Figure 7)  

The significant negative correlation between DHF on the one 
hand and NDBI and NDWI on the other reveals that an increase in 
DHF cases can be observed concurrently with a decline in these 
indices, including building density and land covered by water. 
Nevertheless, the strength of the relationship remained relatively 
low (-0.5 < r < 0.5). Conversely, the positive correlation between 
DHF and NDVI was also only weakly significant, suggesting that 
an increase in the vegetation index would likely precede an 
increase in DHF incidence. Figure 7 presents a scatter diagram in 
the lower triangle, which visualizes the relationship between the 
variables and demonstrates both linear and nonlinear relationships. 
A linear relationship was evident between the incidence of DHF 
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Table 4. Difference between the model's predicted values and the actual values for various mean priors at G=3. 

Model          Covariate               Mean              2.50%              97.50%               DIC          WAIC               RMSE             Hyperprior 

1                         NDBI +                    -0.303                 -1.082                    0.385                 2345.095       2460.562                  2.499               IG(0.25,0.0005) 
                          NDVI +                    -2.315                 -3.995                   -0.427                                                                                                              
                            NDWI                     -2.220                 -4.047                   -0.156                                                                                                              
2                         NDBI +                    -0.348                 -1.181                    0.481                 2334.540       2461.996                  2.537               IG(0.50,0.0005) 
                          NDVI +                    -2.331                 -4.053                   -0.480                                                                                                              
                            NDWI                     -2.220                 -3.990                   -0.290                                                                                                              
3                         NDBI +                    -0.085                 -0.862                    0.551                 2351.077       2457.207                  2.581               IG(0.75,0.0005) 
                          NDVI +                    -1.863                 -4.096                   -0.362                                                                                                              
                            NDWI                     -1.684                 -3.834                   -0.041                                                                                                              
4                         NDBI +                    -0.284                 -1.333                    0.400                 2346.963       2466.959                  2.599               IG(1.00,0.0005) 
                          NDVI +                    -2.289                 -4.185                   -0.476                                                                                                              
                            NDWI                     -2.213                 -4.107                   -0.298                                                                                                              

WAIC, Watanabe–Akaike information criterion; RMSE, root mean squared error; DIC, deviance information criterion; IG, inverse gamma. 

Table 5. The result of HBSTCARL G=3. 
                                   β ̂                            2.5%                   97.5%                        DIC              WAIC              MSE                        RMSE 

NDBI                        -0.0849                       -0.8618                     0.5508                        2351.077           2457.207               6.664                             2.581 
NDVI                        -1.8625                       -4.0963                     -0.3619                                                                                                                            
NDWI                       -1.6840                       -3.8340                     -0.0409                                                                                                                            
λ1                               -0.8825                       -0.9944                     -0.7730                                                                                                                            
λ2                                0.0049                        -0.0531                     0.0651                                                                                                                             
λ3                                0.5716                        0.5025                      0.6383                                                                                                                             
δ                                 1.1329                        1.0075                      1.3519                                                                                                                             
τ2                               0.0185                        0.0086                      0.0337                                                                                                                             
ρT                              0.6205                        0.3475                      0.8057                                                                                                                             
NDBI, normalized difference built-up index; NDVI, normalized difference vegetation index; NDWI, normalized difference water index; DIC, deviance information criterion; 
WAIC, Watanabe–Akaike information criterion; MSE, mean squared error; RMSE, root mean squared error; λ, the intercept for the appropriate cluster, where λ1 < λ2 < λ3; δ, the 
penalty parameter; τ, the variance parameter associated with the spatial random effects u1; ρT = temporal autocorrelation parameter. 

Table 3. Correlation between DHF and covariates by month. 

Pearson’s correlation                      Dengue                                                    NDBI                                                               NDVI 

NDBI                                                          -0.273                                                                                                                                                      
                                                               (4.303e-09)                                                                                                                                                  
NDVI                                                           0.402                                                              -0.177                                                                               
                                                               (0.000e+00)                                                    (1.650e-04)                                                                           
NDWI                                                         -0.333                                                             -0.018                                                                        -0.968 
                                                               (4.341e-13)                                                    (7.068e-01)                                                                    (0.000) 

Cell contents: Pearson’s correlation (p-value). 



and the covariates, and a linear trend was also observed between 
the NDVI and NDWI indices. The NDBI displayed a nonlinear 
relationship with both the NDVI and NDWI indices. The his-
togram (diagonal elements) indicated that all indices exhibited a 
distribution pattern close to normal. The upper triangle showed the 
Pearson correlation values between the variables, with the highest 
correlation between NDWI and NDVI (-0.968) and the lowest 
between NDWI and NDBI (-0.018). 

Modelling with covariates 
The LHBSTCARM G=3 was selected as the optimal model for 

predicting DHF based on environmental aspects indicated by the 
satellite imagery, whereby the elements of vegetation (NDVI), 
groundwater (NDWI) and building density (NDBI) were consid-
ered. This reasoning is expected to facilitate the prediction of DHF 
incidence, ensuring a faster, low-cost, rapid and efficient approach. 
To determine the optimal model, the model G=3 was evaluated 
using four different hyperprior settings for the inverse gamma (IG) 
distribution. Model 3, with hyperprior IG (0.75, 0.0005), yielded 
the lowest WAIC value (2457.207) indicating the best fit among 
the tested models (Table 4). In contrast, models 1, 2 and 4 showed 
higher WAIC values (2460.562, 2461.996 and 2466.959, respec-
tively). Table 4 shows that in model 3, the coefficients for NDVI 
and NDWI were statistically significant and less than -2, while the 
NDBI coefficient was not significant. This suggests that vegetation 
and groundwater presence negatively influence DHF incidence, 
whereas building density (NDBI) does not show a statistical effect 
(Table 4 and Table 5). 

The model assumes DHF cases follow a Poisson distribution. 
The odds ratio (OR) for NDBI was approximately 0.9186 (count: 
ORNDBI = e-0.0848  0.9186), suggesting an 8.1% (count: 1 – 0.9186) 
decrease in DHF incidence for each unit increase in building den-
sity. However, as the 95% Confidence Interval (CI) for NDBI 
includes zero, the effect is not statistically significant and may 
serve more as a precautionary indicator than a definitive predictor. 
The covariate NDVI, representing an environmental vegetation 
element, has an odd ratio of 0.1555 (count: ORNDBI = e-1.8625), indi-
cating that with a one-unit increase in NDVI, the average incidence 
rate decreases by approximately 84.5% (count: 1 – 0.1555). This 
represents a significant decrease (95% CI: -4.0963,-0.3619), sug-
gesting that areas with higher vegetation (higher NDVI) tend to 
have lower incidence. The covariate NDWI, which is an element 
of water or environmental wetness, had an OR of 0.1857 (count: 
ORNDBI = e-1.6840), which indicates that with a one-unit increase in 
NDWI, the average incidence rate decreased by approximately 
81.4% (count: 1 - 0.1857). This is a statistically significant result, 
suggesting that areas with higher humidity (as indicated by high 
NDWI values) or in close proximity to water bodies tend to have 
lower incidence rates. 

 
 
 

Discussion 
DHF is exclusively a consequence of dengue mosquito bites 

and is not transmitted from human to human (Islam et al., 2021), 
with the exception of instances involving blood transfusions. 
Consequently, modelling DHF through environmental factors as 
the primary medium for mosquito breeding has been extensively 
researched. This study made use of environmental proxy variables 
derived from satellite imagery, specifically NDBI, NDVI, and 
NDWI. Consequently, the application of the resulting model must 

take the fundamental assumptions pertaining to the index domain 
of Makassar City as a location for the prototype model. The LHB-
STCARM at G=3 was found to be a most suitable model for 
dengue cases in Makassar City through the covariates of NDBI, 
NDVI and NDWI variables. 

Transmission dynamics of infectious diseases are profoundly 
shaped by environmental determinants as shown by many authors 
(Louis et al., 2014; Yu et al., 2016; Ziemann et al., 2018; Islam et 
al., 2021), a relationship corroborated by this study’s empirical 
findings, where the critical role of ecological variables in modulat-
ing dengue fever epidemiology within urban tropical settings is 
underscored. This study further reinforced existing evidence that 
environmental conditions, particularly vegetation density and 
aquatic habitats, are pivotal drivers of DHF transmission. 
Theoretically, Aedes mosquito proliferation is contingent on the 
availability of stagnant water reservoirs, such as ephemeral pud-
dles or artificial containers, which serve as primary breeding sites. 
Such microhabitats not only support oviposition but also foster 
vegetation growth, creating shaded, nutrient-rich environments 
that enhance larval survival rates (Islam et al., 2021). Notably, the 
NDWI exhibited an optimal threshold (0.00 – 0.20) for larval via-
bility, beyond which hydrological fluctuations may disrupt larval 
development, as posited in prior research (Islam et al., 2021). 
These findings align with ecological frameworks linking land-use 
patterns to arboviral disease emergence, emphasizing the need for 
targeted vector control strategies in hydrologically dynamic 
regions. 

Makassar was selected as the pilot study area due to its dis-
trict’s environmental and urban characteristics, which reflect both 
the commonalities and heterogeneity observed across Indonesian 
cities. While the city exhibits ecological patterns representative of 
broader Indonesian urban ecosystems (e.g., tropical climate, 
anthropogenic land-use shifts), its localized hydrological and veg-
etational heterogeneity necessitated model calibration to region-
specific parameters. The model G=3 framework was thus opera-
tionalized to delineate spatially relevant zones for analysis using 
Makassar’s geospatial indices, specifically by the thresholds for 
the NDBI, NDVI, and NDWI. This methodological simplification 
ensured alignment with Makassar’s unique environmental gradi-
ents while maintaining analytical rigor. 

The NDVI of Makassar displays a range from -0.053 to 0.578, 
indicating a predominantly dry and unhealthy vegetation cover. 
The distribution is right-skewed (Figure 7) and it can be concluded 
that the vegetation of Makassar spread from non-vegetation to 
moderately vegetated areas (Hatulesila et al., 2019). The NDWI, 
on the other hand, demonstrates a near-normal distribution, with a 
median value of -0.21538, which indicates that the city of 
Makassar is characterized by dry conditions, with the presence of 
moist land and minimal stagnant water suggesting that a reduction 
in water coverage may lead to an increase in the number of dengue 
patients. 

The NDBI has no statistically significant impact indicating 
that, in general, Makassar is situated in open land areas (building 
enclosures below medium), although there are some built-up or 
residential areas (NDBI > 0.20). The presence of a negative skew-
ness indicates that there are more enclosed buildings than there are 
unenclosed ones. Consequently, the insignificant negative influ-
ence previously identified still has the potential to impact DHF 
presence in Makassar City. Low-density residential areas have 
been observed to contribute to the increase of DHF outbreaks due 
to the availability of unattended spaces, such as plastic cups, bar-
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rels, and other containers, which can serve as breeding grounds for 
larvae. 

 
 

Conclusions 
The water (NDWI) and vegetation (NDVI) indices have a con-

siderable influence on the occurrence of dengue outbreaks in 
Makassar City. However, it would also be prudent to consider the 
building enclosure index (NDBI) as a precautionary measure. The 
characteristics indicate that the a region has minimal water cover-
age and scarcity of vegetation but there are also areas with sparse 
vegetation cover that meet the criteria for healthy vegetation and 
few areas with healthy vegetation. The investigation found the 
LHBSTCARM with G=3 most appropriate for the analysis of 
dengue cases in Makassar City predicting that a one-unit increase 
in NDVI would reduce the incidence of DHF by 85.5%, and the 
same increase in NDWI would reduce the incidence of DHF by 
81.4%. The research findings can become instrumental in provid-
ing an early warning of potential dengue incidence in the forth-
coming months.  
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