
Abstract 
This study aimed at investigating the association between 

satellite-based remotely sensed data on particulate matter with 
diameters less than 2.5 microns (PM2.5), sulphur dioxide (SO2), 
nitrogen dioxide (NO2) and carbon monoxide (CO) on the one 
hand, with the incidence of lung cancer in Thailand on the other. 
Regression analyses on a nationwide dataset comprising 604,460 
confirmed cases reported between 2020 and 2023 were conducted 
using the Spatial Lag Model (SLM) to assess the relationship 

between the ambient air pollutants and lung cancer incidence. The 
results revealed that provinces with the highest cancer incidence 
rates were consistently found to be located in the eastern part of 
north-eastern Thailand and the far North as well as some 
provinces in the South. The SLM accounted for a moderate pro-
portion of variance in lung cancer incidence, with R² values rang-
ing from 0.1548 to 0.1755 over the study period. PM2.5 concentra-
tions were positively and significantly associated with incidence 
rates each year, an effect increasing from 2020 (0.2160, p=0.0075) 
to 2023 (0.3096, p=0.0102). These findings highlight the potential 
of satellite-based air quality data, particularly PM2.5 for predicting 
and monitoring lung cancer incidence, thereby supporting evi-
dence-based public health planning and environmental policy in 
Thailand. The results add empirical evidence to the growing body 
of literature demonstrating the public health consequences of 
ambient air pollution.  

 
 
 

Introduction 
Despite growing interest in the health impacts of air pollution, 

a critical research gap remains regarding the spatial association 
between atmospheric pollutant concentrations and lung cancer 
incidence, particularly in low- and middle-income countries. 
While satellite-based remote sensing has been increasingly used to 
monitor air quality, few studies have integrated these data with 
nation-scale cancer incidence records to produce spatially explicit 
models. This gap is particularly pronounced in Southeast Asia, 
including Thailand, where lung cancer rates continue to rise 
alongside deteriorating air quality (Sakti et al., 2023) 

Remote sensing technologies have become indispensable in 
air quality monitoring for health-related research. Unlike ground-
based monitoring stations, which provide limited, point-based 
datasets often constrained by predominantly covering urban areas, 
satellite observations offer spatially continuous coverage across 
extensive geographic regions (Putrenko & Pashynska, 2017; 
Fernandes et al., 2019; Filonchyk et al., 2020). In recent years, 
this type of data have been widely employed to assess atmospheric 
pollutants, such particulate matter with diameters less than 2.5 
microns (PM2.5), sulphur dioxide (SO2), nitrogen dioxide (NO2) 
and carbon monoxide (CO) (Prunet et al., 2020; Kang et al., 2021; 
Saw et al., 2021; Xia et al., 2021). These pollutants are classified 
as human carcinogens and pose significant public health risks, 
particularly in industrialised and densely populated regions 
(Cetin, 2016; Oliveira et al., 2021; Maharjan et al., 2022). As 
urbanisation continues to increase, pollution levels are expected to 
rise leading to greater health impacts, including higher cancer 
incidence (Çetin & Sevik, 2016; Ozel et al., 2019). In Thailand 
alone, 604,460 lung cancer cases linked to long-term air pollution 
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exposure were reported for the period 2020-2023 (Ministry of 
Public Health - MoPH, 2024).  

This study addressed the research gap regarding the spatial dis-
tribution of lung cancer by investigating the potential relationships 
between major air pollutants and lung cancer incidence in Thailand 
using satellite-derived data. A further objective was to develop a 
predictive spatial model that can estimate lung cancer incidence 
based on pollutant exposure levels, thereby informing environ-
mental health risk assessments and public health strategies. The 
findings from this study should provide empirical evidence of pol-
lution-related cancer risks and contribute to the development of 
data-driven tools for public health monitoring and environmental 
policymaking. 

 
 
 

Materials and Methods 
This retrospective study examined the association between 

long-term exposure to ambient air pollutants and lung cancer inci-
dence in Thailand from 2020 to 2023. Addressing this urgent pub-
lic health concern, we integrated remotely sensed data and epi-
demiological statistics to identify geographic patterns and model 
pollution-related cancer risk.  

Study area and seasons 
This study focused on Thailand, an upper-middle-income 

country with a total area of 514,000 km2 comprising 511,770 km2 
of land and 2,230 km2 of water. The geographically administrative 
hierarchy includes 77 provinces, 878 districts (amphoes), 7,225 
sub-districts (tambons) and 74,965 villages. Located in a tropical 
zone, it has three seasons: winter from November to February, 
summer from March to May and rainy season from June to 
October. 

Data sources 
The dependent variable was the annual lung cancer incidence 

rate, calculated as the number of confirmed cases per 100,000 pop-
ulation. Morbidity data, classified under the ICD-10 code C34 
(malignant neoplasm of bronchus and lung), were obtained from 
the Centre of Epidemiological Information, Bureau of 
Epidemiology, MOPH. A total of 122,104 cases were reported in 
2020, followed by 183,632 in 2021, 189,722 in 2022, and 109,002 
in 2023 across all 77 provinces. The data are publicly available via 
the Department of Disease Control, MOPH (2024). The indepen-
dent variables were the annual average concentrations of the four 
major air pollutants PM2.5, NO2, SO2 and CO  estimated using 
remotely sensed data from two satellite sources as described 
below. 

PM2.5 data were derived from the Moderate Resolution 
Imaging Spectroradiometer (MODIS) instrument (https://modis. 
gsfc.nasa.gov/about/) aboard the Terra and Aqua satellites 
launched by NASA in 1999 and 2002, respectively. We used the 
Aerosol Optical Depth (AOD) data retrieved (NASA, 2024) based 
on the multi-angle implementation of atmospheric correction 
(MAIAC) algorithm (https://modis-land.gsfc.nasa.gov/ MAIAC. 
html) applied to the MODIS satellite observation at 1-km spatial 
resolution. The annual PM2.5 concentrations were computed by 
aggregating daily AOD values to the provincial level, matching the 
spatial and temporal resolution of lung cancer data. The Deep Blue 
algorithm (https://earth.gsfc.nasa.gov/climate/data/deep-blue) pro-

vides useful proxies for estimating ground-level PM2.5  concentra-
tions with high spatial resolution (Lyapustin et al., 2011; Peng et 
al., 2022). 

The NO2, SO2, and CO concentrations  were obtained from the 
TROPOspheric Monitoring Instrument (TROPOMI) aboard the 
Sentinel-5P satellite (https://www.esa.int/Applications/Observing_ 
the_Earth/Copernicus/Sentinel-5) launched 2017 by the European 
Space Agency (ESA). The near-daily global coverage and a spatial 
resolution of approximately 1 km, enables TROPOMI to produce 
a detailed, global mapping of pollutant distributions (Prunet et al., 
2020; Kang et al., 2021; Saw et al., 2021; Xia et al., 2021).  

The analytical methods used included standard regression and 
the Spatial Lag Model (SLM), which accounts for spatial depen-
dencies between neighbouring areas (Anselin, 2003; Ward & 
Gleditsch, 2018; Wu et al., 2020; Luenam & Puttanapong, 2022). 
By incorporating indirect spatial effects, SLM improves model 
reliability in detecting the influence of environmental factors on 
health outcomes. 

Data analysis  
For an exploratory spatial data analysis, QGIS version 3.8.3 

(Steiniger & Hunter, 2013) and GeoDa version 1.20.0.8 (Anselin 
et al., 2006) were used. QGIS was applied to integrate all data 
before transfer to GeoDa for regression computation. 

Regression analysis 
The relationship between air pollutant concentrations and lung 

cancer incidence across the 77 provinces in Thailand was exam-
ined using spatial regression, specifically SLM implemented in 
GeoDa. All variables were log-transformed to stabilise variance 
and ‘linearise’ relationships. Statistical significance was assessed 
at the 0.05 level using two-sided tests. 

To account for spatial dependence, a spatial weights matrix 
(𝑊𝑖𝑗) was constructed based on first-order queen contiguity, where-
by provinces were defined as neighbours if they shared either a 
common boundary or a vertex. This matrix was row-standardised, 
such that the influence of neighbouring provinces sums to one for 
each observation. The matrix ‘operationalises’ the spatial structure 
of the data, which allows estimation of spill-over effects, i.e., situ-
ations where pollutant levels in one province may be influenced by 
those in adjacent provinces (Anselin & Arribas-Bel, 2013; Mollalo 
et al., 2020). The SLM was specified as follows: 

 

              Eq. 1 
 

where ΔlogAPi stands for ΔlogAirpollutantsi i.e., the year-on-year 
change in the log-transformed concentration of air pollutants 
(dependent variable); logLCi for logLungCancerincidencei, i.e., 
the log-transformed lung cancer incidence rate (independent vari-
able); 𝜌 for the spatial lag coefficient that represents the strength of 
spatial dependence; Wij for the spatial weight matrix that indicates the 
influence of neighbouring province i on province j; β0 for the inter-
cept coefficient; β1 for the slope coefficient; and for a normally dis-
tributed error term.  

To justify the use of a spatial model, global Moran’s I was first 
applied to the residuals of an Ordinary Least Squares (OLS) model 
to test for spatial autocorrelation. Since a statistically significant, 
positive Moran’s I indicates spatial clustering and violation of the 
OLS independence assumption, Lagrange Multiplier (LM) diag-
nostics were employed to determine the most appropriate spatial 
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model specification. The significant LM-lag test supported the use 
of the SLM over alternative models such as the Spatial Error 
Model (SEM), suggesting the presence of substantive spatial inter-
action in the dependent variable. The SLM approach is particularly 
appropriate in this context as it incorporates the direct influence of 
neighbouring provinces on pollutant levels, thereby improving 
model accuracy and accounting for spatial spill-over effects that 
are otherwise undetectable through traditional regression tech-
niques (Wu et al., 2020). 

 
 
 

Results  

Lung cancer in Thailand 
Out of the total of 604,460 lung cancer cases reported in 

Thailand between 2020 and 2023 (MoPH, 2024), the provinces 
with the highest incidence rates of lung cancer were found in the 
eastern part of the Northeast, near the border to Lao People’s 
Democratic Republic. Provinces with the highest incidence rates 
were also found in the far northern part of the country near the 
Myanmar border. Moreover, there were also high incidence rates in 
some provinces in the South each year (Figure 1). 

SLM estimations 
The outcome obtained by regression using SLM is presented in 

Table 1. Given the longitudinal dataset, a comparative analytical 
framework was applied across four consecutive years (2020-
2023). For each year, the SLM generated province-specific coeffi-
cient estimates for each independent variable (PM2.5, SO2, NO2 and 
CO) across all 77 provinces in Thailand. This resulted in annual 
pollutant coefficients for each province. To enable comparison 
between the study years and enhance interpretability, the average 
of the 77 provincial coefficients for each pollutant was computed 
and shown as the representative estimates in Table 1. These aver-
aged coefficients reflect the national-level association between 
each pollutant and the incidence rate of lung cancer, controlling for 
spatial dependence and other covariates. 

Across all the study years analysed, the SLM consistently 
revealed a statistically significant positive association at the level 
of p<0.05 between PM2.5 concentrations and lung cancer incidence, 

with the average slope coefficients increasing over time. Although 
none of the associations found were stronger than p<0.05, it was 
close to p<0.01 in 2023, the latest year studied (Table 1). In addi-
tion, SO2 only exhibited a significant positive association in 2020 
(0.4709, p=0.0384), while its effect in subsequent years dimin-
ished and no longer statistically significant. The situation with 
respect to NO2 and CO was similar showing statistical significance 
only in one of the study years, 2020 for the former (0.01601, 
p=0.0360) and 2021 for the latter (1.9976, p=0.0435), with the 
associative effect weaker and statistically marginal in other years. 

The model’s explanatory power, as measured by R², ranged 
from 15.5% to 17.6% across the study period. The spatial lag 
parameter (ρ), confirmed the presence of spatial autocorrelation, 
thereby validating the appropriateness of the SLM framework. 

 
 
 

Discussion 
This study provides robust evidence of the association between 

PM2.5 exposure and lung cancer incidence in Thailand, with spatial 
regression analysis identifying elevated risks in the north-eastern, 
northern and southern border provinces. The use of satellite-
derived AOD data enabled high-resolution assessment of air pollu-
tion in areas lacking ground-based monitoring, offering a practical 
approach for identifying localised health risks. By integrating spa-
tial epidemiology with remote sensing, this research could address 
key data limitations in low- and middle-income settings and con-
tributes a novel framework for environmental health surveillance 
and policy development. 

The regression analysis revealed a statistically significant pos-
itive correlation between PM2.5 concentrations and lung cancer 
incidence, even after adjusting for relevant covariates, suggesting 
a strengthening association between PM2.5 exposure and lung can-
cer incidence in recent years (Table 1). These findings reinforce the 
well-established health risks associated with long-term exposure to 
fine particulate matter (Badyda et al., 2017; Chen et al., 2016; Cao 
et al., 2018). Notably, the strength of this relationship varied spa-
tially across Thai provinces, with more pronounced associations in 
regions exhibiting higher PM2.5 levels, a heterogeneity that high-
lights the uneven burden of air pollution.  

Our spatial analysis identified persistent clusters of high lung 
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Table 1. Regression coefficients for air pollutants and lung cancer incidence in Thailand 2020-2023. 

Independent variable                  2020                             2021                                                   2022                                     2023 

Constant                                              0.0239                              435.235                                                       33.417                                       23.719 
                                                         (p=0.9932)                        (p=0.0791)                                                 (p=0.1804)                                (p=0.2218) 
PM2.5                                                    0.2160                               0.2781                                                        0.2551                                       0.3096 
                                                         (p=0.0075)                       (p=0.0150)*                                               (p=0.0322)*                              (p=0.0102)* 
SO2                                                      0.4709                               0.0656                                                        0.0566                                       0.2268 
                                                        (p=0.0384)*                       (p=0.2681)                                                 (p=0.3450)                                (p=0.2633) 
NO2                                                      0.1469                              0.01601                                                     0.01277                                      0.1675 
                                                         (p=0.1636)                       (p=0.0360)*                                                (p=0.0945)                                (p=0.3521) 
CO                                                       0.1834                               19.976                                                        15.787                                       13.449 
                                                         (p=0.8776)                       (p=0.0435)*                                                (p=0.1115)                                 (p=0.0914) 
R2                                                         0.1751                               0.1548                                                        0.1654                                       0.1755 
ρ (rho)                                                  0.1010                               0.1477                                                        0.1579                                       0.2007 
Province (no.)                                         77                                      77                                                               77                                               77 
The values represent the average coefficient estimates across all 77 provinces in Thailand derived from the spatial lag model (SLM); *statistically significant at p<0.05).  
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Figure 1. Spatial distribution of lung cancer incidence across Thailand between 2020 and 2023. The legend for each map indicates the 
range of [incidence rates] and the number of (provinces) within each range. 



cancer incidence across the study period, predominantly in the 
eastern part of the north-eastern provinces bordering Lao People’s 
Democratic Republic. Additional high-risk areas were observed in 
several northern provinces adjacent to Myanmar and also in some 
southern provinces. These regional hotspots coincide with areas 
frequently affected by forest fires and agricultural crop burning, 
practices prevalent under the slash-and-burn farming system (Chen 
et al., 2019; Wang et al., 2022). Transboundary air pollution orig-
inating from neighbouring countries Myanmar, Laos, Vietnam, 
Cambodia and Malaysia further exacerbates the situation through 
further addition of PM2.5, thereby increasing the health risks across 
borders (Amnuaylojaroen et al., 2023). 

The spatiotemporal distribution of lung cancer cases corre-
sponds with periods and locations where PM2.5 pollution has 
recently intensified. The role of biomass burning with regard to 
elevating ambient PM2.5 levels remains a critical environmental 
health concern (Lee et al., 2018; Yin et al., 2019; Amnuaylojaroen 
et al., 2020). This study adds empirical evidence to the growing 
body of literature demonstrating the public health consequences of 
ambient air pollution, particularly in the context of rapidly devel-
oping economies such as Thailand, where environmental sustain-
ability often lags behind industrial and agricultural expansion. 

The biological possibility of PM2.5 as a risk factor for lung can-
cer is supported by its composition. Fine particulate matter typical-
ly contains black carbon with toxic components such as sulphates 
and nitrate that are considered particularly hazardous due to the 
ability of deep penetration into the pulmonary system (Li et al., 
2018). Exposure to these particles has been associated with various 
respiratory disorders, as they can infiltrate and become retained 
within lung tissue (Shu et al., 2016). Such exposure has been iden-
tified as an etiological factor in the development of lung cancer. 
Indeed, numerous studies have suggested that PM2.5 may act as a 
significant risk factor for this disease (Bowe et al., 2019; Yang et 
al., 2020; Sang et al., 2022). 

The use of satellite-derived AOD as a proxy for PM2.5 exposure 
offers a valuable methodological contribution, particularly in 
regions with sparse ground-based monitoring. The validity of 
AOD-based PM2.5 estimates has been substantiated by previous 
studies (Lee et al., 2011; Kloog et al., 2011, 2012; Chudnovsky et 
al., 2013). In the Thai context, satellite-derived data provide a 
practical means of identifying pollution and disease clusters in real 
time, especially given the variability in emissions influenced by 
both socioeconomic and meteorological factors. 

The SLM approach was employed to further strengthen the 
model’s predictive capabilities. The results affirm the robustness of 
the positive association between PM2.5 and lung cancer incidence 
(p<0.05), even after accounting for spatial dependencies. This is 
consistent with prior applications of remotely sensed data in public 
health surveillance (Jechow et al., 2020; Elvidge et al., 2020; 
Beyer, 2021) suggesting that PM2.5 data can effectively serve as a 
predictive indicator of lung cancer.  

While comprehensive in scope, this study is subject to several 
limitations. First, the reliance on AOD-PM2.5 as a proxy for the risk 
of lung cancer, although validated, may still introduce spatial esti-
mation errors in regions with frequent cloud cover or complex ter-
rain. Second, the study design is ecological in nature and does not 
account for individual-level risk factors such as smoking status, 
occupational exposure or genetic predisposition. Third, the model 
does not incorporate long-term latency effects of carcinogen expo-
sure, which are critical in cancer epidemiology. Future research 
should adopt a multi-level modelling approach that combines spa-

tial data with individual-level health records to improve causal 
inference. Incorporating time-lagged exposure assessments, high-
resolution meteorological data, and urban development indices 
could significantly enhance model precision. In addition, the rising 
level of statistical significance for the association between PM2.5 

and lung cancer reaching close to level of p<0.01 (Table 1) in the 
last study year warrant continued follow-up in the following years. 

 
 
 

Conclusions 
While the current analytical framework offers statistically sig-

nificant findings, its predictive capacity could be improved by 
incorporating additional variables such as meteorological condi-
tions, land use, socioeconomic status, and healthcare access. 
Future research should explore the application of machine learning 
techniques, such as random forest, gradient boosting, and neural 
networks as they can uncover non-linear relationships and com-
plex interactions among variables that traditional regression meth-
ods may overlook. These models can also be continuously trained 
and updated with new satellite and epidemiological data, enabling 
dynamic and real-time prediction systems. The integration of LM 
into environmental health modelling holds substantial promise for 
enhancing both the predictive accuracy and explanatory power of 
disease risk assessments. The findings underscore the urgent need 
for strengthened environmental regulation, enhanced air quality 
monitoring, and regional cooperation to mitigate the significant 
and preventable health burden posed by ambient air pollution in 
Thailand.   
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