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Abstract

This study aimed at investigating the association between
satellite-based remotely sensed data on particulate matter with
diameters less than 2.5 microns (PM,s), sulphur dioxide (SO,),
nitrogen dioxide (NO,) and carbon monoxide (CO) on the one
hand, with the incidence of lung cancer in Thailand on the other.
Regression analyses on a nationwide dataset comprising 604,460
confirmed cases reported between 2020 and 2023 were conducted
using the Spatial Lag Model (SLM) to assess the relationship
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between the ambient air pollutants and lung cancer incidence. The
results revealed that provinces with the highest cancer incidence
rates were consistently found to be located in the eastern part of
north-eastern Thailand and the far North as well as some
provinces in the South. The SLM accounted for a moderate pro-
portion of variance in lung cancer incidence, with R? values rang-
ing from 0.1548 to 0.1755 over the study period. PM, 5 concentra-
tions were positively and significantly associated with incidence
rates each year, an effect increasing from 2020 (0.2160, p=0.0075)
to 2023 (0.3096, p=0.0102). These findings highlight the potential
of satellite-based air quality data, particularly PM, ; for predicting
and monitoring lung cancer incidence, thereby supporting evi-
dence-based public health planning and environmental policy in
Thailand. The results add empirical evidence to the growing body
of literature demonstrating the public health consequences of
ambient air pollution.

Introduction

Despite growing interest in the health impacts of air pollution,
a critical research gap remains regarding the spatial association
between atmospheric pollutant concentrations and lung cancer
incidence, particularly in low- and middle-income countries.
While satellite-based remote sensing has been increasingly used to
monitor air quality, few studies have integrated these data with
nation-scale cancer incidence records to produce spatially explicit
models. This gap is particularly pronounced in Southeast Asia,
including Thailand, where lung cancer rates continue to rise
alongside deteriorating air quality (Sakti ef al., 2023)

Remote sensing technologies have become indispensable in
air quality monitoring for health-related research. Unlike ground-
based monitoring stations, which provide limited, point-based
datasets often constrained by predominantly covering urban areas,
satellite observations offer spatially continuous coverage across
extensive geographic regions (Putrenko & Pashynska, 2017,
Fernandes et al., 2019; Filonchyk et al., 2020). In recent years,
this type of data have been widely employed to assess atmospheric
pollutants, such particulate matter with diameters less than 2.5
microns (PM,;), sulphur dioxide (SO,), nitrogen dioxide (NO,)
and carbon monoxide (CO) (Prunet et al., 2020; Kang et al., 2021;
Saw et al., 2021; Xia et al., 2021). These pollutants are classified
as human carcinogens and pose significant public health risks,
particularly in industrialised and densely populated regions
(Cetin, 2016; Oliveira et al., 2021; Maharjan et al., 2022). As
urbanisation continues to increase, pollution levels are expected to
rise leading to greater health impacts, including higher cancer
incidence (Cetin & Sevik, 2016; Ozel et al., 2019). In Thailand
alone, 604,460 lung cancer cases linked to long-term air pollution
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exposure were reported for the period 2020-2023 (Ministry of
Public Health - MoPH, 2024).

This study addressed the research gap regarding the spatial dis-
tribution of lung cancer by investigating the potential relationships
between major air pollutants and lung cancer incidence in Thailand
using satellite-derived data. A further objective was to develop a
predictive spatial model that can estimate lung cancer incidence
based on pollutant exposure levels, thereby informing environ-
mental health risk assessments and public health strategies. The
findings from this study should provide empirical evidence of pol-
lution-related cancer risks and contribute to the development of
data-driven tools for public health monitoring and environmental
policymaking.

Materials and Methods

This retrospective study examined the association between
long-term exposure to ambient air pollutants and lung cancer inci-
dence in Thailand from 2020 to 2023. Addressing this urgent pub-
lic health concern, we integrated remotely sensed data and epi-
demiological statistics to identify geographic patterns and model
pollution-related cancer risk.

Study area and seasons

This study focused on Thailand, an upper-middle-income
country with a total area of 514,000 km? comprising 511,770 km?
of land and 2,230 km? of water. The geographically administrative
hierarchy includes 77 provinces, 878 districts (amphoes), 7,225
sub-districts (tambons) and 74,965 villages. Located in a tropical
zone, it has three seasons: winter from November to February,
summer from March to May and rainy season from June to
October.

Data sources

The dependent variable was the annual lung cancer incidence
rate, calculated as the number of confirmed cases per 100,000 pop-
ulation. Morbidity data, classified under the ICD-10 code C34
(malignant neoplasm of bronchus and lung), were obtained from
the Centre of Epidemiological Information, Bureau of
Epidemiology, MOPH. A total of 122,104 cases were reported in
2020, followed by 183,632 in 2021, 189,722 in 2022, and 109,002
in 2023 across all 77 provinces. The data are publicly available via
the Department of Disease Control, MOPH (2024). The indepen-
dent variables were the annual average concentrations of the four
major air pollutants PM, s, NO,, SO, and CO estimated using
remotely sensed data from two satellite sources as described
below.

PM,; data were derived from the Moderate Resolution
Imaging Spectroradiometer (MODIS) instrument (https://modis.
gsfc.nasa.gov/about/) aboard the Terra and Aqua satellites
launched by NASA in 1999 and 2002, respectively. We used the
Aerosol Optical Depth (AOD) data retrieved (NASA, 2024) based
on the multi-angle implementation of atmospheric correction
(MAIAC) algorithm (https://modis-land.gsfc.nasa.gov/ MAIAC.
html) applied to the MODIS satellite observation at 1-km spatial
resolution. The annual PM,; concentrations were computed by
aggregating daily AOD values to the provincial level, matching the
spatial and temporal resolution of lung cancer data. The Deep Blue
algorithm (https://earth.gsfc.nasa.gov/climate/data/deep-blue) pro-
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vides useful proxies for estimating ground-level PM,.5 concentra-
tions with high spatial resolution (Lyapustin et al., 2011; Peng et
al., 2022).

The NO,, SO, and CO concentrations were obtained from the
TROPOspheric Monitoring Instrument (TROPOMI) aboard the
Sentinel-5P satellite (https://www.esa.int/ Applications/Observing_
the Earth/Copernicus/Sentinel-5) launched 2017 by the European
Space Agency (ESA). The near-daily global coverage and a spatial
resolution of approximately 1 km, enables TROPOMI to produce
a detailed, global mapping of pollutant distributions (Prunet ef al.,
2020; Kang et al., 2021; Saw et al., 2021; Xia et al., 2021).

The analytical methods used included standard regression and
the Spatial Lag Model (SLM), which accounts for spatial depen-
dencies between neighbouring areas (Anselin, 2003; Ward &
Gleditsch, 2018; Wu et al., 2020; Luenam & Puttanapong, 2022).
By incorporating indirect spatial effects, SLM improves model
reliability in detecting the influence of environmental factors on
health outcomes.

Data analysis

For an exploratory spatial data analysis, QGIS version 3.8.3
(Steiniger & Hunter, 2013) and GeoDa version 1.20.0.8 (Anselin
et al., 2006) were used. QGIS was applied to integrate all data
before transfer to GeoDa for regression computation.

Regression analysis

The relationship between air pollutant concentrations and lung
cancer incidence across the 77 provinces in Thailand was exam-
ined using spatial regression, specifically SLM implemented in
GeoDa. All variables were log-transformed to stabilise variance
and ‘linearise’ relationships. Statistical significance was assessed
at the 0.05 level using two-sided tests.

To account for spatial dependence, a spatial weights matrix
(W, was constructed based on first-order queen contiguity, where-
by provinces were defined as neighbours if they shared either a
common boundary or a vertex. This matrix was row-standardised,
such that the influence of neighbouring provinces sums to one for
each observation. The matrix ‘operationalises’ the spatial structure
of the data, which allows estimation of spill-over effects, i.e., situ-
ations where pollutant levels in one province may be influenced by
those in adjacent provinces (Anselin & Arribas-Bel, 2013; Mollalo
et al., 2020). The SLM was specified as follows:

AlogAP; = fytB1logLCi+ pW;;AlogAP, + & Eq. 1

where AlogAP; stands for AlogAirpollutants; i.e., the year-on-year
change in the log-transformed concentration of air pollutants
(dependent variable); logLC; for logLungCancerincidencei, i.e.,
the log-transformed lung cancer incidence rate (independent vari-
able); p for the spatial lag coefficient that represents the strength of
spatial dependence; W for the spatial weight matrix that indicates the
influence of neighbouring province i on province j; S, for the inter-
cept coefficient; /3, for the slope coefficient; and for a normally dis-
tributed error term.

To justify the use of a spatial model, global Moran’s / was first
applied to the residuals of an Ordinary Least Squares (OLS) model
to test for spatial autocorrelation. Since a statistically significant,
positive Moran’s / indicates spatial clustering and violation of the
OLS independence assumption, Lagrange Multiplier (LM) diag-
nostics were employed to determine the most appropriate spatial
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model specification. The significant LM-lag test supported the use
of the SLM over alternative models such as the Spatial Error
Model (SEM), suggesting the presence of substantive spatial inter-
action in the dependent variable. The SLM approach is particularly
appropriate in this context as it incorporates the direct influence of
neighbouring provinces on pollutant levels, thereby improving
model accuracy and accounting for spatial spill-over effects that
are otherwise undetectable through traditional regression tech-
niques (Wu et al., 2020).

Results

Lung cancer in Thailand

Out of the total of 604,460 lung cancer cases reported in
Thailand between 2020 and 2023 (MoPH, 2024), the provinces
with the highest incidence rates of lung cancer were found in the
eastern part of the Northeast, near the border to Lao People’s
Democratic Republic. Provinces with the highest incidence rates
were also found in the far northern part of the country near the
Myanmar border. Moreover, there were also high incidence rates in
some provinces in the South each year (Figure 1).

SLM estimations

The outcome obtained by regression using SLM is presented in
Table 1. Given the longitudinal dataset, a comparative analytical
framework was applied across four consecutive years (2020-
2023). For each year, the SLM generated province-specific coeffi-
cient estimates for each independent variable (PM, 5, SO,, NO, and
CO) across all 77 provinces in Thailand. This resulted in annual
pollutant coefficients for each province. To enable comparison
between the study years and enhance interpretability, the average
of the 77 provincial coefficients for each pollutant was computed
and shown as the representative estimates in Table 1. These aver-
aged coefficients reflect the national-level association between
each pollutant and the incidence rate of lung cancer, controlling for
spatial dependence and other covariates.

Across all the study years analysed, the SLM consistently
revealed a statistically significant positive association at the level
of p<0.05 between PM, s concentrations and lung cancer incidence,
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with the average slope coefficients increasing over time. Although
none of the associations found were stronger than p<0.05, it was
close to p<0.01 in 2023, the latest year studied (Table 1). In addi-
tion, SO, only exhibited a significant positive association in 2020
(0.4709, p=0.0384), while its effect in subsequent years dimin-
ished and no longer statistically significant. The situation with
respect to NO, and CO was similar showing statistical significance
only in one of the study years, 2020 for the former (0.01601,
p=0.0360) and 2021 for the latter (1.9976, p=0.0435), with the
associative effect weaker and statistically marginal in other years.
The model’s explanatory power, as measured by R? ranged
from 15.5% to 17.6% across the study period. The spatial lag
parameter (p), confirmed the presence of spatial autocorrelation,
thereby validating the appropriateness of the SLM framework.

Discussion

This study provides robust evidence of the association between
PM, 5 exposure and lung cancer incidence in Thailand, with spatial
regression analysis identifying elevated risks in the north-eastern,
northern and southern border provinces. The use of satellite-
derived AOD data enabled high-resolution assessment of air pollu-
tion in areas lacking ground-based monitoring, offering a practical
approach for identifying localised health risks. By integrating spa-
tial epidemiology with remote sensing, this research could address
key data limitations in low- and middle-income settings and con-
tributes a novel framework for environmental health surveillance
and policy development.

The regression analysis revealed a statistically significant pos-
itive correlation between PM, s concentrations and lung cancer
incidence, even after adjusting for relevant covariates, suggesting
a strengthening association between PM, ;s exposure and lung can-
cer incidence in recent years (Table 1). These findings reinforce the
well-established health risks associated with long-term exposure to
fine particulate matter (Badyda et al., 2017; Chen et al., 2016; Cao
et al., 2018). Notably, the strength of this relationship varied spa-
tially across Thai provinces, with more pronounced associations in
regions exhibiting higher PM, s levels, a heterogeneity that high-
lights the uneven burden of air pollution.

Our spatial analysis identified persistent clusters of high lung

Table 1. Regression coefficients for air pollutants and lung cancer incidence in Thailand 2020-2023.

Independent variable 2020 2021 2022 2023
Constant 0.0239 435235 33.417 23.719
(p=0.9932) (p=0.0791) (p=0.1804) (p=0.2218)
PM, 0.2160 0.2781 0.2551 0.3096
(p=0.0075) (p=0.0150)* (p=0.0322)* (p=0.0102)*
SO, 0.4709 0.0656 0.0566 0.2268
(p=0.0384)* (p=0.2681) (p=0.3450) (p=0.2633)
NO, 0.1469 0.01601 0.01277 0.1675
(p=0.1636) (p=0.0360)* (p=0.0945) (p=0.3521)
CcO 0.1834 19.976 15.787 13.449
(p=0.8776) (p=0.0435)* (p=0.1115) (p=0.0914)
R? 0.1751 0.1548 0.1654 0.1755
p (tho) 0.1010 0.1477 0.1579 0.2007
Province (no.) 77 77 77 77

The values represent the average coefficient estimates across all 77 provinces in Thailand derived from the spatial lag model (SLM); *statistically significant at p<0.05).
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Figure 1. Spatial distribution of lung cancer incidence across Thailand between 2020 and 2023. The legend for each map indicates the
range of [incidence rates] and the number of (provinces) within each range.
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cancer incidence across the study period, predominantly in the
eastern part of the north-eastern provinces bordering Lao People’s
Democratic Republic. Additional high-risk areas were observed in
several northern provinces adjacent to Myanmar and also in some
southern provinces. These regional hotspots coincide with areas
frequently affected by forest fires and agricultural crop burning,
practices prevalent under the slash-and-burn farming system (Chen
et al., 2019; Wang et al., 2022). Transboundary air pollution orig-
inating from neighbouring countries Myanmar, Laos, Vietnam,
Cambodia and Malaysia further exacerbates the situation through
further addition of PM, 5, thereby increasing the health risks across
borders (Amnuaylojaroen et al., 2023).

The spatiotemporal distribution of lung cancer cases corre-
sponds with periods and locations where PM,; pollution has
recently intensified. The role of biomass burning with regard to
elevating ambient PM, 5 levels remains a critical environmental
health concern (Lee ef al., 2018; Yin et al., 2019; Amnuaylojaroen
et al., 2020). This study adds empirical evidence to the growing
body of literature demonstrating the public health consequences of
ambient air pollution, particularly in the context of rapidly devel-
oping economies such as Thailand, where environmental sustain-
ability often lags behind industrial and agricultural expansion.

The biological possibility of PM, s as a risk factor for lung can-
cer is supported by its composition. Fine particulate matter typical-
ly contains black carbon with toxic components such as sulphates
and nitrate that are considered particularly hazardous due to the
ability of deep penetration into the pulmonary system (Li ez al.,
2018). Exposure to these particles has been associated with various
respiratory disorders, as they can infiltrate and become retained
within lung tissue (Shu et al., 2016). Such exposure has been iden-
tified as an etiological factor in the development of lung cancer.
Indeed, numerous studies have suggested that PM, s may act as a
significant risk factor for this disease (Bowe et al., 2019; Yang et
al., 2020; Sang et al., 2022).

The use of satellite-derived AOD as a proxy for PM, ; exposure
offers a valuable methodological contribution, particularly in
regions with sparse ground-based monitoring. The validity of
AOD-based PM, estimates has been substantiated by previous
studies (Lee et al., 2011; Kloog et al., 2011, 2012; Chudnovsky et
al., 2013). In the Thai context, satellite-derived data provide a
practical means of identifying pollution and disease clusters in real
time, especially given the variability in emissions influenced by
both socioeconomic and meteorological factors.

The SLM approach was employed to further strengthen the
model’s predictive capabilities. The results affirm the robustness of
the positive association between PM, 5 and lung cancer incidence
(p<0.05), even after accounting for spatial dependencies. This is
consistent with prior applications of remotely sensed data in public
health surveillance (Jechow et al., 2020; Elvidge et al., 2020;
Beyer, 2021) suggesting that PM, 5 data can effectively serve as a
predictive indicator of lung cancer.

While comprehensive in scope, this study is subject to several
limitations. First, the reliance on AOD-PM, s as a proxy for the risk
of lung cancer, although validated, may still introduce spatial esti-
mation errors in regions with frequent cloud cover or complex ter-
rain. Second, the study design is ecological in nature and does not
account for individual-level risk factors such as smoking status,
occupational exposure or genetic predisposition. Third, the model
does not incorporate long-term latency effects of carcinogen expo-
sure, which are critical in cancer epidemiology. Future research
should adopt a multi-level modelling approach that combines spa-
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tial data with individual-level health records to improve causal
inference. Incorporating time-lagged exposure assessments, high-
resolution meteorological data, and urban development indices
could significantly enhance model precision. In addition, the rising
level of statistical significance for the association between PM, s
and lung cancer reaching close to level of p<0.01 (Table 1) in the
last study year warrant continued follow-up in the following years.

Conclusions

While the current analytical framework offers statistically sig-
nificant findings, its predictive capacity could be improved by
incorporating additional variables such as meteorological condi-
tions, land use, socioeconomic status, and healthcare access.
Future research should explore the application of machine learning
techniques, such as random forest, gradient boosting, and neural
networks as they can uncover non-linear relationships and com-
plex interactions among variables that traditional regression meth-
ods may overlook. These models can also be continuously trained
and updated with new satellite and epidemiological data, enabling
dynamic and real-time prediction systems. The integration of LM
into environmental health modelling holds substantial promise for
enhancing both the predictive accuracy and explanatory power of
disease risk assessments. The findings underscore the urgent need
for strengthened environmental regulation, enhanced air quality
monitoring, and regional cooperation to mitigate the significant
and preventable health burden posed by ambient air pollution in
Thailand.
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