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Abstract

We tested the feasibility of integrating Actigraph accelerome-
ters (AG), Global Positioning Systems (GPS) and Geographical
Information Systems (GIS) to explore the physical activity in 26
healthy adults and 7 post-stroke individuals. The study subjects
wore AG and GPS devices for 7 days. Feasibility outcomes were
participants’ experience of using these devices and data quality
regarding i) valid and synchronized data between the AG and
GPS; ii) GPS data distribution among participants living in areas
characterized by differently developed built environments; and iii)
time and intensity of physical activity in and outside the home.
There were >10 hours of synchronized data between the devices
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and the majority (94%) of participants, irrespective of group, did
not report any problems using the AG or GPS. Individuals living
in low-density built environment had a higher percentage of GPS
points closer to the home compared to those living in areas with
high-density built environment where GPS scattering occurred.
Although methodological challenges regarding scattering and
GPS signal loss in densely built environment in urban areas, the
results support the overall feasibility of integrating AG, GPS and
GIS to investigate physical activity behaviour.

Introduction

Existing literature has shown that social and economic factors
(Rodriguez et al., 2005) and physical abilities are associated with
physical activity among the general population and people living
with disability (Ellis et al., 2013; Gunnes et al., 2019). Excessive
time spent sedentary is associated with an increased risk of death,
even in healthy adults (Ekelund et al., 2019), and people with
impaired mobility, e.g., post-stroke individuals, spend more
sedentary time compared to healthy adults (English et al., 2016).
It is recognized that the features of built environment (e.g., home,
residential neighbourhoods and work) could act as barriers or
facilitators to physical activity (Troped et al., 2001; Rodriguez et
al., 2005; McNeill et al., 2006). Although accelerometers have
evolved as a preferred method to measure physical activity
(Bernmark & Wiktorin, 2002, Chen et al., 2003, Leuenberger ef
al., 2017; Lonini et al., 2018; Silfee et al., 2018), understanding
how physical activity relates to the spatial environment remains
limited in clinical populations. While numerous studies have com-
bined accelerometers with GPS to explore activity patterns in the
general population (Marquet et al., 2022), there is a lack of
research applying these methods in post-stroke individuals. To
better comprehend environmental barriers in relation to various
groups of people, e.g., individuals with stroke symptoms and
assist target interventions (Maddison et al., 2010), it is not only
important to identify how much activity occurs, but also where it
takes place.

Global Positioning Systems (GPS) devices utilize trilateration
between three or more GPS satellites to determine the receiver’s
position, speed and elevation. GPS has been extensively used for
commercial applications over the last decades (e.g., navigation
and land surveying) and for research (e.g., human movement and
sports sciences) (Schutz & Chambaz 1997; Rodriguez et al., 2005;
Maddison & Ni Mhurchu, 2009). Technological advances over the
last decade have made it possible to measure and store GPS data
for prolonged periods. However, GPS signal accuracy is known to
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be reduced when the device is recording indoors or in highly dense
urban areas (especially among tall buildings) and under tree
canopies due to signal obstruction and multipath effects. Buildings
and tree canopies act as barriers for the GPS signal that could lead
to gaps or inaccuracy in the GPS recordings (Schutz & Chambaz,
1997; Webber & Porter, 2009; Maddison et al., 2010).

The combination of GPS and accelerometry has been used as a
tool to measure physical activity for two decades, with an early
landmark study by Rodriguez et al. (2005) demonstrating the
potential of this method to capture both physical activity and spa-
tial context. More recently, Rosli ef al. (2013) tested the use of a
GPS and an accelerometer to graphically map physical activity
levels among 10 university students over two different jogging
courses for 90 minutes. Their results suggest that the two devices
are feasible for the objective measuring of physical activity (Rosli
et al.,2013). For daily living, Maddison ef al. (2010) presented the
first study to describe the location and intensity of physical activity
in adolescents using GPS, accelerometry and Geographical
Information Systems (GIS). The latter is a spatial database contain-
ing geographical data that can be analyzed, managed and visual-
ized. When combined with the accelerometer and GPS data, the
GIS information gives context to where (e.g., home, work, park,
etc.) the physical activity was conducted. Marquet et al. (2022)
recorded GPS and accelerometer data from 354 working adults
across the United States for one week showing that higher activity
spatial walkability correlated with higher levels of Moderate to
Vigorous Physical Activity (MVPA), while higher spatial green-
ness was linked to increased weekly step counts (Ahlstrom et al.,
2015). To our knowledge, no previous study has combined
accelerometry and GPS to examine physical activity in post-stroke
individuals. This combined method offers a more detailed under-
standing, both of the amount and the location of physical activity,
providing valuable insight into community mobility patterns, envi-
ronmental context and levels of social participation. Community
engagement is a critical component of post-stroke recovery and is
closely linked to improved quality of life (Elayoubi et al., 2023).
Capturing the spatial context of physical activity can help identify
environmental and behavioural barriers to participation, thereby
supporting the development of more targeted and effective rehabil-
itation strategies. GPS and accelerometry are well-known ways to
measure physical activity, However, to the best of our knowledge,
no study has tested the feasibility of integrating accelerometers,
GPS and GIS systems in adults of different age groups and in peo-
ple living with post-stroke symptoms and other disabilities. Post-
stroke individuals and older adults could have different barriers to
using and managing multiple devices (e.g., difficulty in wearing,
operating or charging devices) for the assessment of physical activ-
ity. This study, therefore, aimed to explore the feasibility of inte-
grating accelerometers, GPS and GIS to explore physical activity
in daily living. Our specific aims were to i) investigate the study
participants’ experience and acceptance of using the GPS and
accelerometers; ii) explore the quality of data (i.e. degree of valid
and synchronized data between the accelerometer and GPS record-
ings) and GPS data distribution among participants living in differ-
ently developed areas; and iii) preliminary explore and compare
time and intensity of physical activity in the home and in the out-
side environment.
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Materials and Methods

Study participants

Twenty-six healthy, adults of different ages and 7 post-stroke
individuals participated in this feasibility study. People who suf-
fered a stroke >3 months prior to study participation, with the abil-
ity to ambulate with/without a walking device were recruited from
rehabilitation centres and through advertisements. Exclusion crite-
ria included cognitive deficit, severe neglect and aphasia that
affected the ability to give written consent and follow instructions.
Healthy, community-dwelling, individuals recruited through
advertisement were included if able to ambulate independently
over short distances with/without a walking device. The study was
approved by the Swedish Ethical Review Authority
(https://etikprovningsmyndigheten.se/en/) (2017/1626-31 and
2018/2524-32) and all participants gave written informed consent
before participation.

Data collection

All participants attended one session which included a collec-
tion of demographic data (sex, age, lifestyle), employment status
and mobility status by using a structured interview. Subsequently,
the participants were equipped with one accelerometer (Actigraph
GT3X+; AG) and a GPS (QStarz BT-Q1000XT) for the measure-
ment of physical activity in daily life. The AG and GPS sensors are
lightweight (<20 grams each) and could be attached around the
right hip using an elastic belt. The GPS device was set to record at
a sample rate of 15 seconds and the AG at 30Hz. Data collection
occurred during autumn and winter seasons of from September
2020 to April 2021, which incidentally coincided with the Covid-
19 pandemic in Sweden.

Each participant was asked to wear the devices for 7 consecu-
tive days during all hours when awake and to make note using an
activity diary of the times when the devices were worn. The partic-
ipants were also asked to charge the GPS device each night before
going to sleep. The AG device was initialized by the study coordi-
nator to start recording before the measurement of each participant,
while the GPS device needed to be initialized by the participants
themselves the first time used. This was done by standing outside,
switching the device on and waiting for a few seconds (up to a
minute) for the GPS to acquire signals from the satellites at which
time a LED light turned on indicating that the device had been ini-
tialized. This meant that the GPS clock was synchronized with the
satellite atomic clock (Schutz and Chambaz 1997, Maddison and
Ni Mhurchu 2009). The AG device utilizes the local computer time
to initialize the device timestamps. To synchronize the AG and
GPS devices, the local computer time was reset to coordinated uni-
versal time (UTC) using the built-in Windows tool for each AG
device before initialization. UTC is the primary time standard at
which most countries regulate their timestamps and is based on the
international atomic time (Panfilo & Arias, 2019). After the mea-
surement period, the participants returned the devices to the
research coordinator using a pre-paid mail service.

Wearing the measuring devices

The study participants’ experience and acceptance of wearing
and managing the accelerometer and GPS were assessed through a
telephone interview after the measurement period. The interview
included questions whether the participant had experienced any
problems using the devices in daily life (yes/no), if wearing the
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devices affected normal daily activities (yes/no) and if the partici-
pant had changed daily activities during the measurement period
(yes/no). If any participants encountered problems with the mea-
surement or changed daily activities during measurement, they
were asked to describe the problems experienced or how they have
changed their activities (open-ended questions). They were also
asked to rate (1 = not satisfied to 3 = very satisfied) if they per-
ceived the oral and written information about how to manage the
devices as understandable and relevant.

Data quality

The data from the healthy adults were divided into two age
groups: <45 and >45 years old. This cut-off was selected to achieve
a more balanced distribution of participants across age groups to
enhance comparability between the groups. Demographic data
were presented for each group as mean, median and ranges.
Proxies for data quality were the number of recorded days, AG
wearing time (min), time-frame of the GPS device recorded data
and the synchronized wearing time between the two devices. The
raw AG physical activity data were converted into 15-second peri-
ods and exported to Excel using the Actilife 6 software, v. 6.13.4
(https://theactigraph.com/actilife). The 15-second period data were
divided into daily segments and a non-wearing time algorithm as
done by Choi et al. (2011) taking into account 90 minutes of con-
secutive zero counts and 2 minutes of non-zero counts with an
upstream/downstream period of 30 minutes of consecutive zero
counts. The periods of non-wearing time were also confirmed by
the participant’s activity diaries. The median daily wearing time
(minutes) of recordings with the AG over the 7 study days were
calculated. A day was considered valid if there were >10 hours of
collected AG data (Migueles et al., 2017). To obtain the wearing
time of the GPS device, GPS data (i.e. date, time, latitude and lon-
gitude) were first exported to Excel using the Qstarz travel soft-
ware (http://www.gstarz.com/), divided into daily data and the
median daily wearing time (minutes) calculated. Subsequently, the
changing geographical coordinate information and its correspond-
ing time stamps were synchronized with the AG data using the date
and time stamps. The number of minutes per day with synchro-
nized AG and GPS data was calculated as a proxy of data quality.
It is worth noting that AG wearing time represents the time when
the participants wore the device whereas one could expect a lower
wearing time for the GPS due to blockage of the GPS signal (e.g.,
during time spent in dense areas). Subsequently, the Kruskal-
Wallis test was used to compare the wearing of the two devices, the
synchronized time and the time spent at home and outside across
the study groups followed by post hoc analysis by the Mann-
Whitney U tests with the Bonferroni corrections added to adjust
the p-values. For the assessment of GPS data distribution as a func-
tion of spatially developed areas, the GPS data were projected into
the Swedish national coordinate system (SWEREF 99 TM)
(Kempe et al., 2010). GPS data points were classified within
buffers of varying radius from the Points Of Interest (POI), i.e. the
home address of each participant. Buffers were set at 20, 50, 100
and 150 m. For assessment of the building densities, building poly-
gons were extracted from OpenStreetMap (2015) for the entire
study area. Building densities were calculated within each 150 m
radius from the POI, which equated to a total included area of
70,685 m”. Subsequently, participants were divided, based on their
associated POls, into groups, wither with low-density built envi-
ronment (<15% of the total area included 70685 m?) or one with a
high-density built environment (>15% of the total area). The mean
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percentage points and standard deviation (SD) for each buffer were
calculated for all study participants with respect to building density
and compared using the Mann-Whitney U-test.

Preliminary exploration of physical activity

The physical activity focused on exploring the time and inten-
sities of physical activity performed in the participant’s home and
outside this environment. The approach rationale here was based
on the previous observation that most people spend the majority of
their time indoors (Velux, 2018) in sedentary states (Matthews et
al., 2008). A search radius of 100 m was assigned to each POI to
distinguish between the time spent at home and the time spent out-
side. Furthermore, the daily 15-second period of physical activity
inside and outside the home were determined after division into
sedentary, light intensity physical activity (LIPA) and MVPA
(Freedson et al., 1998; Matthews et al., 2008; Troiano et al., 2008)
and the average time spent at each intensity level per day over the
7 study days.

Results

Participant characteristics

The demography of the 26 healthy participants and 7 post-
stroke individuals participating in this study is shown in Table 1.
The median age of the post-stroke participants was higher (63
years) than the healthy group (40 years). Most post-stroke individ-
uals used a walking aid (57%), lived in a house (71%) and were
retired (57%), while most of the healthy participants reported
working full time (range: 71-92%) with most of the participants
<45 years old living in an apartment (86%) compared to the partic-
ipants >45 years old (42%) and post-stroke individuals (29%).

Experience and acceptance of using the measuring
devices

None of the study participants felt that wearing the AG and
GPS devices restricted their everyday activities. During the mea-
surement period most of the participants <45 years of age (64%)
reported that they deviated from their normal weekly routines as
compared to 10% of the participants >45 years of age and 20% of
those living with post-stroke symptoms. All participants consid-
ered the oral and written instructions/information easy to under-
stand, relevant and sufficient.

Data quality

Table 2 details the summary of the AG and GPS data. Twenty-
four of the 26 adults (92%) and all post-stroke individuals wore the
devices for the entire measurement period (7 days). Two healthy
<45 years old participants were excluded from the analysis since
they did not have sufficient AG and GPS data for at least 4 days.
The median wearing time for all groups was >935 minutes (close
to 16 hours) of recorded daily AG data and >64% of the AG wear-
ing time was synchronized AG and GPS data. Participants aged
>45 years had statistically significantly higher AG wear time than
the post-stroke group and longer synchronized AG-GPS wearing
time than the group aged <45 years. No significant differences
between the groups were found for GPS wearing time or time spent
in or outside the home. Of the 31 participants, 15 lived in areas
with low-density built environment and 16 in areas of opposite
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configuration. Table 3 shows the mean (SD) percentage number of
points within each buffer of varying radius from the POI (i.e., the
home) for individuals living in low-density built areas and those
living in high-density environments. On average, the percentage
number of points in the 20-m radius for the individuals living in
low-density areas was 80% (SD: 3%) compared to 70% (SD: 12%)
of those living in high-density areas. There was also a statistically
significant difference between all the mean percentage GPS points
within the areas of both low-density and high-density built envi-
ronment for the different buffer radii (i.e., 20-150 m). Figure 1A-B

Table 1. Demographic data.

Participant characteristic
Age

18- 45 years of age
n=14 (42.4%)

Healthy (n=26)

@\

shows anonymous representative data of GPS distribution for the
lowly and the highly developed areas. Individuals in relatively
underdeveloped areas (Figure 1B) exhibit GPS data distributed in
relative proximity to their home environment, compared to indi-
viduals living in relatively high-density built environments (Figure
1A), where the GPS data are more widely scattered. The GPS data
also showed that post-stroke individuals spent a median of 521 min
of their recorded day at home compared to participants <45 years
old (352 min) and >45 years old (410 min) (see Table 2).

Post stroke (n=7)
50-74 years
n=7 (21.2%)

> 45 years of age
n=12 (36.4%)

Personal
Male sex, n (%) 8(57) 5(42) 3(43)
Age (years), median, min-max 32 (22-43) 60 (50-68) 63 (50-74)
Living alone, n (%) 5(36) 1(8) 4(57)
Accommodation type, n (%)
House 2(14) 7 (58) 5(71)
Apartment 12 (86) 5(42) 2 (29)
Employment status, n (%)
Working 10 (71) 11 (92) 2(29)
Retired 0(0) 1(8) 4(57)
Student 4(29) 0(0) 0(0)
Sick leave 0(0) 0(0) 1(14)
Mobility status, n (%)
Unaided 14 (100) 12 (100) 3(43)
Walking aid 0 (0) 0(0) 4 (57)

A)‘.'__'_

F=2—U'"""’l;'.‘ : i ¥ ‘._ . \ i Tk 2ezmir s :‘

B)

“2="5° Mpters

Figure 1. GPS data distribution with respect to different buffer radius overlaid with the building area density (building footprint).
A) Example of a participant living in an area with high building density; B) Example of a participant living in an area with low building

density.
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Preliminary exploration of physical activity at 13-15% of recorded time in LIPA (Figure 2B) compared to 8% of
home and outside the post-stroke individuals. The latter group was also found to
spend 8 min (2%) on average of their recorded time in MVPA per
day in the home environment. Outside home, post-stroke individu-
als as well as the healthy adults, spent approximately the same time

Figure 2A-B shows minutes per day and percentage of time
spent in the different states (sedentary, LIPA or MVPA) at home
and outside this environment for the three groups. Within the home
environment, all three groups spent >74%, of their recorded time (14-20%) of their recorded day in LIPA with pOSt-StI'Oke individu-
sedentary with the participants <45 years spending between als spending only 7% of their recorded time in MVPA.

Table 2. Wearing time data from AG and GPS devices.

Group Kruskal Post hoc analysis by Mann-Whitney U test
Wallis test with Bonferroni correction (p)
Age: 18-45 Age >45 Post-stroke Age: Age: Age:
years years individuals (n=7) 18-45 years 18-45 years >45 years
(n=12%) (n=12) vs >45 years  vs post-stroke vs post-stroke

AG wearing time, 965 (883-998) 1,037 (1,012-1,047) 935 (905-940) 0.002 0.059 0.332 0.001
median (Q,—Q;)
GPS wearing time, 1,088 (883-1,301) 1,355 (1,154-1,386) 1,250 (1,211-1,302) 0.158 0.171 0.967 1.00
median (Q—Qy)
Synchronized, median 616 (491-757) 816 (717-872) 754 (727-793) 0.047 0.043 0.640 1.00
Q—Q)
Minutes, median 352 (171-522) 410 (300-591) 521 (342-643) 0.421 1.00 1.00 0.581
Q—Q)
Time spent outside the home
Minutes, median 249 (147-371) 348 (231-469) 294 (120-331) 0.386 0.651 1.00 0.834
(Q=Q)

AG, Actigraph; GPS, Geographical Positional Systems; Q,, first quartile; Qs, third quartile: *Two healthy participants <45 years were excluded from the analysis after the start
of the study.

A Physical activity levels
 Home environment
350 B Outside Home environment
300/
£250
o
Zam
(-
E 150/
100
N -
[ | e
2 -4 > Stroke *—F > 43 Stroke ELE >4 Stroke
years years years years years years
Sedentary LIPA MVPA
B 3 Physical activity levels W Hit cavironsent
44 B Outside Home environment
e 60
2 50
2 40
< 30
20
‘“ puafll=l om
—
Y = > Stroke -4 > Stroke E‘ I i Stroke
years years years years years years

Sedentary LIPA MVPA

Figure 2. Mean daily physical activity levels distribution at home and outside for healthy young adults aged 18-45 years, >45 years olds
and individuals with post-stroke symptoms. A) minutes per day; B) Percentage of total synchronized wearing time; LIPA, light intensity
physical activity; MVPA, moderate to vigorous physical activity.
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Discussion

As far as we know, this study is the first to explore the feasi-
bility of integrating accelerometers, GPS and GIS to measure
physical activity in healthy adults in different age groups and post-
stroke individuals. The present results support the feasibility of an
integrated approach with regard to user experience, device man-
agement and data quality.

Although our study showed that the augmentation of AG and
GPS could be used to gain additional information about the spatial
aspects of physical activity, using the two devices is not without
potential limitations. One of the most commonly reported ones is
that the use of two separated devices results in participant inconve-
nience, ¢.g., the weight of two devices on one side of the waist for
an entire day as pointed out by Maddison et al. (2010). Although
some individuals, especially older adults and post-stroke individu-
als, could be expected to have problems wearing two devices
around the waist over a day, none of the participants in our study
reported having problems of this kind. We purposively recruited
persons in different age groups and post-stroke individuals as old
age and physical disability are potential barriers to using and man-
aging multiple devices (e.g., difficulty operating or charging them)
for assessment of physical activity. Previous studies have mainly
focused on the feasibility of using accelerometers and GPS devices
in older adults during shorter periods, such as just one day
(Webber & Porter, 2009). Our results are consistent with these
studies, supporting the feasibility of the user experience and man-
agement of this integrated approach. In a similar approach to ours,
Rodriguez et al. (2005) piloted the use of GPS and AG in 35
healthy adults over 3 days to classify physical activity data into
MVPA and match it with GPS data, i.e., indoors, outdoors in the
close neighbourhood, and further away. In contrast to our study,
they found that about one-third of the participants had incomplete
GPS data due to not adhering to the GPS protocol, malfunctioning
GPS units or lack of GPS data (Rodriquez et al., 2005).

While accelerometer data have proven reliable (Bernmark &
Wiktorin, 2002, Chen et al., 2003; Leuenberger et al., 2017; Lonini
et al., 2018; Silfee et al., 2018), there are some issues with GPS
measurement, such as poor accuracy attributed to recording
indoors or in highly dense urban areas and under tree canopies
(Schutz & Chambaz, 1997; Maddison et al., 2010). For example, a
study by Webber and Porter (2009) recorded more than 8 hours of
GPS data between start and final data collection points in only 55%
of their 20 older adults. In line with this, our results show that the
accuracy in the GPS recording distribution is higher in areas with
low-density built environments compared to the opposite situation,
i.e., there seems to be different recipient results in rural vs. urban
areas. Despite the issues surrounding the reliability of GPS
devices, with respect to relevant contextual information regarding

e P press

the environment (e.g., home, work, parks, etc.) in which the phys-
ical activity takes place, the signals are still attainable and the
approach useful. In the present study, we recorded >10 hours of
syncronized AG and GPS data for all three groups, which is in line
with a systematic review from Migueles et al. (2017) that estab-
lished a valid day as >10 hours of data collected during a day.

Some of the techniques used to negate the potential errors in
indoor GPS logging would be to add a buffer zone to specified
areas. Maddison et al. (2010) described the intensity of physical
activity and location in adolescents using GPS and AG in daily liv-
ing. To classify the home environment they created a 150 m circu-
lar radius around each participant’s home and found that from the
available GPS data, the 79 adolescents in their study spent a com-
bined total of 268 hours per day within 150 m of their homes. In
our study, we used a circular radius of 100 m to delineate the par-
ticipants’ home environments finding that >56% of the recorded
time was spent there. The discrepancy in our study compared to
that used by Maddison ef al. (2010) was the fact that we considered
150 m to be an overestimation of the home environment and there-
fore used a 100-m circular radius. Although the populations stud-
ied in our study and that by Maddison et al. (2010) were different,
our physical activity levels were similar to theirs, i.e. adolescents
of a mean age of 14.5 spending 70%, 13%, 15% and 1% of their
recorded time at home in sedentary, light, moderate and vigorous
intensities, respectively.

The results show that the physical activity outside the home
environment of all the study subjects were below the recommend-
ed guidelines by the World Health Organisation (WHO) for physi-
cal activity (WHO, 2020). It is therefore worth noting that this
study was conducted during the fall and winter seasons and the
Covid 19 pandemic which may have contributed to the amount of
time spent in the home environment and sedentary, especially
among older adults and people post-stroke individuals classified as
a riskgroups with regard to the pandemic.

Although Jankowska et al. (2015) provided a framework for
using GPS data in physical activity and sedentary behaviour stud-
ies, it is still unclear as to what is the best way to present and inter-
pret individual augmented AG, GPS and GIS data. Therefore,
future work should include exploration of different techniques on
a participant and group level with regard to data presentation and
anonymization. In future studies with a larger sample, we plan to
conduct stratified analyses and examine neighbourhood character-
istics (i.e. activity spaces) in relation to physical activity levels for
different groups to better understand the relationship between the
environment and physical activity.

Limitations

Our study has some limitations which include a relatively
small sample size and that most of the participants lived in the
Stockholm area; therefore, the results cannot be generalizable to

Table 3. Comparison of the percentage points within each buffer radius with respect to building density.

Capsule of varying radius (m)

Low-density building area,

High-density building area,

n= 15 mean (SD)

n=16 mean (SD)

20 79.9 (2.9) 69.8 (11.8) <0.001

50 14.7 (1.9) 20.7 (7.0) <0.001
100 3.6(0.6) 6.4 (3.7) <0.001
150 1.7 (0.5) 3.1 (2.0) 0.004

SD, standard deviation.
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include individuals living in rural areas. It is also worth noting that
data collection was conducted during the COVID-19 pandemic,
therefore the results are not a true reflection of the physical activity
of the different study groups due to the various restrictions and rec-
ommendations limiting movement during the pandemic.
Additionally, this study combined data from healthy and post-
stroke participants, which limits group-specific interpretations.
Finally, the use of GPS and GIS data creates a threat to participant
privacy and requires robust ethical boundaries. One way to pre-
serve privacy is to apply masking procedures to the GPS and GIS
data. In our study, we used the true location of the home environ-
ment (i.e., the postal addresses) to determine the physical activity
of the participants. However, the data were anonymized with no
location data presented here. The present study also highlights
problems with scattering and loss of GPS data in highly dense
urban areas and future work should entail developing strategies on
how to address these limitations.

Conclusions

This study supports the feasibility of integrating accelerome-
try, GPS and GIS to investigate physical activity in relation to
where, when and how healthy adults and post-stroke individuals
are physically active or inactive. The physical activity levels were
well below established recommendations which was expected due
to the ongoing pandemic movement restricts. On the other hand,
this finding strengthens the belief of the usefulness of the this inte-
grated approach as it not only gave insights into physical activity
promotion in different age groups and people living with disability
but also reflected general restrictions. The present study also high-
lighted some challenges, more noticeably the scattering and loss of
GPS data in different geographical regions. The creation of new
strategies are needed to better classify missing data gaps and scat-
tering leading to more synchronized AG and GPS data.
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