
Spatial epidemiology, defined as the study of spatial patterns 
in disease burdens or health outcomes, aims to estimate disease 
risk or incidence by identifying geographical risk factors and pop-
ulations at risk (Morrison et al., 2024). Research in spatial epi-
demiology relies on both conventional approaches and Machine-
Learning (ML) algorithms to explore geographic patterns of dis-
eases and identify influential factors (Pfeiffer & Stevens, 2015). 
Traditional spatial techniques, including spatial autocorrelation 
using global Moran’s I, Geary’s C (Amgalan et al., 2022), and 
Ripley’s K Function (Kan et al., 2022), Local Indicators of Spatial 
Association (LISA) (Sansuk et al., 2023), hotspot analysis by 
Getis-Ord Gi* (Lun et al., 2022), spatial lag models (Rey & 
Franklin, 2022), and Geographically Weighted Regression (GWR) 
(Kiani et al., 2024) are designed to explicitly incorporate the spa-
tial structure of data into spatial modelling, often referred to as 
spatially aware models (Reich et al., 2021). Beyond these models, 
several other spatially aware approaches that have been widely 
applied in epidemiological studies include but are not limited to 
Bayesian spatial models that account for spatial uncertainty in dis-

ease mapping, such as Bayesian Hierarchical models, Conditional 
Autoregressive (CAR), and Besage, York, and Mollie’ (BYM) 
models (Louzada et al., 2021). Bayesian methods are statistically 
rigorous techniques that assume neighboring regions share similar 
values. Kulldorff’s Spatial Scan Statistic is another traditional spa-
tial technique that uses a moving circular window to extract sig-
nificant disease clusters (Tango, 2021). Moreover, geostatistical 
models such as Kriging and Inverse Distance Weighting (IDW) 
allow for continuous spatial interpolation of health data (Nayak et 
al., 2021). 

Most spatial models are formulated to inherently embed spa-
tial dependency and spatial non-stationarity, acknowledging that 
diseases are not randomly dispersed but influenced by spatial rela-
tionships, neighbourhood effects (local spatial interactions), and 
regional connectivity, such as spatial networks and movement 
(Kianfar & Mesgari, 2022). For instance, Spatial Lag Models 
(SLM), another widely recognized type of spatially driven tech-
nique, introduce spatial dependencies by incorporating neighbour-
ing values as predictors. Since epidemics rarely spread randomly, 
the built-in spatial structure in traditional spatial analysis tech-
niques plays a fundamental role in spatial epidemiological model-
ling approaches (Gaudart et al., 2021). However, the high compu-
tational complexity of existing conventional methods, especially 
Bayesian geostatistical and related models, and others limitations 
in predictive accuracy due to assumptions like linear relationships 
or stationarity in spatial processes might reduce both their appli-
cability and validity for large-scale implementation (Kwan, 2021). 

To handle large-scale data and overcome limiting assumptions 
regarding the distribution of predictors, Artificial Intelligence 
(AI)—along with the rapid rise of ML and Deep Learning (DL) as 
specific AI techniques—has revolutionized spatial epidemiology 
by introducing new innovations in disease mapping and prediction 
(VoPham et al., 2018). Compared to traditional spatial analysis 
techniques, these advanced computational AI methods generally 
offer enhanced predictive accuracy due to their capability of 
uncovering complex, non-linear relationships in epidemiological 
data (Wiemken & Kelley, 2020). These approaches are broadly 
categorized into two main types of supervised and unsupervised 
algorithms (Alloghani et al., 2020), where the former are com-
monly applied for regression and classification purposes, and the 
latter to detect hidden patterns and identify clusters. Supervised 
learning approaches involve training models based on labeled 
data, where each input is associated with a known output. 
Conversely, models in unsupervised learning approaches are pro-
vided with unlabeled data. 

For instance, supervised algorithms include Random Forest 
(RF), which is widely used in spatial epidemiology as an ensemble 
learning algorithm for its ability to handle high-dimensional, non-
linear and complex interactions among risk factors. It reduces the 
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risk of overfitting by combining multiple models through ensem-
ble averaging, a technique that improves accuracy by averaging 
predictions from multiple models (bagging). Furthermore, RF 
models can provide feature importance rankings within datasets 
(Andraud et al., 2021). Decision tree is another commonly used 
non-parametric supervised modelling approach that classifies a 
population into branch-like segments to construct an inverted tree 
with a root node, internal nodes, and leaf nodes (Song & Lu, 2015). 
Gradient Boosting Machines (GBM) including XGBoost, Light 
GBM, and CatBoost, also excel in high-accuracy epidemiological 
predictions by sequentially building trees and correcting errors 
from previous iterations (boosting) (Li, 2023). Other powerful 
classification methods include Support Vector Machines (SVMs), 
which can classify disease hotspots, predict infection risks, and 
identify outliers in epidemiological data (Muhammad et al., 2021). 
Additionally, deep learning algorithms, as a subset of Artificial 
Neural Networks (ANNs) consisting of multi-layered neural nets 
(deep architectures), perform well when the underlying complex 
relationships among variables are poorly understood, such as pre-
dicting disease incidence where synergetic interaction effects 
between environmental conditions, socioeconomic factors and 
population dynamics make it challenging for traditional models to 
accurately capture patterns (Kianfar et al., 2022). Unsupervised 
learning algorithms include K-means as a partition-based cluster-
ing algorithm that identifies disease incidence clusters and ana-
lyzes risk patterns by classifying regions into groups based on sim-
ilar characteristics (Hutagalung et al., 2021). Hierarchical 
Clustering (HC) is another unsupervised algorithm that creates a 
nested hierarchy of clusters, particularly applicable in analyzing 
health disparities at multiple scales (Uribe et al., 2018). 

Spatial epidemiology increasingly relies on ML-based meth-
ods to generate outputs such as disease risk maps, hotspot identifi-
cation, environmental exposure assessments, and spatiotemporal 
prediction models. Despite their computational efficiency and 
strong predictive performance compared to traditional spatial tech-
niques, ML algorithms are fundamentally “aspatial”, meaning they 
do not explicitly account for spatial dependencies and geographi-
cal relationships within datasets (Nikparvar & Thill, 2021). While 
these relationships can be implicitly captured through patterns in 
the data, this approach may be insufficient for accurately modeling 
complex spatial interactions and underlying heterogeneity that 
influence disease distribution and the identification of influential 
risk factors (Rocha et al., 2018). Unlike spatially explicit and geo-
statistical methodologies, traditional ML models rely solely on 
data-driven patterns, which can result in outputs that inadequately 

reflect local variations and spatial heterogeneity. Consequently, 
ML models may overlook critical spatial nuances and, while they 
often outperform classical spatial methods, they are not yet the 
most efficient approach for achieving comprehensive epidemio-
logical insights. 

Table 1 summarizes the major distinctions between the main 
spatial analysis techniques and traditional ML models. 

Moving forward: integrating spatial dependence 
into ML models 

Do epidemiologists need to prioritize spatial awareness over 
higher predictive accuracy, or can they integrate the strengths of 
both approaches to achieve superior epidemiological insights? The 
most effective way to achieve the highest level of accuracy in epi-
demiological studies is to equip ML frameworks with spatial 
dependence. These hybrid models offer a more comprehensive 
solution by integrating the predictive strengths of ML algorithms 
with spatial intelligence of traditional spatial analysis techniques. 
Several hybrid models have been proposed in recent years to 
enhance both predictive accuracy and spatial interpretability. For 
instance, Spatial Random Forest (SRF) has been implemented to 
incorporate spatial dependencies to improve model accuracy in 
spatially autocorrelated data (Talebi et al., 2022). Geographically 
Weighted Random Forest (GWRF) further refines RF by allowing 
relationships between risk factors and outcomes to vary across 
space, accounting for spatial heterogeneity by adapting concepts 
from traditional GWR (Mollalo et al., 2024). Spatial XGBoost, 
used in health disparity assessments and spatiotemporal predic-
tions, is another composite modelling method that enhances spatial 
predictive efficiency by incorporating spatial feature engineering 
such as spatial lag terms and distance-based weight matrices into 
the ML model (Wu et al., 2021). Moreover, integrating ensemble 
ML algorithms with Spatiotemporal Gaussian Process Regression 
(ST-GPR) provides us with another hybrid approach by capturing 
spatial dependence in data. This hybrid framework incorporates 
the strengths of ensemble techniques in detecting complex rela-
tionships with ST-GPRs ability to model spatial autocorrelation 
through covariance functions (Lv et al., 2024). Another novel spa-
tially intelligent regression method which incorporates spatial non-
stationarity is Geographically Neural Network-Weighted 
Regression (GNNWR), which blends deep learning with GWR, 
allowing for spatially varying coefficients while leveraging neural 
networks for complex pattern recognition. In other words, it retains 
the interpretable framework of traditional GWR while benefiting 
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Table 1. Differences between spatial analysis techniques and traditional ML models. 

Feature                                Spatial analysis techniques                                                   ML-model 

Spatial Awareness                      Explicitly incorporate spatial neighborhood and dependencies         Do not inherently model spatial relationships 
Spatial Autocorrelation              Incorporate autocorrelation using spatial weights                              Do not adjust for autocorrelation 
Spatial Heterogeneity                Allow relationships to change across space                                        Assume global relationships 
Data Requirements                    Require well-structured spatial data with coordinates                        Can work with non-spatial data efficiently 
Robustness to Noise                  Sensitive to spatial data quality and missing values                           Can be robust with sufficient data and regularizationa 
Model Flexibility                       Use predefined spatial weights and functions                                    Can learn complex, non-linear patterns 
Interpretability                           Transparent, explain spatial effects and relationships                        Often a 'black box' with limited interpretability 
Computational Complexity       Computationally demanding but interpretable                                   Require large datasets and high processing power 
Scalability                                  Limited in handling very large datasets                                              Can scale effectively with big data 
a Regularization is a technique used to prevent models from overfitting by adding constraints or penalties to the learning process. 



from neural networks’ capability of modelling non-linear depend-
encies. By incorporating temporal dynamics, Geographically and 
Temporally Neural Network-Weighted Regression (GTNNWR) 
also extends the GNNWR composite approach, making it one of 
the most enhanced GeoAI models applicable for spatiotemporal 
epidemiological studies (Yin et al., 2024).  

Notably, some potential challenges of hybrid models include 
computational complexities, parameter tuning difficulties, and 
scalability constraints, which can be overlooked to some extent as 
these spatially informed AI models provide significant improve-
ments in spatial epidemiology compared to traditional non-hybrid 
approaches. During the COVID-19 pandemic, for instance, hybrid 
models demonstrated substantial improvements in hotspot identifi-
cation and outbreak prediction outputs (Lucas et al., 2023). This 
composite modeling approach allowed for both spatial awareness 
and higher accuracy simultaneously, leading to better resource 
allocation in affected areas (Du et al., 2020). 

In conclusion, rather than viewing traditional spatial analysis 
techniques and ML algorithms as competitors, the future of spatial 
epidemiology lies in their logical integration. By developing 
hybrid models that leverage both spatial intelligence and ML capa-
bilities, researchers and policymakers can gain deeper insights into 
disease patterns, enhance risk prediction, and ultimately improve 
public health interventions. 
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