
Abstract 
Investigating the spatial effects of population mobility on 

Human Immunodeficiency Virus (HIV) epidemics provides valu-
able insights for effective disease control. Data on the incidence 
and prevalence of HIV and socioeconomic factors from 2013 to 

2022 across 31 provinces in China were collected. The Baidu 
migration index was employed to construct inter-provincial popu-
lation migration matrices for spatial lag models to evaluate spatial 
spill-overs and influx risks associated with HIV epidemics macro-
scopically. This study also analysed the impacts of socioeconomic 
variables, conducted robustness tests for validation, and per-
formed subgroup analysis stratified by HIV incidence levels. 
Significant spatial autocorrelation of HIV morbidity was con-
firmed by finding a positive Moran’s I. The spatial lag model indi-
cated that when a given province had a 1-unit increase in HIV 
incidence, its average outflow would cause a 0.7068-unit inci-
dence rate increment in other destination provinces, while every 
unit increase of HIV incidence in other provinces would induce a 
0.7013-unit HIV average incidence rise in the original one when it 
played the role of destination on average. Furthermore, higher 
population density and lower educational attainment were associ-
ated with elevated HIV incidence (p<0.001). The robustness of the 
findings was verified, and subgroup analysis indicated that rea-
sons besides population mobility should be given priority consid-
eration in regions with higher HIV incidence. The risks of popula-
tion mobility related to the HIV epidemic were quantified, high-
lighting the necessity of developing effective and acceptable HIV 
prevention and control strategies specifically tailored for migrant 
populations. 

 
 
 

Introduction 
Human Immunodeficiency Virus (HIV) and Acquired Immune 

Deficiency Syndrome (AIDS) have remained significant global 
public health challenges for decades, consistently ranking among 
the top ten disease burdens worldwide. According to estimates 
from the Joint United Nations Programme on HIV/AIDS 
(UNAIDS), 37.7 million people were living with HIV in 2020, 
leading to 680,000 AIDS-related deaths globally (Rajasingham et 
al., 2022). The HIV prevention situation in China is worrisome, 
with the number of new infections rising annually and transmis-
sion from high-risk groups to the general population increasing. 

Considering the growing severity of the HIV transmission, 
numerous studies sought to examine its spatiotemporal patterns 
(Yuan et al., 2021). To achieve these objectives, Moran’s I, local 
Getis-Ord G∗I statistics, and Bayesian spatiotemporal models 
have been commonly employed (Otiende et al., 2020), with 
Moran’s I and Local Getis-Ord G*I statistics used to demonstrate 
the spatial autocorrelation and agglomeration of HIV epidemics 
(Dos Reis et al., 2022). The Bayesian spatiotemporal model is 
generally applied to estimate spatially structured and unstructured 
random effects, time trends, and spatiotemporal interactions, with 
results indicating that HIV exhibits significant regional hetero-
geneity, positive spatial correlation, and clear spatial clustering 
effects (Otiende et al., 2020). Additionally, the challenges in HIV 
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prevention and control have been shown to be associated with 
income, education level (Bidzha et al., 2024), urbanization rate 
(Fang et al., 2020), population density and medical accessibility 
(Espoir et al., 2021). 

Nevertheless, current studies exhibit notable limitations. Most 
models employ the spatial adjacency matrix as the weight matrix 
(Qian et al., 2014), positing that only directly adjacent regions can 
exert mutual influence (Anselin, 1988), which diverges signifi-
cantly from real-world transmission routes. HIV, being primarily 
sexually transmitted (Teng et al., 2011), necessitates direct contact 
between individuals (Das et al., 2019). Therefore, the frequency of 
interaction between regions cannot be approximated based solely 
on geographic proximity. Additionally, advancements in trans-
portation mitigate barriers to population movement, amplifying the 
risk of disease outbreaks (Nouvellet et al., 2021). Consequently, 
when analysing the spatial effects of HIV epidemics, the influence 
of population mobility must be integrated (Borkowski et al., 2021). 
On the other hand, research has been conducted to quantify the 
impacts of population mobility on the transmission of HIV, albeit 
from a non-spatial standpoint (Camlin et al., 2018; Cassels, 2020). 
However, the majority of corresponding studies have been restrict-
ed to small groups of high-risk populations over a limited follow-
up period, lacking provincial evidence on such impacts (Carvalho 
et al., 2012; Klabbers et al., 2024). Furthermore, it is imperative 
that the consistency of the influence of population mobility on 
regions with different levels of HIV prevalence be quantified fur-
ther to develop tailored policies. 

Given the limitations of previous research, this study 
employed web-crawling to obtain the provincial-level Baidu 
Migration Index data. Based on these data, specific spatial popula-
tion mobility weight matrices were calculated and integrated into 
spatial models to quantify the impacts of population mobility on 
HIV epidemics at the provincial level. Furthermore, subgroup 
analysis was conducted, particularly in areas experiencing high 
and low rates of HIV, to examine the impact heterogeneity of pop-
ulation mobility on HIV spread. 

 
 
 

Materials and Methods 

Overview of the modelling frameworks 
The analytical modelling framework is graphically summa-

rized in Figure 1. First, spatial population mobility weight matrices 
were calculated from both spill-over and influx risk perspectives. 
Spatial autocorrelation was then assessed using Moran’s I, while 
hot/cold spot analysis employed Local Getis-Ord Gi* statistics. 
Subsequently, spatial econometric models quantified population 
mobility effects on HIV epidemics from both risk perspectives. 
The robustness of these effects was tested using conventional spa-
tial adjacency and distance matrices. Finally, subgroup analyses 
stratified by HIV incidence levels were performed. Detailed 
methodological specifications follow. 

 

Spatial population mobility weight matrices 
This study employed Baidu Migration Big Data 

(https://qianxi.baidu.com/#/) to quantify interprovincial population 
mobility (Huang et al., 2017), with its validity supported by prior 
research (Yao et al., 2017). The migration data were crawled from 
the web on January 5, 2024, and included migration scale indexes 

and migrant Origin-Destination (OD) share matrices, covering the 
period from January 1, 2021, to December 31, 2023. 

The annual mean migration scale indexes, including popula-
tion outflow and inflow indices for each province, were obtained 
to present horizontal comparable population outflux and influx 
scales. Similarly, the migrant OD share matrix was categorized 
into population outflow and inflow OD share matrices. The out-
flow share matrix was composed with 31*31 elements, and each 
element oij presented the share of population mobility flowing from 
origin-region i to destination-region j in the total outflow from 
region i. And the matrix element qij for inflow OD share matrix 
demonstrated the proportion of population inflow from origin-
region j to destination-region i in total influx of region i. 
Consequently, for a given region i, the spill-over and influx vol-
umes of population mobility were analysed separately. 

The outflow scale index multiplied by the outflow share matrix 
yields the horizontal comparable population outflow from region i 
to region j, and the interaction between the weight matrix with the 
HIV incidence of origin-region i provides an average indication of 
how the HIV epidemic in region i affects destination region j. This 
spill-over of HIV presence from a given region to another is 
referred as the “spill-over risk”. With regard to population influx, 
the corresponding calculation shows how the presence of HIV in 
region j impacts the destination region i with the influence now 
referred to as the “influx risk”. The spatial outflow and inflow 
weight matrices satisfied the premise assumptions of spatial 
dependence, non-negativity, and first law of geography (LeSage et 
al., 2008; Tobler, 1970). 

Spatial autocorrelation 
Moran’s I is a statistical measure for assessing spatial autocor-

relation of geographic data, indicating whether similar values clus-
ter or disperse with a range from -1 to 1. The Moran scatter plot 
visually represents this by plotting individual observation values 
against their neighbouring averages, where points in the first and 
third quadrants indicate positive autocorrelation, while those in the 
second and fourth reflect negative autocorrelation. In addition, the 
Local Getis-Ord Gi* statistic identifies hotspots and coldspots 
based on spatial data. It measures the clustering of high or low val-
ues in localized areas by comparing observed values to expected 
values under random distribution. Thus, a significant positive Gi* 
value indicates a hotspot, where high values are concentrated, 
while a significant negative Gi* value signifies a coldspot, where 
low values are clustered.  

 

Spatial econometric models 
This study utilized the spatial lag model (SLM), Equation (1) 

and the spatial error model (SEM), Equation (2) to analyse the 
effect of spatial spill-over of HIV due to population mobility 
(Bivand, 2015). The model expressions are as follows (Anselin, 
1988): 

 

     (1) 

     (2) 
 

where, yit is the dependent variable of region i at year t; W = (wij) 
the given spatial population mobility weight matrix; r the spatial 
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autoregressive coefficient; eit and jit the error terms, v the spatial 
autocorrelation coefficient of the residual term. xit presents the 
p−dimensional explanatory vector; b is the p−dimensional 
unknown parameter vector; lt and mi denote temporal and spatial 
effects. The spatial lag and error tests with the robust Lagrange 
Multiplier (LM) were carried to determine the optimal models 
from SLM and SEM. 

The dependent variables in this study were the annual inci-
dence of newly diagnosed HIV (IH, referred to as HIV incidence 
model) and the annual number of newly diagnosed HIV (NH, 
referred to as HIV prevalence model). The independent variables 
were represented by comprehensive indicators derived using 
entropy methods (Ding et al., 2005), including Socioeconomic 
Factors (SF; a composite of the Gross Domestic Product (GDP) 
per capita, the proportion of the tertiary sector and the disposable 
income per capita); Population Density (PD; calculated from 
urbanization rate and population density); Health Resource Factors 
(HRF; based on the number of doctors and nurses per 1,000 peo-
ple, the number of hospital beds per 1,000 people and the number 
of hospitals); and Education Level (EL; measured by education 
expenditure and the proportion of the population with tertiary edu-
cation). All variables were log-transformed (ln) to mitigate poten-
tial issues related to multicollinearity and heteroscedasticity, e.g., 
lnIH, lnNH, lnSF, lnPD, lnHRF, and lnEL. 

Robustness test and subgroup analysis 
This study constructed spatial econometric models using the 

traditional spatial adjacency (adjacency perspective) and spatial 
distance (distance perspective) weight matrices for the purpose of 
evaluating the robustness of spatial models utilizing the spatial 
population mobility weight matrices. Furthermore, according to 
the results of the hotspots/coldspots analysis, subgroup analysis for 
hotspot-regions, coldspot-regions, and the remaining regions was 
conducted to estimate the spatial autoregressive coefficients after 
adjusting for the aforementioned socioeconomic variables to quan-
tify the impacts of population mobility on regions with different 
levels of HIV prevalence. 

Data sources 
The variables used in this study were obtained from the China 

Notifiable Infectious Diseases Network Reporting System 
(https://www.phsciencedata.cn/Share/index.jsp), China Statistical 
Yearbooks, China Health Statistical Yearbooks and the Baidu 
Migration Big Data database. Missing data were handled by the 
“mice” package in R (version 4.0.5), which used multivariate 
imputation by chained equations with a linear regression model, 
and a 5-fold validation bootstrap was employed. Choropleth maps 
were generated by ArcMap software (version 10.8). Statistical 
analyses regarding spatial econometric modelling were conducted 
in Stata (version 14.0) utilizing the “spatwmat” package and key 
Stata commands, including “xtcd2”, “xtcdf”, “pescadf”, 
“xtmoran”, “spregxt”, and “xsmle” packages. 

 
 
 

Results 

Population mobility and HIV incidence 
The average annual population outflow and inflow indices for 

each province in mainland China are presented in Figure S1, 
demonstrating significant regional heterogeneity in population 

mobility. High-density migration was concentrated along the 
south-eastern coast of China, while population mobility in the 
western and north-eastern regions remained relatively limited. The 
incidence of HIV per 100,000 people is depicted in Figure S2. 
Overall, the epidemiology of HIV in China exhibited distinct spa-
tial heterogeneity, with a higher incidence in the Southwest and 
lower prevalence in the northern regions. Provinces with a high 
incidence of HIV and significant population outflow included 
Sichuan, Chongqing, Guangxi, Hunan, and Guangdong. In con-
trast, Beijing, Jiangsu, Hebei, and Anhui were found to have rela-
tively lower HIV incidence despite a higher volume of population 
inflow. 

Spatial autocorrelation and hotspot analysis 
The spatial autocorrelations of the dependent variables were 

assessed by estimating the Moran’s I from 2013 to 2022 (Table S1, 
Figures S3 and S4). From both the spill-over and influx risk per-
spectives, the significant spatial autocorrelations of lnIH and lnNH 
were confirmed, as indicated by non-zero Moran’s I (p<0.001). 

The results of the Local Getis Gi* statistic for hotspots and 
coldspots of lnIH and lnNH are presented in Figures 2 and 3, 
respectively. In general, the hotspots of HIV incidence were con-
centrated in Sichuan, Chongqing, Yunnan, Guizhou, and Guangxi, 
whereas significant coldspots were seen in Inner Mongolia, Jilin, 
Liaoning, Beijing, and Hebei (Figure 2). For the number of people 
living with HIV, the hotspots with 95% significance level were 
located in the south-western region, while the northern region 
emerged as a region with notable coldspots (Figure 3). These 
results revealed clear spatial autocorrelation and heterogeneity in 
HIV distribution. 

Cross-sectional dependency and stationary  
Prior to establishing the spatial models, it was essential to pre-

vent potential errors. To this end, we employed the Pesaran 
(Pesaran, 2015) cross-sectional dependence (CD) test (Table S2), 
which revealed significant CD concerns. Consequently, the tradi-
tional first-generation unit root tests were not applicable. Instead, 
the adjusted Im-Pesaran-Shin (CIPS) test (Im et al., 2003) and the 
co-integrated augmented Dickey-Fuller (CADF) test (Dickey et 
al., 1979) were utilized, and the stationarity of each variable was 
confirmed (Table S2). 
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Figure 1. Flow diagram of the modelling framework.



Estimation results of spatial lag models  
Based on the results of the LM and the robust LM tests (Table 

S3), the spatial lag models were ultimately selected with statistical 
significance set at the 0.001 level. The estimation results from both 
spatial spill-over and influx risk perspectives are shown in Table 1. 

The Hausman test (Hausman, 1978), a statistic assisting the 

choice between different estimators in econometrics panel data 
analysis, was used to determine whether unique errors were corre-
lated with the regressors. A positive outcome of this test indicates 
that the random effects estimator is inconsistent, which means that 
the fixed effects estimator should be preferred. Here, it indicated 
that random effect was appropriate for HIV incidence model, while 
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Figure 2. Hotspots of HIV incidence largely concentrated in the 
south-western provinces with coldspots located in the northern 
provinces. Statistical approach: local Getis Gi*. A) 2013; B) 2022. 

Figure 3. Hotspots of HIV prevalence largely concentrated in the 
south-western provinces with coldspots located in the northern 
provinces. Statistical approach: local Getis Gi*. A) 2013; B) 2022. 
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Table 1. Estimation outcomes of spatial lag models. 

                                Spill-over risk perspective                                                         Influx risk perspective 
                               IH Result (SE)                     NH Result (SE)                       IH Result (SE)                          NH Result (SE) 
MAIN 

Intercept                    -0.3441** (0.1515)                                      /                                       -0.3567** (0.1514)                                           / 
lnSF                             0.0181 (0.0847)                            0.0736 (0.0845)                             0.0226 (0.0845)                                 0.0812 (0.0842) 
lnPD                         0.1239*** (0.0421)                      0.1536*** (0.0414)                       0.1246*** (0.0420)                           0.1548*** (0.0412) 
lnHRF                       0.3146*** (0.0481)                      0.3261*** (0.0479)                       0.3147*** (0.0479)                           0.3267*** (0.0477) 
lnEL                         -0.1695*** (0.0578)                    -0.1660*** (0.0574)                      -0.1624*** (0.0576)                          -0.1563*** (0.0573) 
SPATIAL 

ρ                                0.7068*** (0.0480)                      0.7417*** (0.0433)                       0.7013*** (0.0474)                           0.7360*** (0.0428) 
LLH                                  270.2796                                       363.8884                                        271.5862                                            365.2544 
Hausman                             3.5900                                       24.6000***                                        2.9600                                            24.4400*** 
IH = HIV incidence model; NH = HIV prevalence model; SE = standard error: lnSF = socioeconomic factors; lnPD = population density; lnHRF = health resource factors; lnEL 
= education level; ρ = spatial autoregressive coefficient; LLH = log-likelihood; *p<0.1; **p<0.05; ***p<0.001. 



fixed effect was identified for HIV prevalence model. From the 
spill-over risk perspective, the spatial autoregression coefficient 
for HIV incidence model was 0.7068 (p<0.001), indicating that for 
each unit rise in HIV incidence in a province with large-scale pop-
ulation outflow, the average incidence in the destination provinces 
surged by 0.7068 units (logarithmic transformation applied to all 
variables). The HIV prevalence model also demonstrated a signif-
icant spatial spill-over effect, with a spatial autoregression coeffi-
cient of 0.7417 (p<0.001). From the influx risk perspective, one 
unit increase of HIV incidence in the province of origin signifi-
cantly impacted such values in destination provinces (=0.7013, 
p<0.001). Specifically, a one-unit growth in the number of people 
living with HIV in the province of origin resulted in a correspond-
ing rise of 0.7360 in the number of people living with HIV in the 
destination provinces. For a specific province i, when serving as 
the origin of population mobility with a 1-unit increase in HIV 
incidence, the resultant outflow contributes to an average unit, 
resulting in an increment of 0.7068 among the destination 
provinces. Conversely, when a province i functions as a destina-
tion, each unit increase in HIV incidence in other originating 
provinces would lead to an average unit rise of 0.7013 in i. This 
explanation is equally applicable to the HIV prevalence model. 

The lnSF, obtained using the entropy method (Ding et al., 
2005), exhibited a positive but statistically insignificant effect on 
the HIV epidemic. In contrast, the linear effects of lnPD, lnHRF 
and lnEL were statistically significant at the 0.001 level. From the 
spill-over risk perspective, the elastic lnPD coefficients implied 
that for each unit increase in population density, the HIV incidence 
increased by 0.1239, assuming all other conditions remaining con-
stant. In both the spill-over and influx perspectives, the negative 
lnEL coefficients suggested that a higher level of education was 
associated with lower HIV data. 

Decomposition of spatial effects 
The decomposition of spatial influences was presented in 

Table S4. The direct, spill-over, and total lnSF effects on the HIV 
levels were positive but statistically insignificant. In contrast, lnPD 
exhibited statistically significant positive, direct spill-over effects 
suggesting that an increase in population density in a given region 
not only exacerbated its own HIV epidemic but also contributed to 
a more severe HIV prevalence in other migration destination 

provinces. lnEL was negative and highly significant at the 0.001 
level, both with respect to spill-over and influx risk, indicating that 
increased investment in education in a given region should not 
only be able to effectively reduce its own HIV epidemic, but also 
the infection rates in neighbouring provinces with frequent popu-
lation mobilities. 

Spatial lag models and subgroup analysis 
In both the adjacency and distance perspectives (Table 2), the 

estimation results of the spatial coefficients were consistent with 
those in the spill-over and influx risk perspectives thereby initially 
confirming the robustness of the base SLMs. 

The results of subgroup analysis for hotspot-regions (Sichuan, 
Chongqing, Guizhou, Yunnan, Guangxi, and Hunan), coldspot-
regions (Inner Mongolia, Jilin, Liaoning, Beijing, Tianjin, Hebei, 
Shaanxi, and Jiangsu) and the remaining regions, i.e. the other 17 
provinces, are presented in Table 3. In each scenario, the estimated 
values for the hotspot-regions ranged from 0.2457 to 0.2832, indi-
cating that the spatial spill-over effects caused by population 
mobility in areas with more serious HIV epidemics were notice-
ably lower than in the overall situation. Meanwhile, the spatial 
autocorrelation coefficients for the coldspot-regions and the 
remaining regions ranged from 0.5301 to 0.7008, exhibiting com-
parable results to the overall situation, with only slight differences. 
This indicates that south-western China has its own unique drivers 
for becoming HIV hotspot areas. In addition to population mobili-
ty, rampant drug use (Li et al., 2014), frequent commercial sex 
(Drake et al., 2016), low levels of economic development and the 
increasing proportion of ceratain high-risk groups, such as Men 
who have Sex with Men (MSM) (Liu et al., 2013) may be the pos-
sible reasons. 

 
 
 

Discussion 
This study revealed significant spatial spill-over effects and 

influx risks caused by population mobility against the background 
of HIV epidemics. Notably, Sichuan, Chongqing, Hunan, and 
Guangdong were identified as areas facing severe HIV epidemics 
coupled with high levels of population outflow. In contrast, regions 
such as Beijing, Jiangsu, Shanghai, and Anhui exhibited relatively 
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Table 2. Robustness analysis from adjacency and distance perspectives. 

                                     Adjacency perspective                                                                Distance perspective 
                              IH Result (SE)                       NH Result (SE)                      IH Result (SE)                          NH Result (SE) 
MAIN 

Intercept                   -0.3165** (0.1555)                                       /                                        -0.2943 (0.1505)                                             / 
lnSF                            0.0288 (0.0868)                             0.0739 (0.0863)                          0.0447** (0.0828)                               0.0897 (0.0811) 
lnPD                        0.1182*** (0.0430)                       0.1464*** (0.0422)                      0.1048*** (0.0410)                           0.1397*** (0.0398) 
lnHRF                      0.3266*** (0.0490)                       0.3395*** (0.0489)                      0.2862*** (0.0470)                           0.3019*** (0.0461) 
lnEL                        -0.1526*** (0.0595)                       -0.1462** (0.0589)                       -0.1886** (0.0561)                           -0.1601*** (0.0550) 
SPATIAL 

ρ                               0.5726*** (0.0438)                       0.6157*** (0.0403)                      0.7802*** (0.0451)                           0.8077*** (0.0395) 
LLH                                 262.0693                                        355.0350                                       281.0926                                            380.1507 
Hausman                            1.5700                                        31.1000***                                       2.5300                                            28.8400*** 
IH = HIV incidence model; NH = HIV prevalence model; SE = standard error; lnSF = socioeconomic factors; lnPD = population density; lnHRF = health resource factors; lnEL 
= education level; ρ = spatial autoregressive coefficient; LLH = log-likelihood; *p<0.1; **p<0.05; ***p<0.001. 



mild HIV prevalence but experienced substantial population 
inflow. Given the correlation of HIV and population mobility, it is 
essential to implement tailored policies. 

HIV epidemics from the population mobility  
perspective 

Currently, numerous studies have demonstrated significant spa-
tial spill-over effects and spatial clustering in HIV prevalence 
(Mosnier et al., 2019; Qian et al., 2014), as evidenced by Moran’s I 
(Yuan et al., 2023), Local Getis Gi* statistics (Peng ZH, 2011; Wang 
et al., 2016), and spatial autoregression coefficients results (Das et 
al., 2019). In studies addressing population mobility, Hu et al. (2020) 
collected 85 days of data from a social networking app for MSM in 
mainland China, finding that five mobility centres (Guangdong, 
Beijing, Shanghai, Zhejiang, and Jiangsu) accounted for 57.2% of the 
total population flow of MSM in China, highlighting regional migra-
tion heterogeneity within this high-risk HIV group. Utilizing the net-
work model based on transmission and molecular chain characteriza-
tion, Yuan et al. (2023) concluded that even after diagnosis, HIV 
patients continued to travel frequently across cities and provinces, 
thereby contributing strongly to the spread of the HIV virus. Duncan 
et al. combined self-reported spatial mobility data of MSM with real 
GPS location data and concluded that MSM were more likely to 
engage in sexual activity in areas different from their places of resi-
dence, suggesting that the spatial mobility of high-risk groups may be 
one of the factors driving the increasing rates of HIV in the destina-
tion regions (Duncan et al., 2020).  

Treatment for prevention 
It would be useful to promote a “treatment as prevention” strat-

egy that includes early diagnosis and timely treatment to reduce 
community viral load (Nguyen et al., 2011) and ensure that health-
care facilities provide accessible medical services for migrant pop-
ulations. Offer necessary economic support to migrant popula-
tions, such as transportation subsidies and reductions in medication 
costs are needed to ensure they can consistently access treatment. 
Development of a robust data collection system would help to reg-
ularly assess the implementation effectiveness and coverage of the 
“treatment as prevention” strategy, ensuring that the health needs 
of migrant populations are met. This approach should also utilize 
data analysis to identify high-risk groups within the migrant popu-
lation and make timely adjustments to intervention strategies based 
on these findings. 

Recommended policies 
Consequently, policies implemented with respect to population 

mobility should be useful and customized counselling and testing 
services should be developed to meet the needs of migrant popula-
tions, ensuring that these services are accessible and culturally sen-
sitive (Obeagu et al., 2023). There is a need for conduct-targeted 
health education initiatives aimed at increasing awareness among 
migrant populations regarding HIV transmission routes, preventive 
measures and treatment options and the use of self-testing tools to 
empower individuals in migrant populations to easily access HIV 
testing and status awareness should be promoted. It would also be 
essential to adhere strictly to privacy protection regulations when 
providing services and establish transparent feedback mechanisms 
to involve migrant populations in service design and evaluation. 
Finally, structural barriers to service access must be eliminated to 
ensure that migrant populations have equitable access to HIV treat-
ment and prevention services regardless of their residency status 
(Körner, 2007). Policymakers should solicit the views of migrant 
populations broadly to ensure that policies are fair, just and 
respectful of each individual’s rights (Ibrahim et al., 2008). 

Further, integrated public health strategies that promote inter-
provincial cooperation should be instituted to provide ongoing 
HIV care and support for migrant populations (Pai et al., 2018). 
When implementing such policies, improper collection and use of 
data could lead to breaches of privacy, adversely affecting the safe-
ty and freedom of migrant populations. Adherence to strict data 
protection standards when collecting personal health data is need-
ed to ensure transparency regarding how this information will be 
used, thereby enabling migrant populations to understand the 
implications of sharing their information. 

Limitations 
The Baidu Migration Index only provided macro-level hori-

zontal comparable data, and the conjoint-analysis of micro-level 
population mobility patterns, especially among the high-risk 
groups, may facilitate a more precise assessment. However, 
research into the quantification and utilisation of such population 
mobility patterns, both from macro and micro perspectives remains 
deficient. Furthermore, the dataset has only been available online 
for a limited period, which may have led to an overestimation of 
the overall level of population mobility when applying the spatial 
weighting matrix. The temporal attributes of the data precluded the 
analysis of population mobility on HIV epidemics specific during 
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Table 3. Subgroup analysis of Hotspot-, Coldspot-, and Remaining-regions. 

                                                                                      IH                                                                           NH 
                                                                                   ρ (SE)                                                                      ρ (SE) 

Spill-over risk perspective 

Hotspot-regions                                                          0.2457*** (0.1223)                                                           0.2820** (0.1214) 
Coldspot-regions                                                        0.5301*** (0.0940)                                                          0.6000*** (0.0847) 
Remaining-regions                                                     0.6423*** (0.0651)                                                          0.7008*** (0.0580) 
Influx risk perspective 

Hotspot-regions                                                           0.2469** (0.1225)                                                            0.2832** (0.1216) 
Coldspot-regions                                                        0.5314*** (0.0937)                                                          0.6034*** (0.0820) 
Remaining-regions                                                     0.6248*** (0.0635)                                                          0.6852*** (0.0570) 
Note: IH = HIV incidence model; NH = HIV prevalence model; SE = standard error; the adjusted covariates were lnSF (socioeconomic factors), lnPD (population density), lnHRF 
(health resource factors), and lnEL (education level); ρ = spatial autoregressive coefficient; *p<0.1; **p<0.05; ***p<0.001. 



a certain holiday. Finally, the impact of undocumented populations 
may have further contributed to estimation bias in the models. 

 
 
 

Conclusions 
The study demonstrated that, from a spill-over perspective, 

each increase of HIV incidence in the original province resulted in 
a unit average incidence rate increment of 0.7068 in destination 
provinces. Furthermore, analogous statistically significant effects 
of population mobility on local HIV epidemics were identified 
from influx perspectives, and the impact of this mobility on HIV 
epidemics was found to be inconsistent when examined through 
subgroup analyses of hotspots and coldspots. In consideration of 
these findings, the development of bespoke, accessible services in 
a culturally sensitive and migrant-specific manner would be useful. 
Finally, the implementation of a comprehensive “treatment as pre-
vention” strategy, and the removal of structural barriers to equi-
table service access irrespective of residency status may be consid-
ered as feasible policies for HIV prevention from a population 
mobility perspective. 
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