
Abstract 
Rocky Mountain Spotted Fever (RMSF) is a potentially fatal 

tick-borne disease historically prevalent in the eastern and south-
eastern U.S. Since the early 2000s, there has been a notable rise in 
RMSF cases in the south-western U.S. Despite the documented 
role of dogs in tick-borne disease transmission, research on the 
influence of other factors, such as veterinary care access, climatic 
conditions and landscape characteristics on RMSF incidence is 
limited. This study investigated the combined impact of these fac-
tors on RMSF using county-level temperature, relative humidity, 
precipitation, land cover, dog populations and veterinary care 
access in Arizona from 2006 to 2021. Employing a spatial negative 
binomial regression model, the study revealed significant associa-
tions between veterinary care access, precipitation, relative humid-
ity, shrubland, and RMSF incidence across three models incorpo-
rating lagged effects (0-month, 1-month, and 2-month) for climatic 
variables. A key finding was that counties experiencing higher vet-
erinary care access were more likely to report lower RMSF case 
counts (incidence rate ratio (IRR): 0.9237). The mean precipitation 
consistently showed the highest positive IRR (1.8137) across all 
models, indicating its strong influence. In contrast, relative humid-
ity (IRR: 0.9413) and shrubland presence (IRR: 0.9265) demon-
strated significant negative associations with RMSF incidence. 
These findings underscore the importance of veterinary care 
access, climatic factors, and land cover in shaping RMSF dynam-
ics, particularly in regions with increasing incidence rates.  

 
 

 
Introduction 

Rocky Mountain Spotted Fever (RMSF) is a potentially fatal 
tick-borne disease (TBD) caused by the bacterium Rickettsia rick-
ettsii. It is one of the most severe rickettsial infections in humans 
and is considered the deadliest tick-transmitted disease in the 
United States (U.S.) (Biggs et al., 2016; Deshpande et al., 2024). 
The disease disproportionately affects communities across the 
U.S., particularly in the southern and south-western regions 
(Folkema et al., 2012; Traeger et al., 2015). RMSF has an average 
incubation period of 3-14 days and its tick vectors follows a three-
stage life cycle, with larvae and nymphs primarily infesting small 
animals, such as mice, while adult ticks prefer larger mammals, 
including raccoons and dogs (Nelson, 2015). The primary vectors 
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of R. rickettsii are Dermacentor variabilis (American Dog Tick) 
and D. andersoni (Rocky Mountain Wood Tick) though 
Rhipicephalus sanguineus (Brown Dog Tick) has emerged as a key 
vector in the Southwest (Demma et al., 2006; Traeger et al., 2015). 

Although RMSF derives its name from the Rocky Mountains, 
it is more prevalent in the central and southeastern United States. 
Currently, the highest incidence of RMSF cases is reported in 
Arkansas, Oklahoma, Missouri, Tennessee, and North Carolina, 
which collectively account for nearly 60% of national cases (CDC, 
2021). The disease has also been documented in Arizona, New 
Mexico, Utah, Montana, Nevada and Texas, though the incidence 
in these states is comparatively lower. Over the past two decades, 
the Centers for Disease Control and Prevention in the U.S. (CDC) 
has observed a significant upward trend in RMSF cases, with the 
incidence rate increasing from 2 cases per million in 2000 to over 
8 cases per million in 2008 (CDC, 2021). Although RMSF was 
rarely reported in Arizona historically, this State has seen an 
increase in recent years associated with other tick species (CDC, 
2021). In 2003, the first documented case of RMSF transmitted by 
the Brown Dog tick was reported in Arizona (Demma et al., 2005). 
Since then, the Arizona Department of Health Services (ADHS) 
has documented more than 450 cases, predominately among 
Native Americans (ADHS, 2023). The average annual incidence in 
the Navajo Nation, the largest indigenous tribe in the U.S. occupy-
ing 70,000 square km of land in north-eastern Arizona, southeast-
ern Utah, and north-western New Mexico, was 136 cases per 
100,000 persons (2009-2012), more than 150 times greater than 
the national average (Drexler et al., 2014). This rate far exceeds 
RMSF incidence among non-indigenous populations in the south-
western U.S.  

Indigenous communities often have fewer resources to prevent 
and treat RMSF, exacerbating the impacts of this disease (Alvarez 
et al., 2014). Since 2012 the number of cases reported in the 
Navajo Nation has declined—for instance, one county reported a 
decrease from 84 cases (2006–2012) to 36 cases (2012–2018) 
(ADHS, 2023) —due to intervention efforts focused on the Brown 
Dog tick tests and treatment. However, reported cases began 
increasing again in 2018 and no testing for dogs has been conduct-
ed since the COVID-19 pandemic due to the lack of resources for 
RMSF prevention and control and reduced access to veterinary 
health care (Nelson, 2015; ADHS, 2023; Navajo Nation Animal 
Control Program, 2023), manifested through decreased operational 
capacity of existing facilities and disruptions to community-based 
animal health programs serving rural areas (ADHS, 2023; Navajo 
Nation Animal Control Program, 2023). Dog overpopulation, com-
mon across Navajo communities, further compounds the problem 
as dogs are a common host of Brown Dog ticks that transmit 
RMSF. Information from the Navajo Nation Veterinary 
Management Program (NNVP) indicates that this kind of tick is 
the primary one found on dogs in the area (Navajo Nation Animal 
Control Program, 2023).  

Previous studies have highlighted the critical role of dogs as 
reservoirs for R. rickettsii. Research by Backus et al. (2023) 
emphasizes the link between roaming dogs and intense tick infes-
tations on the one hand and RMSF outbreaks on the other in south-
western U.S. and northern Mexico (Alvarez-Hernandez et al., 
2020; Backus et al., 2023). Limited veterinary care access (VA) 
and poor tick control measures exacerbate the disease spread, par-
ticularly in underserved communities. Community-based interven-
tions, such as those described by Drexler et al. (2014) and Brophy 
et al. (2024), have effectively reduced tick populations and RMSF 

incidence through coordinated efforts involving veterinary care, 
public health education, and tick control programs (Drexler et al., 
2014; Brophy et al., 2024).  

The impact of anthropogenic and climate factors on TBDs has 
been widely studied, with numerous studies highlighting the corre-
lation between these diseases and climate variability (Randolph, 
2004; Süss et al., 2008; Georgescu et al., 2012; Raghavan et al., 
2016; Amulyoto et al., 2018). Climate change, characterized by 
rising temperatures and extended tick seasons, has been linked to 
the spread of diseases such as tick-borne encephalitis (TBE) and 
Lyme Borreliosis (LB), which are increasingly recognized as pub-
lic health concerns in Europe and North America (Süss et al., 2008; 
Bouchard et al., 2019). Ticks rely on specific environmental con-
ditions, including moisture, vegetation and land cover patterns to 
complete their life cycles, making these factors critical for predict-
ing TBD distribution (Raghavan et al., 2016; Bouchard et al., 
2019). For example, RMSF tick activity is influenced by humidity, 
with studies showing that higher average humidity and poverty 
levels in the central Midwestern U.S. positively correlate with 
RMSF incidence (Traeger et al., 2015; Raghavan et al., 2016). 
Ticks linked to RMSF have been found in woods and bushes 
(Gottlieb et al., 2018). Additionally, climate change has been 
shown to affect rodent-borne RMSF cases, highlighting the con-
nection between environmental conditions and disease transmis-
sion (Gubler et al., 2001). In the Southwest, rising temperatures 
result in a longer tick season, increasing opportunities for RMSF 
transmission (Backus et al., 2024). Overall, these findings empha-
size the importance of climatic factors and environmental condi-
tions in understanding and predicting TBD dynamics, as ticks 
require specific habitats to survive and reproduce (Álvarez-López 
et al., 2021; Newhouse et al., 1986).  

Limited research has explored how access to veterinary care, 
climate conditions, and landscape factors collectively influence the 
occurrence of RMSF in the south-western U.S. at an ecological 
level, particularly given that the disease emerged in this region only 
two decades ago. This study addresses a critical gap in the literature 
by investigating the interplay between environmental variables (cli-
mate, ecology and landscape) and social factors, such as VA in 
shaping the RMSF burden. Utilizing long-term meteorological 
data—including temperature, relative humidity, and precipitation—
alongside landscape metrics, land cover analyses and VA, we aimed 
to identify correlations between these factors and RMSF incidence. 
This research is the first to jointly examine VA, climatic conditions, 
and landscape fragmentation in relation to RMSF prevalence, pro-
viding novel insights into the disease’s dynamics. Given that 
Arizona’s first RMSF cases were reported post-2000, recent socio-
environmental changes may be influencing trends in disease trans-
mission. By analyzing the complex interactions among social, envi-
ronmental, and spatial factors, this study contributes to a deeper 
understanding of RMSF dynamics and informs targeted public 
health strategies to mitigate this potentially fatal disease. 

 
 
 

Materials and Methods 

Study area 
This study focuses on 15 counties in Arizona (Figure 1) that 

have reported a high number of RMSF cases since the disease first 
emerged in the State. Arizona’s climate is predominantly dry and 
semi-arid, with extreme temperatures and limited moisture. Nearly 
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half of the State is classified as semi-arid, facing several climate-
related challenges. Temperatures vary significantly with elevation, 
ranging from below freezing at higher elevations to over 38°C 
(100°F) in desert areas during summer (Hereford, 2007). Winters 
are generally mild, while summers are intensely hot and dry, with 
most precipitation occurring in winter. The limited precipitation 
has shaped the land cover, dominated by arid vegetation such as 
desert plants and grasslands, with relatively sparse forested areas.  

Data 

RMSF outcome data 
Monthly RMSF case counts for Arizona from 2006 to 2021 

were obtained from the State health department (ADHS, 2023). 
Only laboratory-confirmed cases were included to ensure data reli-
ability. Although longer periods of data exist, this timeframe was 
selected to provide the most consistent and comprehensive cover-
age across all variables. It is important to note that RMSF cases 
were recorded based on patients’ county of residence, not necessar-
ily where the infection occurred.  

Covariates  
These were collected across three main categories: climate, 

land cover and VA and covered the same study period. Land cover 
data, specifically the percentage of different land types in each 
county, were obtained using Geographical Information Systems 
(GIS) from the publicly available  National Land Cover Dataset 
(2001, 2004, 2006, 2008, 2010, 2013, 2016, 2019).  

Climatic variables, such as county-level averages of monthly 
mean Land Surface Temperature (LST), precipitation and relative 
humidity were extracted using Google Earth Engine (GEE) from 
2006 to 2021. LST estimates were obtained from Moderate 
Resolution Imaging Spectroradiometer (MODIS) imagery (Friedl 
& Sulla-Menashe, 2022), while precipitation and Relative 
Humidity (RH) data were sourced from the Gridded Surface 
Meteorological Dataset (GRIDMET) (Abatzoglou, 2013), provid-
ed by the University of Idaho. Each dataset was first filtered to 
align with Arizona’s county boundaries. Within GEE, monthly 
county-level data were generated by averaging mean values of 
grad cells within each county. Table 1 lists the data descriptions, 
data sources, and spatial resolution of each data variable.  

                 Article
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Table 1. Description of climatic factors for predicting RMSF incidence. 

Data variable   Description                                                                                                                          Spatial                    Source 
                                                                                                                                                                     resolution                         

Precipitation, RH    County averages of monthly precipitation and relative humidity for the corresponding years.                             4-km                           GRIDMET  
                                                                                                                                                                                                                                                   (Abatzoglou, 2013) 
LST                          Monthly LST estimates derived from MODIS (Moderate Resolution Imaging Spectroradiometer) imagery.     500 m                      MODIS imagery  
                                                                                                                                                                                                                                        (Friedl & Sulla-Menashe, 2022) 

RH, Relative Humidity; LST, Land surface temperature. 

Figure 1. Study area: counties in Arizona with incidence levels of Rocky Mountain Spotted Fever (RMSF) cases during the study period.



County population data for the study period were acquired 
from the U.S. Census Bureau’s County Population Totals Dataset 
(Census Bureau, 2022). To contextualize RMSF cases in relation to 
potential hosts, dog ownership data were derived from the 2017–
2018 AVMA Pet Demographic Survey (AVMA, 2024). The survey 
provided state-level estimates of dog ownership rates and total dog 
populations, which were projected at the county level for this 
study. VA was assessed by normalizing the number of veterinary 
clinic staff by the estimated pet population in each county, incor-
porating factors such as financial constraints, transportation, lan-
guage, and the availability of veterinary services (Applebaum et 
al., 2023; AVMA, 2024).  

To examine the relationship between RMSF and land cover 
types, prior studies have identified forest and shrubland as key 
covariates (Atkinson et al., 2012; Raghavan et al., 2016; Gottlieb 
et al., 2018). Based on this, we focused on these two major land 
cover types in our study. Forested land was aggregated from mul-
tiple land cover classifications across different time periods (Table 
2). 

The proportion of landscape was computed to forest or shrub-
land class according to the following equation: 

 

                                      

Eq. 1

 
 
where PLANDi denotes the proportion abundance of the total area 
occupied by the corresponding land use type i; 𝑎𝑖𝑗 the area of each 
patch j; and 𝐴 the total landscape area of the county (m2). 

Landscape metrics were quantified and analyzed using 
PyLandStats (version 2.4), an open-source Python library designed 
for computing landscape metrics (Bosch, 2019).  

Methodological approach 
Since RMSF is a discrete count variable, Poisson regression is 

typically used to model its relationship with covariates. Poisson 
regression, a type of generalized linear model, assumes that count 
data follows a Poisson distribution, where the variance equals the 
mean. However, disease counts often exhibit overdispersion, 
meaning the variance exceeds the mean (Imai et al., 2015). 

To fit the over dispersed count data, this study employs a nega-
tive binomial regression model to estimate the association between 
VA, landscape, and climate variables and county-level RMSF case 
counts, while also evaluating the variance explained by these 
covariates (Hilbe, 2011). The model is formulated as follows: 

 

                                      Eq. 2 
 

                                      Eq. 3 
 

                             Eq. 4 
 

                                      Eq. 5 
 

                                      Eq. 6 
 

where Yi is the monthly RMSF cases reported in county i, Yi fol-
lows a Poisson probability distribution with an expected count Ei. 
which is equal to the mean number of cases mi for county i; b are 
coefficients corresponding to the explanatory variables. Each Xij  
represents a covariate/predictor of RMSF incidence, such as tem-
perature, relative humidity, precipitation, forest, shrubland, or VA. 
A population offset (typically the log of the county population) was 
included to account for population size differences and model inci-
dence rather than raw counts. Ei follows a Gamma distribution 
with parameters li, ki. Additionally, Xim denotes the explanatory 
covariates. A population offset was also included. 

To account for spatial autocorrelation in RMSF cases, we 
employed a negative binomial regression model with a spatial lag 
term to address both overdispersion and spatial dependence in the 
count data as defined by the formula: 

 

                                   Eq. 7 
 

where, WYi is the spatial lag term and ρ the spatial autoregressive 
parameter that measures the influence of neighboring counties’ 
RMSF cases on the cases of a county. By including this term, the 
model does not only take into account the direct consequences of 
explanatory variables but also the impact of adjacent counties.  

The spatial negative binomial regression uses a log link func-
tion, meaning the coefficients represent the expected log change in 
the RMSF case count for a one-unit increase in the corresponding 
predictor. When exponentiated, these coefficients yield Incidence 
Rate Ratios (IRRs), which indicate the multiplicative change in 
predicted counts for a one-unit increase in the predictor and hold 
all other variables constant. Additionally, the total population was 
included as an offset in the model to account for regional-level het-
erogeneity, ensuring that population size differences across regions 
were appropriately controlled for in the analysis. To detect multi-
collinearity, the Variance Inflation Factor (VIF) was used, with val-
ues greater than 5 typically indicating significant multicollinearity 
(O’Brien, 2007). In this study, multicollinearity tests (Table 3) 
revealed that all variables had VIF values below 4, indicating a low 
degree of multicollinearity confirming the suitability of the predic-
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Table 2. Definitions of each land cover aggregated variable. 

Original land cover type         Aggregated land cover variable        Description 

Deciduous forest                                    Forest                                                                    Areas with more than 20% vegetative cover dominated by trees taller than 5 m. More 
                                                                                                                                               than 75% of the tree species shed leaves with seasonal changes. 
Evergreen forest                                     Forest                                                                    Areas with more than 20% vegetative cover dominated by trees taller than 5 m tall. 
                                                                                                                                               More than 75% of the tree species retain their leaves all year, creating a constant 
                                                                                                                                               canopy of green foliage. 
Shrub/scrub                                            Shrub/scrub                                                           Areas dominated by shrubs and young or stunted trees lowewr than 5 m,  
                                                                                                                                               which comprise more than 20% of vegetation. 



tors for the regression analysis. We carried out all analyses in R 
statistical software version 3.6.3 and Python 3, graphical presenta-
tion in ArcGIS 10.8. 

 
 
 

Results  
Table S1 presents a statistical summary of meteorological dis-

tribution by county. The data show a wide variation as they relate 
to the different climatic zones within the region. Arizona’s diverse 
topography, characterized by arid conditions and varying eleva-
tions, results in notable climatic differences across its counties. 
Yuma had the highest mean LST at 28.20°C, while Apache report-
ed the highest RH and Gila the highest precipitation. Apache also 
had the greatest forest cover (29.3±30.59%), whereas Santa Cruz 
had the largest shrubland area (25.6±2.96%). VA varied widely, 
with Yavapai County scoring the highest (78.5) and Apache the 
lowest (0.954). Navajo County reported the highest average daily 
number of RMSF cases (11.75±12.65), followed by Gila 
(7.5±5.48) and Pima (7.25±11.16).  

Time-series climatic data (Figure 2) showed steady and station-
ary distributions. LST varied significantly, with Yuma reaching 
28.9°C and Apache averaging 15.40°C. Precipitation was highest in 
Gila (1.26 mm) and lowest in Yuma (0.29 mm), while transitional 
zones like Cochise and Santa Cruz exhibited showed considerable 
variability. RH was highest in Apache (45.47%) and lowest in hotter, 
drier counties such as Maricopa (33.28%) and Mohave (31.27%).  

From 2006 to 2021, 467 RMSF cases were reported in Arizona 
(Figure 1). Gila County recorded the most cases (n=124), followed 
by Navajo (n=118) and Pima (n=116), while Mohave, Yavapai, and 
Yuma each reported only one case. Figure 3 shows the annual 
trends in RMSF case counts and incidence rates by county. Gila, 
Pima, and Navajo counties reported relatively high case numbers 
throughout the study period (Figure 3a). Navajo County peaked 
around 2009–2011, followed by a steep decline—partly due to 
intervention efforts—and a sharp increase around 2019–2020, like-
ly influenced by the pandemic. Pima County showed a spike 
between 2011 and 2013. Gila County experienced a sharp increase 
after 2010, with peaks in 2013 and 2016, and remained elevated 
through 2020 compared to earlier years. Other counties reported 
lower and more sporadic case counts, with occasional minor spikes. 
For incidence, rates (Figure 3b), Gila and Navajo counties showed 
consistently high RMSF incidence throughout the study period. 

Gila County experienced multiple peaks around 2011, 2014, and 
again in 2017–2018, reaching nearly 9 cases per 100,000. Navajo 
County peaked sharply around 2010, then declined significantly, 
followed by a steep increase near 2020, indicating two distinct 
waves of elevated incidence. Pima County had lower incidence 
overall but showed a notable increase from 2019 to 2020.  

To account for the temporal lag effect of climatic factors, the 
analysis incorporated not only data from the current month (Lag=0) 
but also from the previous one and two months (Lag=1 and Lag=2, 
respectively) for precipitation, RH and LST. The spatial negative 
binomial regression analysis identified several climatic factors, VA 
and land cover variables as significantly associated with RMSF inci-
dence (Table 4). Across all three models incorporating different lag 
structures, precipitation had the strongest positive association with 
RMSF incidence across all lags, while VA showed the most signifi-
cant negative effect (p<0.001) after adjusting for all covariates. 
Additionally, RH and shrubland were both negatively associated 
with RMSF incidence (p<0.001) after controlling other variables.  

The highest and most positive IRR was observed for precipita-
tion at lag 2 (IRR: 1.8137, CI: 1.5314-2.1482), indicating that, hold-
ing other factors constant, a one-unit increase in precipitation is 
associated with an 81% increase in RMSF incidence two months 
later. Higher RH is consistently associated with lower RMSF inci-
dence, with a 4-6% reduction in incidence for each unit increase in 
RH. No significant effect was observed for LST at Lag 0 and Lag 
1. However, significant negative effect at Lag 2 (IRR=0.9719, 
p<0.001) indicating a slight decrease (~2.8%) in RMSF incidence 
associated with a one-unit increase in LST, but only with a two-
month lag. Forest and shrublands exhibited contrasting IRR  
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Table 3. Multicollinearity test. 

Covariate                                                          VIF Score 

Forest                                                                             2.742839 
Shrub                                                                              1.356285 
RH                                                                                  2.768305 
Precipitation                                                                   1.955987 
LST                                                                                1.692275 
Dog Population                                                              2.140424 
VA                                                                                  3.635179 
RH, Relative Humidity; LST, Land surface temperature; VA, Veterinary care access; 
VIF, variance inflation factor. 

Table 4. Spatial negative binomial regression results. 

Variable                                Lag=0                                                     Lag=1                                                           Lag=2 
                                              IRR (CI range)                                      IRR (CI range)                                            IRR (CI range) 

Forest                                           1.0091(0.9864-1.0323)                                   1.0120 (0.9899-1.0346)                                         1.0040 (0.9821-1.0265) 
Shrub                                           0.9265 (0.8988-0.9549)                                  0.9294 (0.8998-0.9601)                                         0.9276 (0.8995-0.9566) 
RH                                               0.9558 (0.9345-0.9776)                                  0.9592 (0.9384-0.9805)                                         0.9413 (0.9221-0.9609) 
Precipitation                                1.6187 (1.3465-1.9461)                                  1.5184 (1.2535-1.8392)                                         1.8137 (1.5314-2.1482) 
LST                                             0.9863 (0.9682-1.0048)                                  0.9862 (0.9678-1.0050)                                         0.9719 (0.9544-0.9897) 
Dog Population                           1.0000 (1.0000-1.0000                                   1.0000 (1.0000-1.0000)                                         1.0000 (1.0000-1.0000) 
VA                                               0.9252 (0.9144-0.9362)                                  0.9262 (0.9155-0.9371)                                         0.9237 (0.9130-0.9345) 
Cases_lag                                    1.1464 (0.1788-7.3498)                                  1.2042 (0.1959-7.4032)                                         1.3071 (0.2176-7.8527) 
IRR, incidence rate ratio; Significance level, 0.05 in bold; RH, Relative Humidity; LST, Land surface temperature; VA, Veterinary care access; VIF, variance inflation factor. 
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Figure 2. Annual time series trend of environmental variables in Arizona counties: (a) LST; (b) precipitation; (c) relative humidity.

Figure 3. Time series trend of Rocky Mountain Spotted Fever (RMSF) cases and incidence rate by year.



patterns across all models, with shrubland cover emerging as a  
significant negative predictor (p<0.001). VA had the strongest nega-
tive association at lag 2 (IRR: 0.9237, CI: 0.9130-0.9345), meaning 
that for each one-unit VA increase, the expected number of RMSF 
cases decreased by about 7.6%.  However, the dog population showed 
no significant association with RMSF incidence in the study area. 

 
 

Discussion 
This study examined joint effects of climatic conditions, land-

cover and VA on RMSF incidence in Arizona at the ecological 
level. The findings revealed that VA consistently exhibited a signif-
icant negative association with RMSF incidence, indicating that 
counties with lower access to veterinary services were more likely 
to experience higher RMSF case counts. This quantitative result 
aligns with previous qualitative reports, such as the NNVP and 
Nelson (2015), which identified insufficient VA as a critical factor 
exacerbating RMSF burden, particularly during the COVID-19 
pandemic (Nelson, 2015; Navajo Nation Animal Control Program, 
2023). These studies emphasized the issue as a significant social 
challenge, especially in socioeconomically disadvantaged commu-
nities. The situation may worsen in the coming years due to the 
compounding effects of dog overpopulation and limited VA, par-
ticularly in Native American communities. This study underscores 
the urgent need for targeted interventions to improve VA and miti-
gate RMSF risks in vulnerable populations. 

Climatic factors demonstrated a complex, but consistent rela-
tionship with RMSF incidence across different time lags, minimiz-
ing the impact of distinct monthly lag models. The only exception 
was LST which showed a significant negative association with 
RMSF cases only at lag 2. This may reflect a longer-term effect, 
consistent with previous findings that higher temperatures reduce 
tick physiological activity (Gage et al., 2008; Raghavan et al., 
2016). This also suggests that extreme temperatures may hinder 
tick reproduction, leading to lower RMSF transmission. In our 
data, counties, with mean temperatures below 20°C recorded the 
highest RMSF case counts supporting this observation. 
Precipitation, on the other hand, exhibited a positive association 
with RMSF incidence, likely because increased moisture enhances 
tick and host activity, as documented in prior studies (Bokhorst et 
al., 2008; Chen & Sexton, 2008; Raghavan et al., 2016). This 
favorable environment supports the survival of tick life stages, par-
ticularly during dry seasons, contributing to higher RMSF trans-
mission. 

Although several studies have found that ticks are positively 
correlated with land cover types such as shrubland and forests, 
which provide suitable habitats for their reproduction and survival 
(Eisen, 2008), our study revealed a more complex relationship 
between land cover and RMSF cases, likely due to the inclusion of 
a broader geographic range. While forest cover was not a signifi-
cant factor in our analysis, shrubland exhibited a negative associa-
tion with RMSF incidence. Shrublands, characterized by low, 
dense vegetation and often harsher environmental conditions such 
as higher temperatures and lower humidity, may create less favor-
able conditions for tick survival and reproduction. This could 
explain the observed negative impact of shrubland on RMSF cases 
in our model. However, since study on land cover and RMSF 
remain limited, further research is needed to better understand the 
role of landscape.  

Limitations and future directions  
While the geographic range of RMSF is well documented, our 

ability to predict transmission and implement effective interven-
tions is hindered by limited research on the hosts (e.g., dog) activ-
ities, their interactions with human behaviors, and their role in 
RMSF transmission within high-risk communities. To improve 
predictions of RMSF surges and deepen our understanding of the 
environment-tick-host-human interplay, it is critical to incorporate 
tick and host data that account for individual-level host movement. 
Evidence suggests that increased host mobility and insufficient VA 
(Volk et al., 2011; Neal & Greenberg, 2022) may enhance oppor-
tunities for ticks to interact with hosts, potentially elevating tick 
attack rates and RMSF infection. Future research should address 
these gaps to advance the understanding of RMSF transmission 
dynamics, particularly in the southwestern U.S., an emerging 
RMSF hotspot associated with a distinct tick species compared to 
other regions. A key area for improvement is the inclusion of free-
roaming dogs in studies, as they serve as significant tick hosts and 
may facilitate the spread of ticks across larger areas. Investigating 
the role of free-roaming dogs in RMSF transmission pathways, 
along with their interactions with ticks and humans, could provide 
critical insights into disease spread at a finer spatial scale. 

 
 
 

Conclusions 
This ecological study highlights the significant role of VA in 

RMSF incidence, a finding identified for the first time, while also 
corroborating the influence of climatic factors previously docu-
mented in the literature. By integrating land cover variables, the 
study sheds light on the complex ecological processes underlying 
RMSF burden, which are deeply intertwined with social chal-
lenges, such as limited VA, and climatic factors in the context of 
climate change. The unique climate and demographic characteris-
tics of the study area underscore the importance of advancing tick-
borne disease research, providing a foundation for RMSF preven-
tion and management strategies in Arizona and beyond. This com-
prehensive analysis of RMSF risk factors provides critical insights 
for public health interventions and highlights the need for targeted 
strategies to mitigate tick-borne diseases in the context of a chang-
ing environment. 
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