
Abstract  
During the period 4 January 4 – 14 February 2021 the spread 

of the COVID-19 epidemic peaked in the city of Nice, France with 
a worrying number of infected cases. This article focuses on ana-
lyzing the explicit, spatial pattern of virus spread and assessing the 
geographical factors influencing this distribution. Spatial mod-
elling was carried out to examine geographical disparities in terms 
of distribution, incidence and prevalence of the virus, while taking 
socio-economic factors into account. A multiple linear regression 
model was used to identify the key socio-economic variables. 
Global and local spatial autocorrelation were measured using 
Moran and LISA indices, followed by spatial autocorrelation anal-

ysis of the residuals. Similarly, we used the Geographically 
Weighted Regression (GWR) model and the Multiscale 
Geographically Weighted Regression (MGWR) model to assess 
the influence of socio-economic factors that vary on a global and 
local scale. Our results reveal a marked geographical polarization, 
with affluent areas in the Southeast of the city contrasting sharply 
with disadvantaged neighbourhoods in the Northwest. 
Neighbourhoods with low Localized Human Development Index 
(LHDI), low levels of education, social housing and immigrant 
populations all pointed to worrying values. On the other hand, 
people who use public transport were significantly more likely to 
be contaminated by the virus. These results underline the impor-
tance of geographically predicting COVID-19 distribution pat-
terns to guide targeted interventions and health policies. 
Understanding these spatial patterns using models such as MGWR 
can help guide public health interventions and inform future 
health policies, particularly in the context of pandemics. 

 
 
 

Introduction  
The COVID-19 health crisis revealed the critical influence of 

environmental and social factors on population health. According 
to Pinter-Wollman et al. (2018), the built environment plays a key 
role in both the prevention of chronic diseases and the spread of 
infectious diseases. Measures imposed during the lockdown to 
mitigate viral transmission elevated housing conditions to a cen-
tral concern in public health discourse. This is not surprising as 
housing is a multidimensional concept that extends beyond the 
physical dwelling; it encompasses the household and the wider 
neighbourhood environment, all of which can affect health out-
comes. The effects of housing on health can be analysed along 
three dimensions: the dwelling itself, the household it accommo-
dates, and the broader neighbourhood setting. This multidimen-
sional framework underpins our analysis of COVID-19 incidence 
patterns. 

Stiglitz’s observation that “COVID is not an equal opportunity 
killer” is true in terms of both mortality rates (Schellekens & 
Sourrouille, 2020; Shahbazi & Khazaei, 2020; Revollo-Fernández 
et al., 2022) and incidence rates (Ruthberg et al., 2020; Etowa & 
Hyman, 2021). Early research on the pandemic focused on epi-
demiological and clinical (Ruthberg et al., 2020; Xu et al., 2020), 
environmental (Luo et al., 2021), demographic (Patterson et al., 
2022) and ecological characteristics of infected patients. However, 
as the crisis evolved, other potential determinants, such as socio-
economic inequalities emerged as key explanatory factors in the 
spread and impact of COVID-19 (Benita et al., 2022; Dowrick et 
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al., 2022; Godefroy & Lewis, 2022). Schellekens and Sourrouille 
(2020) described COVID-19 as a missile targeting the most vulner-
able segments of society, while Shahbazi and Khazaj (2020), using 
the Human Development Index (HDI) as an indicator of the inci-
dence and mortality rate of COVID-19, found that developed 
countries were the most affected. Similarly, Etowa et al. (2021) 
have shown that the risk and burden of COVID-19 infection are 
not evenly distributed between population subgroups. Bambra et 
al. (2020) interpreted the emergence of these inequalities through 
a syndemic lens, highlighting the synergistic interaction between 
COVID-19 incidence rate, the socio-environmental and the socio-
economic factors that exacerbate vulnerability. In this framework, 
socio-economic deprivation emerges as a key driver of COVID-
19transmission (Rohleder et al., 2022). 

Early research on the COVID-19 pandemic largely relied on 
statistical and biomedical approaches, focusing on individual risk 
factors and national-level indicators. However, as Chossegros 
(2020) argues, an alternative reading of the pandemic is possible. 
This interpretation highlights the territorial aspect of health 
inequalities and underscores the influence of structural disparities 
in determining exposure and vulnerability. It highlights the need 
for spatially informed analyses that go beyond aggregate figures 
and consider the localized dynamics of the disease. 

The importance given to spatial analysis, considering location, 
spatial interaction, spatial structure and spatial processes is well 
established across disciplines such as epidemiology, econometrics 
and environmental science. In the field of economics, Patel et al. 
(2020) and Fontán-Vela et al. (2023) emphasized that during the 
COVID-19 pandemic, exposure risk and disease severity varied 
significantly according to factors such as housing overcrowding, 
working conditions, living or housing conditions, education level 
and income. These findings underscore the necessity of consider-
ing contextual and socio-spatial factors when analysing health out-
comes. Household-level characteristics, such as overcrowding, 
household composition, and migrant status (Siljander et al., 2022), 
play a pivotal role in determining vulnerability. At the regional 
level, poverty (Talavera & Perez, 2009) and the quality of the 
healthcare system (Scott & Coote, 2007) also help explain differ-
ences between regions. In addition, demography is a factor in spa-
tial differentiation in health (Hu & Goldman, 1990), whether 
national or regional (Frohlich & Mustard, 1996). Education levels 
and the organization of the healthcare system further compound 
these inequalities, reinforcing the need for a geographically 
nuanced approach to pandemic analysis. The spatial distribution of 
COVID-19 cases has revealed significant clustering patterns, par-
ticularly in urban environments. These clusters not only reflect the 
transmission dynamics of the virus but also reveal underlying 
socio-economic and environmental inequalities. To better under-
stand these localized disparities, a geographically detailed 
approach is required; one that captures spatial variations in inci-
dence rates and the structural factors influencing them. To do so, 
we relied on the level  of ‘Ilots Regroupés pour l’Information 
Statistique’(IRIS), which is the smallest statistical unit used by the 
French National Institute of Statistics and Economic Studies 
(INSEE) (https://www.insee.fr/fr/metadonnees/definition/c1523 - 
accessed25/3/2024).  

Working at the IRIS level addresses a frequent limitation in the 
literature: the use of spatial units that are too large or internally het-
erogeneous, such as municipalities or regions. These larger units 
often mask important intra-urban disparities. The IRIS mesh offers 
geographic granularity and demographic consistency, enabling 

more accurate assessments of localized health inequalities. In addi-
tion, testing access was not a barrier in this context: the city of 
Nice had 198 testing centres, ensuring equitable access to screen-
ing during the study period. This minimizes potential biases related 
to underdetection or unequal access to health services. Nice pro-
vided a particularly relevant case, having experienced a significant 
outbreak between January and February 2021. This time frame 
allowed for the analysis of spatial disparities under consistent 
socio-sanitary conditions, before major policy interventions were 
introduced. 

The objective of this study was to explore how socio-economic 
conditions relate to the spatial distribution of COVID-19 incidence 
across the 144 IRIS units of Nice. To achieve this, we integrated 
spatial interactions and accounted for local heterogeneity through 
a combination of global and local spatial econometric models.  

 
 
 

Materials and Methods 

Study area and timeframe 
According to the 2019 census (https://www.insee.fr/fr/infor-

mation/6444222 - accessed 26/8/2024), Nice had a population of 
341,003 inhabitants, spread across a surface area of 71.92 km², 
resulting in a population density of 4,741 inhabitants per km². 
Socio-economic data from INSEE statistics (https://www.insee.fr/ 
fr/statistiques/2011101?geo=COM-06088#chiffre-cle-5 - accessed 
14/11/2023) indicate that over 30% of tenant households live 
below the poverty line, while the unemployment rate among young 
people aged 15 to 24 years exceeds 25%. In this study, we used 
IRIS as the spatial units of analysis, each typically encompassing 
around 2,000 inhabitants. From the 146 IRIS units in Nice, we 
excluded two non-residential units (central train station and air-
port), yielding a final sample of 144.  

The study period covered the six-week period of 4 January – 
14 February 2021, during which  Nice experienced a sharp 
increase in COVID-19 incidence, reaching an average rate of 
463.5 cases per 100,000 inhabitants, exceeding the national alert 
threshold of 400 cases per 100,000  as defined by public health 
authorities (Ministère du travail, 2024). This period corresponds to 
the early phase of the third COVID-19 wave in France, marked by 
the emergence of more transmissible variants and the time before 
mass vaccination campaigns were deployed or major restrictions 
implemented. Indeed, the first containment measures in the Alpes-
Maritimes (such as partial weekend lockdowns) began as late as on 
February 27, 2021 (Vie Publique, 2021), This timeframe provided 
a temporally and territorially homogeneous context. No major dis-
parities in access to testing were observed, as the city offered 198 
testing locations covering its full territory. In total, 10,078 cases 
were included in the study. 

 

Type of data and information sources  
Our database combined epidemiological, socio-economic, 

socio-demographic and socio-environmental data. 
Epidemiological data on the COVID-19 incidence rate were pro-
vided by the “Système National d’Information sur le dépistage de 
la COVID-19” (SIDEP) (https://www.santepubliquefrance. 
fr/presse/2020/systeme-de-surveillance-du-covid-19-pour-une-
analyse-territoriale-contextualisee-de-la-dynamique-epidemique - 
Accessed 24/8/2023) and referred to residents of the city of Nice 
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with a first positive result based on the Polymerase Chain Reaction 
(PCR). Only sporadic cases were included, excluding individuals 
living in institutions for dependent, elderly people. The incidence 
rate was used as the primary health indicator to monitor the epi-
demic, based on data published by “Santé Publique France” (SPF), 
the national public health agency responsible for epidemic surveil-
lance. The remaining variables were retrieved from INSEE 
(https://www.insee.fr/fr/information/6444222 - accessed 
26/8/2024) databases and covered 343 geolocated indicators across 
multiple dimensions.  

Selection of variables 
In a first step, we applied the ‘Least Absolute Shrinkage and 

Selection Operator’(LASSO) regression method with penalization 
based on Akaike Information Criterion (AIC) to reduce this initial 
pool. This led to 37 pre-selected 37 candidate variables that were 
categorized into six groups: income/inequality; housing condi-
tions; population density; contamination through work; under-
standing of health rules &cultural factors; and contamination 
through the school environment. Five socio-economic variables 
were ultimately selected and presented (Figure 1). The selection 
process was guided by a review of the literature and the availability 
of data, To further validate the selection and reduce multicollinear-
ity, we conducted multiple linear regressions using Ordinary Least 
Squares (OLS). This two-step approach ensured the identification 
of statistically robust and interpretable variables while avoiding 
overfitting. The final set of variables included the Local Human 
Development Index (LHDI) that varies from 0 to 1 and is based on 
the combination of three factors: life expectancy at birth, level of 
education and gross national income per inhabitant (Shahbazi & 
Khazaei, 2020; Schellekens & Sourrouille, 2020; Etowa et al., 
2021; Revollo-Fernández et al., 2022); the proportion of the popu-
lation living in low-income housing (Brun & Simon, 2020; 
Schellekens & Sourrouille, 2020; Etowa & Hyman, 2021; Luo et 
al., 2021; Nazia et al., 2022); the proportion of employed people 
using public transport (Pinter-Wollman et al., 2018; Brun & 
Simon, 2020; Cordes & Castro, 2020); the immigrant population 
(Brun & Simon, 2020; Nazia et al., 2022; Rohleder et al., 2022; 
Scarpone et al., 2020; Vang & Ng, 2023; Vilinová & 
Petrikovičová, 2023); and the proportion of people aged between 
18 and 24 years attending school (Cordes & Castro, 2020; Kim & 
Castro, 2020; Patterson et al., 2022).  

 

Approach 
We adopted an exploratory two-phase approach, the first of 

which focused on the identification of spatial dependence of the 
data (Le Gallo, 2002) by analyzing spatial autocorrelation patterns. 
The second phase explored the spatially varying relationships 
between selected socio-economic variables and COVID-19 inci-
dence rates using Geographically Weighted Regression (GWR) 
and its Multiscale Extension (MGWR). In order to ensure compa-
rability across models and control for differences in variable 
scales, all variables (dependent and explanatory) were standard-
ized using z-score transformation prior to estimation. Each vari-
able was centred and scaled (mean of 0, Standard Deviation - SD 
of 1), including the COVID-19 incidence rate (measured as the 
number of cases per 100,000 inhabitants). This approach allowed 
all model coefficients to be interpreted as the expected change (in 
SDs) of the dependent variable resulting from one SD change in 
the explanatory variable. Standardization was also necessary to 

ensure consistency with the MGWR 2.2 software, which automat-
ically applies z-score transformation to all variables. While this 
choice departed from models estimated using natural units, it 
enables a coherent interpretation of effect sizes across variables 
and models. It was also justified by the fact that most explanatory 
variables are proportions or indices ranging from 0 to 1, which 
would otherwise be difficult to compare directly. 

Statistics 
To quantify spatial autocorrelation between the IRIS units 

under study (Le Gallo, 2002), we used Moran’s I statistic (Oliveau, 
2010), which ranges from -1 to +1 and measures both the direction 
and strength of the spatial autocorrelation. A positive value indi-
cates a positive spatial correlation, while a negative value indicates 
a negative correlation (Cliff & Ord, 1972). The higher the index, 
the stronger the spatial correlation (Kim & Castro, 2020). 
Conversely, an index close to 0 indicates the absence of autocorre-
lation, suggesting a random distribution of observations. The 
Moran’s I formula is calculated as follows: 

 

                                 
Eq. 1

 
 

where zi  and zj represent the values of the variable in spatial units; 
i individual units; j neighbours; z ̅  the mean of the variable; and wij 
the weighted (neighbourhood) matrix. 

Spatial weighted matrices are essential for capturing the struc-
ture of spatial relationships between regions through their relative 
positions. There are three types of weighted matrix (Oliveau, 2010) 
with the dimensions (n*n), where n here is the number of IRIS 
units studied: i) the distance matrix (two IRIS are considered 
neighbours if they are situated within the defined neighbourhood 
distance. The default distance is the shortest distance where each 
IRIS has at least one additional neighbour); ii) the contiguity 
matrix (two regions i and j are contiguous of the k order if k is the 
minimum number of boundaries needed to cross to get from i to j.); 
and iii) the K-nearest neighbour matrix (all IRIS units have the 
same fixed number of neighbours). 

Spatial autocorrelation can have several sources. It may come 
from spatially autocorrelated omitted variables or from measure-
ment errors: the effect not captured by the explanatory variables 
can appear in the errors in the form of spatial autocorrelation (Le 
Gallo, 2002). This will then be considered as a tool for diagnosing 
spatial dependence, i.e. residual spatial autocorrelation serves as an 
essential diagnostic for the correct specification of models. It can 
therefore be used to verify the existence of spatial dependence 
between residuals. Significant residual autocorrelation can indicate 
that important explanatory variables have been omitted or mis-
specified (Cliff & Ord, 1972). Therefore, by calculating the global 
Moran’s I for the regression residuals, we can detect these errors 
and adjust the model accordingly, ensuring a more accurate repre-
sentation of the underlying spatial dynamics. Not using residuals 
leads to three major statistical problems in modelling: underesti-
mation of standard errors, bias in parameter estimates and model 
specification errors (Gaspard et al., 2019). 

To this end, the global Moran’s I is calculated in relation to the 
residuals of the regression estimated by the OLS model with the 
weight matrix and takes the following matrix form: 
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Eq. 2

 
 

where e = y – Xβ ̂   is (the vector of residuals from the OLS regres-
sion); W = the spatial weights matrix; S0 = SiSjwij a standardization 
factor equal to the sum of all elements of W and N = the number of 
spatial units (IRIS in our case). 

Although global indicesof spatial autocorrelation provide an 
overview of the spatial structure of the COVID-19 distribution, 
they lack precision when it comes to highly localized phenomena 
(Guillain & Le Gallo, 2008). The Local Indicator of Spatial 
Association (LISA), developed by Anselin (1995), was applied to 
assess the local level of spatial autocorrelation investigating the 
situation regarding IRIS units in proximity to each other. This was 
done to detect the potential emergence of possible and potential 
clusters based on COVID-19 incidence rates in the 144 IRIS units 
of Nice. The formula for Moran’s local index is calculated as fol-
lows:  

 

                                 
Eq. 3

 
 

where xi and xj  represent COVID-19 incidence rates in IRIS units 
i and j, respectively; and wij is the spatial weighting matrix. 

LISA divides neighbouring IRIS units into four cluster cate-
gories: High-High (HH) = areas with high incidence rates sur-
rounded by neighbours with high numbers of cases; High-Low 
(HL) = areas with high incidence rates surrounded by neighbours 
with low numbers of cases; Low-Low (LL) = areas with low inci-
dence rates surrounded by low numbers of cases; and Low-High 
(LH) = areas with a low incidence rate surrounded by high num-
bers of cases. To account for the multiple comparison issue inher-
ent to local spatial statistics, we used pseudo p-values generated 
through 999 Monte Carlo permutations, as recommended by 
Anselin (1995) to ensure statistical reliability. 

We used three spatial regression models to explore the rela-
tionship between COVID-19 incidence rate and socio-economic 
indicators: OLS, GWR and MGWR, where the OLS method 
assumes constant relationship across space. In our case, it was 
based on two key assumptions: firstly that observations were inde-
pendent and constant within the study area, and secondly that there 
was no correlation between the error terms (Anselin & Rey, 1991; 
Nazia et al., 2022). The exploratory analyses revealed polarization 
and spatial heterogeneity in the distribution of COVID-19, which 
justified the use of statistical tools sensitive to intra-urban varia-
tions, so GWR and MGWR (Han et al., 2021; Fotheringham et al., 
2002) were applied. Lagrange Multiplier (LM) and robustness tests 
applied to the data did not reveal any significance problems. 
Unlike global models, the regression coefficients in the GWR 
model are not fixed but vary according to the geographical coordi-
nates of observations. As a result, local regression parameter esti-
mates were obtained at each observation point (Lu et al., 2017). 
Thus, the coefficients of the explanatory parameters formed con-
tinuous surfaces estimated at certain points in space (Fotheringham 
et al., 2003): 

 

              
Eq. 4

 
 

where yi is the COVID-19 incidence rate at location i; ui, vi the spa-
tial coordinates; xik the explanatory variable; and ei the residuals. 

The GWR model uses a single optimal bandwidth for all 
explanatory variables, which assumes that all factors affect the 
COVID-19 rate at the same spatial scale. In this study, a Gaussian 
kernel was used to weight observations according to their spatial 
proximity (Brunsdont et al., 1998). This choice reduced the influ-
ence of distant observations as distance increases progressively 
giving more weight to nearby observations (Fotheringham et al., 
2003). Model estimation is based on a matrix of weights Wi, whose 
values decrease as a function of the distance separating units i and 
j: 

 

                      
Eq. 5

 
 
The bandwidth b was estimated using a cross-validation 

approach, with the aim of minimizing the mean-square error 
(MSE): 

 

                                
Eq. 6

 
 
The Gaussian kernel function used to weight the observations 

is essential for determining the spatial extent of the influence of 
neighbouring observations. The coefficients (b) can be obtained by 
minimizing the sum of the weighted squares: 

 

   
Eq. 7

 
 
with the weighted least squares estimator given by 

Fotheringham et al. (2003): 
 

        
Eq. 8

 
 
The choice of a single bandwidth can be penalizing, particular-

ly when the explanatory variables influence the dependent variable 
at different spatial scales. This limitation can reduce the reliability 
of statistical inferences and bias the results (Wheeler, 2009; Lu et 
al., 2017).To counter these problems, Fotheringham et al. (2017) 
extended GWR by developing the MGWR (Oshan et al., 2019; Yu 
et al., 2020), which allows the use of different optimal bandwidths 
specific to each explanatory variable since it eliminates the 
assumption of variations within the same scale (Yu et al., 2020). 
By allowing each factor to influence COVID-19 levels at a differ-
ent spatial scale, resulting in an optimal number of neighbours con-
sidered for each parameter estimate, the spatial relationships can 
be modelled more accurately, which favours the prediction of 
explanatory variables (Shabrina et al., 2021): 

 

        
Eq. 9

 
 

where thenon-fixed bandwidth b is specific to the variable k, i.e. bk. 
Model performance was assessed using the corrected Akaike 

Information Criterion (AICc) and adjusted R² values. These met-
rics confirmed that the MGWR model provides a better fit than 
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both global OLS and standard GWR models. The improvement in 
model fit underscores the relevance of accounting for spatial scale 
variability in the relationship between socio-economic factors and 
COVID-19 incidence. 

The global and local spatial autocorrelation indices were com-
puted using GeoDa software. The local models were estimated 
using MGWR software, version 2.2 (Spatial Analysis Research 
Center (SPARC), Tempe, AZ, USA), developed by Fotheringham 
et al. (2017). Output and mapping were produced using R studio. 

 
 
 

Results 
The mapping of the different socio-economic variables in Nice 

reflects social, economic and service access inequalities. Each map 
reveals a pattern of geographical polarization, with sharp contrasts 
in their spatial distribution (Figure 1). Polarization was found to be 
particularly strong for the LHDI variable, which showed a marked 
disparity between the city’s advantaged neighbourhoods 
(Centre/Southeast) and the more disadvantaged ones in the 
Northwest. Similarly, the spatial pattern of low-income housing 
(HLM) revealed a polarization between the western part where 
social housing is focused and the Centre-East where it is virtually 
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Figure 1. Cartographic representation of the independent variables.



absent. This reflects a concentration of social housing in specific 
areas, which could indicate residential segregation - some areas are 
clearly more favoured with respect to social housing than others.  

Figure 2 maps the spatial distribution of the COVID-19 inci-
dence rate across the IRIS units. It shows that no area in Nice was 
entirely spared, although the pandemic appears concentrated in 
working-class neighbourhoods in the far western and north-eastern 
parts of the city. The study period reported here, which heralds the 
start of the third wave of the pandemic, shows the extent of the epi-
demiological situation. The OLS method, used to identify signifi-
cant predictors of the prevalence rate of COVID-19 incidence in 
Nice, explained 41.0% of the variation highlighting that the pro-
portion of the population being migrants and those living in Low-
Income Housing (HLM) were positively correlated with the depen-
dent variable. The LHDI, on the other hand, revealed a negative 
correlation between the COVID-19 incidence rate and the propor-
tion of the working population using public transport and those 
aged 18 to 24 years attending school (Table 1). 

Spatial dependence was measured by defining a neighbour-
hood structure for the 144 IRIS units in Nice. To ensure the robust-
ness of spatial autocorrelation results, we tested four alternative 
spatial weighting matrices: first-order contiguity, second-order 
contiguity, inverse-distance and exponential distance matrices. The 
results are presented in Table 2. Among these, the first-order con-
tiguity matrix was retained as the main specification, as it pro-
duced the strongest and most significant spatial clustering of 
COVID-19 incidence, with a similar pattern of spatial dependence 
observed across all specifications. Although the 2nd-order contigu-
ity matrix did not reach statistical significance, both inverse-dis-
tance and exponential distance matrices were strongly significant, 
thus confirming that the observed clustering patterns were not an 
artefact of the spatial structure but indeed a reflection of robust 
spatial processes (Table 2). These results indicate that the distribu-
tion of the COVID-19 incidence rate had a significant positive cor-
relation with the incidence rates of neighbouring IRIS units during 
the study period in Nice. Spatial autocorrelation of residuals 
allowed us to check whether this dependency was captured by the 
model or whether ‘unmodelled’ spatial structures still existed 
(Table 3). To this end, Moran’s I was calculated with the weight 
matrix used for the dependent variable on the residuals of the cho-
sen classical linear regression. As seen in the table, Moran’s I on 
the residuals was not statistically significant, which made us con-
clude that there was no significant spatial autocorrelation in the 
residuals of our model. 

Still, diagnostic tests, such as LM tests, are required to assess 
the robustness of the model. The regression output allowed us to 
diagnose the spatial dependence of the residuals using a number of 
tests (supplementary data). Firstly, Moran’s error test (-0, 0508), 
with a very high p-value for the residuals of Moran’s I (p = 
0.13798), made us believe that a global spatial relationship could 
be ruled out. The LM test for the spatial lag model also had a high 

p-value (p= 0.10633), suggesting that application of a Spatial 
Autoregressive (SAR) would not be appropriate. This finding is 
reflected in the decision rule recommended by Anselin and Florax 
(1995), which is based on the significance of the tests. 
Furthermore, the LM (error) (p-value=0.07964) and the robust LM 
(error) (p=0.38707) tests indicated that we also could not use the 
Standard Error (SEM) model. These findings, consistent with the 
LM diagnostics, confirmed the absence of global spatial depen-
dence in the data. To complement this, we also estimated the out-
come of the SAR and the SEM using the first-order contiguity 
matrix. The results, reported in Table 4, showed that the spatial 
autoregressive coefficient (ρ) in the SAR model was not statistical-
ly significant (ρ = 0.0328, p = 0.783) and the spatial error coeffi-
cient (λ) in the SEM model was also non-significant (λ = -0.1353, 
p = 0.349). None of the models could improve the OLS model fit. 
These results confirmed that there was no significant global spatial 
dependence, which justified the use of local regression approaches 
such as GWR and MGWR to capture spatial heterogeneity in the 
relationships between COVID-19 incidence and socio-economic 
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Table 1. Odd Least Squares (OLS) regression. 

Variable                                Model          T-value              p 

Intercept                                        0.000               0.000               1.000 
LHDI                                            -0.319              -1.958               0.050 
School (18-24 years olds)            -0.123              -1.824               0.068 
Immigrant                                     0.218               2.061              0.039* 
Commuter                                    -0.325              -3.635            0.001*** 
HLM                                             0.257               2.380              0.017* 
LHDI, local human development index; HLM, social housing; *significance at the 
≤0.05 level; ***significance at the ≤0.001 level. 

Table 2. Global autocorrelation of the dependant variable. 

COVID incidence indicator    Moran’s I       Z-value           p 
(rate & matrix)                                    

First-order contiguity                             0,315                6.981            0.001 
2nd-order contiguity                               0,031                1.105            0.134 
Exponential distance                              0,025                6.674            0.001 
Inverse distance weighted                      0,137                5.832            0.001 
 

Table 3. Global autocorrelation of the residuals. 

Regression indicator                Moran’s I        Z-value           p 
(residual & matrix)                            

First-order contiguity matrix                 -0.030              -0.4056           0.356 
2nd-order contiguity matrix                  -0.018              -0.3341           0.367 
Inverse-distance weighted matrix         -0.051              -1.4627           0.053 
 

Table 4. Comparison of global spatial regression models. 

Model            Spatial parameter             Estimate                         p                             AIC                          R²                            LLH 

SAR                                   ρ                                 0.0328                            0,783                           1,885.06                          0.39                             -935.53 
SEM                                  λ                                 -0.1353                           0,349                           1,882.49                          0.40                             -935.24 
LLH, log- likelihood; SAR, spatial autoregressive regression; SEM, spatial error model; ρ, spatial autoregressive coefficient; λ, spatial error coefficient. 



factors. We could therefore conclude that there was local spatial 
dependence in our data.   

Among the four spatial weighting matrices tested (first-order 
contiguity, second-order contiguity, inverse-distance and exponen-
tial distance), the exponential distance spatial weighting matrix 
was selected as the reference specification for the LISA analysis of 
the COVID-19 incidence rates in Nice as it provided the most spa-
tially coherent and statistically robust clustering patterns (Figure 
3). To address the issue of multiple comparisons, pseudo p-values 
were computed using 999 Monte Carlo permutations following the 
procedure recommended by Anselin (1995). This ensured the sta-
tistical validity of the local spatial association results as illustrated 
in the accompanying significance map (Figure 3) that revealed sig-

nificant spatial clustering. We identified two HH clusters in the 
extreme western and north-eastern parts of Nice (together includ-
ing 8 IRIS units). A large LL cluster was also visible in central 
Nice (35 IRIS units) suggesting spatial concentration of low inci-
dence rates. An addition 25 IRIS units fell into the HL or LH cat-
egories, while 78 IRIS units were not statistically significant. 
These results confirmed the presence of positive local spatial 
dependence and a polarized spatial distribution of COVID-19 inci-
dence across the city during the time the study was carried out. 

We then compared the performance of global and local models. 
Table 5 summarizes key metrics (bandwidths, effective number of 
parameters, critical T-values, R² and AICc) for our local models. 
The multi-scale MGWR model provided the best performance, 
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Figure 3. Local Indicators of Spatial Association (LISA) applied to the COVID-19 incidence rate in Nice using a distance-based spatial 
weighting matrix. Left: LISA cluster typology; Right: Significance levels of local spatial associations (p-values from 999 Monte Carlo per-
mutations). 

Figure 2. Spatial distribution of the cumulative incidence rate of COVID-19 by decile. Timeframe: 4 January  to 14 February 2021. 



explaining 52% of the variance in COVID-19 incidence, outper-
forming both OLS (adjusted R²=0.389) and standard GWR (adjust-
ed R²=0.429). 

The MGWR model revealed spatial variation in the effects of 
each variable (Table 6). Figures 4 to 8 display the spatial distribu-

tion of coefficients for the five socio-economic predictors, high-
lighting how their effects vary across the city. The maps in blue 
shade show the significant estimates of local parameters based on 
the significance of the p-value at the 5% threshold. 

The maps depicted in Figures 4-8 show that all the socio-eco-
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Figure 5. Coefficient and significance of the variable 'School-enrolled - aged between 18 and 24 years' in the MGWR model.

Figure 4. Coefficient and significance of the local human development index variable in the MGWR model. 

Table 5. Comparaison between the geographically weighted models. 

Diagnostic                         GWR                                                                                      MGWR 
                                          Model                 Model         Intercept          LDHI              School         Migrant       Commuter           HLM 

Bandwidth                                 140                                                  143                    135                      143                  143                     60                        137 
Degree of dependency             0.889                      0.827                0.939                 0.887                   0.938               0.920                 0.630                    0.857 
Critical T (95 %)                      2.209                                               2.105                 2.212                   2.109               2.145                 2.687                    2.271 
AICc                                       342.074                  337.163                                                                                                                                                          
R²                                              0.471                      0.520                                                                                                                                                            
N=144 
GWR, geographically weighted regression; MGWR, multiscale geographically weighted regression; LHDI, localized human development index; HLM, 
social housing; AICc, corrected Akaike information criterion; N, number of IRIS units investiaged. 
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Figure 7. Coefficient and significance of the variable 'Population living in social housing (HLM)'.

Figure 6. Coefficient and significance of the variable ‘immigrant population' in the MGWR model. 

Table 6. Comparison of global and local parameter estimates across regression models. 

Variable                                                       OLS                                           GWR                                                                   MGWR  
                                          Coefficient    Standard     T-stat.   Standard Min     Median  Max       Mean      Standard 
                                                                     error                           error                                                                    error      Min    Median    Max      Mean 

Intercept                                       0.000               0.065            0.000          0.041     -0.129       -0.013     0.050       -0.019 *          0.023       -0.142      -0.077      -0.041    -0.076 ** 
LDHI                                          - 0.319 .             0.163           -1.958         0.028     -0.360       -0.286    -0.268       -0.299*           0.105       -0.460      -0.157      -0.127    -0.210 ** 
School (18-24-year olds)           -0.123 .              0.067           -1.824         0.022     -0.170       -0.120    -0.086       -0.123*           0.017       -0.150      -0.114      -0.083   -0.116 ** 
Immigrant                                   0.218 *              0.106            2.061          0.041      0.105         0.188     0.265        0.181*           0.021        0.184       0.213       0.265     0.217 **  
Cummuter                                -0.325 ***           0.089           -3.635         0.032     -0.387       -0.317    -0.252    -0.316***         0.165       -0.713      -0.222      -0.034  -0.280 *** 
 HLM                                          0.257 *              0.108            2.380          0.134      0.026         0.152     0.513       0.201**          0.111        0.149       0.188       0.512     0.234 ** 
Adjusted R² = 0.389 (OLS); 0.429 (GWR); 0.476 (MGWR). AIC: 501.999 (OLS); 339.918 (GWR); 333.323 (MGWR). GWR, geographically weighted regression; MGWR, mul-
tiscale geographically weighted regression; LHDI, localized human development index; HLM, social housing; AIC, Akaike Information Criterion; **significance at the ≤0.01 
level; ***significance at the ≤0.001 level. 
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nomic factors had a significant impact. The LHDI variable, the 18-
24-year-olds enrolled in school, and employed people using public 
transport all displayed a negative relationship with the COVID-19 
incidence rate. According to the MGWR model, one SD increase 
in the LHDI rate was associated with a corresponding decrease at 
the 0.32 level in COVID-19 cases per 100,000 inhabitants, reflect-
ing a moderate protective effect. As seen in Figure 4, the strongest 
local reductions was seen in the western parts of Nice (–0.460 to –
0.214), while weaker effects were observed in the Southeast (–
0.146 to –0.127). One SD increase in the proportion of 18–24-
year-olds enrolled in schools was associated with SD decrease of 
0.12 in incidence, indicating a limited protective effect. As shown 
in Figure 5, the spatially strongest, negative associations appeared 
in the western IRIS units (–0.099 to –0.083) and the weakest in the 
East (–0.149 to –0.131). For those employed using public trans-
port, the average MGWR estimate indicated that one SD increase 
was associated with a corresponding decrease of 0.28 in incidence. 

Overall, that the highest coefficients were observed in the city cen-
tre, ranging from -0.141 to -0.034 (Figure 8). 

As for the people in low-income housing (HLM) and immi-
grants, these variables positively influence the COVID-19 inci-
dence rate. According to the MGWR model, one SD increase in the 
proportion of people living HLM was associated with an increase 
of 0,25 in COVID-19 incidence. Locally, the spatial distribution 
showed the highest estimates in the West, as well as in a few IRIS 
units in the extreme eastern part of the city, with coefficient varia-
tions ranging from 0.211 to 0.512. As seen in Figure 7, notably 
affected neighbourhoods included Ariane in the Northwest and 
Pasteur in the Centre. Similarly, increases by one SD in the 
migrants led to an increase of 0.22 in COVID-19 incidence, which 
corresponded to a moderately positive effect (range: 0.23 to 0.265) 
in the extreme north-eastern and western parts of the city, while the 
lower effects had lower increases ranging from 0.184 to 0.201 
(Figure 6). 

                                                                                                                                Article

                                                                               [Geospatial Health 2025; 20:1383]                                                            [page 335]

Figure 9. Local R2 variations over the study area.

Figure 8. Coefficient and significance of the variable 'Commuters - individuals using public transportation' in the MGWR model.



The R2 value indicates that the MGWR model explains 52% of 
the variations in the COVID-19 incidence rate in Nice, which is 
higher than that shown by the OLS model. To illustrate this, Figure 
9 shows the spatial variations in local R² values in the study area 
of the COVID-19 incidence rate associated with the socio-eco-
nomic factors of COVID-19 disease distribution for each IRIS unit 
according to the MGWR model. The values with the highest R² 
(0.427≤R²≤0.61) were seen in the extreme eastern and western 
parts of the city. This indicates a strong prediction of the concen-
tration of infected cases in these areas. The values with the lowest 
R² were found in the Centre, which indicates good performance of 
the MGWR model in this study area, since we found the same 
results as the clusters previously given by LISA. 

 
 
 

Discussion 
Since the beginning of the twentieth century and throughout 

the history of pandemics, scientists have regarded human contact 
as a critical vector in the spatial spread of disease-causing viruses. 
Variations in this spread are often associated with socio-economic 
factors. In other words, different socio-economic groups may be 
vulnerable in different ways, depending on lifestyle and social sta-
tus. To explore this point, we highlighted five socio-economic fac-
tors to explain and visualize the spatial distribution of the inci-
dence rate of COVID-19. A central question was if it is completely 
random or if the incidence rate in one particular place (IRIS in our 
case) influenced that of neighbouring IRIS units. To answer this 
question, we compared GWR and its extension MGWR, which 
have been widely applied in epidemiology and socio-economic 
research. The former has proven effective in exploring spatial het-
erogeneity (Apparicio et al., 2007; Wheeler, 2009; Dziauddin & 
Idris, 2017; Han et al., 2021; Lotfata, 2022), while the latter allows 
each explanatory variable to operate at its own spatial scale (Maiti 
et al., 2021; Shabrina et al., 2021; Lotfata, 2022; Ma et al., 2022; 
Nazia et al., 2022). For example, Nazia et al. have shown that there 
is heterogeneity between the distribution of COVID-19-infected 
cases and risk factors by illustrating the spatial variation between 
the incidence rate and socio-economic factors using GWR. 

Our results show that the MGWR model outperforms global 
OLS and standard GWR in terms of model fit, highlighting the 
importance of accounting for spatial scale heterogeneity for socio-
economic predictors of COVID-19 incidence. Local Moran’s I, 
which measures spatial dependency, revealed the existence of three 
clusters in our study area: hotspots in the West and Northeast and 
a coldspot in the Centre. The analysis revealed a significant nega-
tive association between the LHDI and the incidence rate of 
COVID-19, an inverse relationship that can be explained by the 
characteristics of this indicator that assesses the standard of living 
in each area; not only based on economic data, but also on the 
well-being of its inhabitants. This indicator captures the intrinsic 
vulnerability of populations, particularly those most affected by 
the virus (Scarpone et al., 2020). Indeed, as shown in Figure 1, 
these areas are known for their concentration of social housing and 
our model supports this finding by revealing the very strong posi-
tive association between areas characterized by social housing and 
migrants on the one hand and the highest incidence rates of 
COVID-19 on the other. With the majority of migrants in low-
income housing, this positive association can be explained by the 
more precarious living conditions (overcrowding) and working 
conditions (menial jobs), which makes this population particularly 

exposed to the risk of contamination. Difficulties in accessing 
healthcare and information are also contributing factors, notably 
due to language barriers (Vang & Ng, 2023) or socio-economic sta-
tus (Kirksey et al., 2021). Despite the various confinements and 
restrictions put in place, people of migrant background face an 
increased risk of exposure to the virus, reflecting social inequali-
ties in health and ethno-racial discrimination. As mentioned above, 
this “virus of inequalities” affected several populations, particular-
ly those most at risk from respiratory or chronic diseases. Migrant 
and ‘racialized’ communities were among the workers mobilized 
to survive the crisis when out of work due to the closure of busi-
nesses, such as restaurants, hotels and domestic work designated as 
non-essential during the pandemic. Professional vulnerability thus 
increased during the pandemic, particularly among immigrants, 
which not only increased the risk of contracting COVID-19, but 
also led to loss of income, deterioration in material conditions, 
financial stress and food insecurity. Thus, the high concentration of 
COVID-19 among migrants in Nice was largely due to socio-eco-
nomic conditions, not necessarily physiological risks. 

As mentioned earlier, people using public transport to get to 
work were less likely to have COVID-19 than those using their 
own vehicles. To address this counterintuitive finding, we have 
some tentative explanations. Firstly, the public transport variable 
we used comes from census data and reflects usual commuting 
modes rather than actual mobility behaviour during the pandemic. 
It specifically captured the proportion of workers using public 
transport for home to work and return in normal times, not during 
COVID-19 restrictions. Secondly, we noted that in Nice, more than 
three-quarters of these commuting flows are intra-communal. As 
such, IRIS units with high public transport usage may reflect cen-
tral areas where better access to healthcare, stricter enforcement of 
sanitary measures or higher compliance with wearing facemasks 
could have contributed to lower incidence rates. Given these 
uncertainties, it is clear that the interpretation of this variable is 
complex. Indeed, it may be capturing features of central IRIS units 
rather than actual exposure risk, and should therefore be treated 
with caution.  

Employment category is a concept that can explain the LHDI 
variable as well as the transport variable. A person’s occupational 
category may expose him or her to a major risk of contamination, 
and work may, in most cases, involve interaction with others 
caused by frequent contact or the mode of transport used to get to 
the workplace (Rule et al., 2018). Work that cannot be conducted 
from home but necessitates human contact increases the risk of 
infection. Occupation is therefore a direct determinant of infection, 
as well as being an indirect determinant of the extent at which the 
disease spreads. Thus, work is correlated with the level of educa-
tion, a variable used to calculate the LHDI indicator. We can there-
fore conclude that a low level of education may be an indirect fac-
tor in the development of severe forms of COVID-19. A low level 
of education can also lead to low income, which can affect living 
conditions, such as housing in deprived areas, which can increase 
the risk of COVID-19 and other pathogen infections. However, it 
is important to note that the development of severe forms of 
COVID-19 is more likely related to pre-existing medical condi-
tions and social determinants of health rather than increased expo-
sure. 

Strengths and limitations 
The methodology used has several strengths; firstly, it applied 

a variety of spatial econometric techniques. Secondly, it focused 
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on an urban setting, where testing accessibility was not a barrier 
and no major policy interventions (lockdowns or vaccination 
schemes) were in effect during the study period. This temporal 
window was particularly informative as it could capture the onset 
of the third wave and the emergence of new variants, but preceded 
mass vaccination and major policy interventions. Its short duration 
also limited potential seasonal biases, offering a temporally homo-
geneous framework. Finally, the use of IRIS units added a fine-
scale approach, enabling the detection of intra-urban disparities 
that broader spatial units tend to obscure. Together, these elements 
provided a robust empirical and methodological framework to 
assess local drivers of COVID-19 spread. This study thus con-
tributes by combining disaggregated epidemiological data, socio-
economic indicators, and multiscale spatial models to reveal 
inequalities with regard to disease incidence. Even if the reliance 
on aggregated data may limit generalizability, the robustness of the 
methodology and consistency of the results with broader literature 
support its validity. 

The work is, however, not without limitations; firstly, the anal-
ysis focused on a short six-week period immediately following the 
end-of-year holidays. During this time, no restrictive policies were 
in place, allowing relatively unfiltered social interactions. The 
brevity of the period may have restricted the generalizability of the 
results by reducing the number of positive cases per IRIS, poten-
tially affecting the robustness of incidence estimates; secondly, 
COVID-19 incidence was measured using voluntarily reported test 
results, which may introduce a detection bias. Although Nice had 
wide testing availability, disparities in the test-seeking behaviour 
could have influenced case counts, especially across different 
socio-economic groups; thirdly, this analysis relied on ecological 
data aggregated at the IRIS level. While IRIS units are relatively 
homogeneous compared to larger administrative divisions, this 
scale still presents a risk of the ecological fallacy, meaning that 
inferences made at the group level may not reflect individual-level 
relationships. Nonetheless, the IRIS scale offered access to a rich 
set of contextual variables (343 initially), far more than would be 
available at the individual level; fourthly, the interpretation of the 
“public transport” variable presents a conceptual limitation, specif-
ically, the main mode of travel between home and work. 
Importantly, as most workers live and work within the city over 
three-quarters of commuting flows are intra-municipal. Therefore, 
this variable measured the share of workers who regularly use pub-
lic transportation in each IRIS under normal conditions. The sur-
prising negative correlation with COVID-19 incidence could either 
reflect a higher compliance with preventive measures or be due to 
structural characteristics of central IRIS, where public transit is 
more common but where the incidence remained lower. It is diffi-
cult to disentangle whether we captured behavioural effects or 
underlying neighbourhood traits. This ambiguous interpretation of 
the transport variable must therefore be acknowledged as a limita-
tion. In addition, our analysis was based on the cumulative inci-
dence rate. Daily or weekly data might have been more appropriate 
for a finer spatial analysis. Future research should extend our 
approach to other urban areas or explore the temporal dynamics of 
incidence using longitudinal data. 

Finally, contrary to what might have been expected, the pro-
portion of people aged between 18- and 24-years and attending 
schools was not found to be a strong factor in transmission. One 
possible explanation for this is that our study period did not cover 
the entire duration of the pandemic; these IRIS units might have 
been massively contaminated during the first waves of the epidem-

ic leading to the development of ‘heard immunity’ in the popula-
tions there by the time of our analysis.  

 
 
 

Conclusions 
This study provides new insights into the spatial determinants 

of COVID-19 incidence during a six-week window, a critical peri-
od in early 2021marked by high transmission rates in Nice. By 
relying on fine-scale IRIS units and a rich set of geolocated, socio-
economic indicators, our analysis identified key contextual factors 
shaping the spatial heterogeneity of the pandemic. 
Methodologically, the multi-scale approach revealed significant 
spatial variations in the strength and direction of associations 
between COVID-19 incidence and local determinants. The most 
disadvantaged neighbourhoods, characterized by limited develop-
ment, high concentrations of low-income housing and immigrant 
population experienced the highest infection rates. Conversely, the 
spatial relationship between public transport use and lower inci-
dence rates Unlike traditional global models, MGWR enables geo-
graphically targeted predictions and interventions tailored to intra-
urban disparities. Overall, these findings demonstrate the value of 
spatially disaggregated analysis for informing local health strate-
gies and confirm that covid-19 is strongly spatially correlated, and 
that spatial analysis is an essential step in implementing effective 
preventive measures. This article emphasizes that spatially 
informed public health strategies are essential in mitigating the 
unequal impacts of epidemics across neighbourhoods and in build-
ing more resilient, equitable urban health systems. 
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