
Introduction

American trypanosomiasis or Chagas disease is a
vector-borne disease, caused by Trypanosoma cruzi
(Chagas, 1909) and transmitted by insects of the
Triatominae subfamily. Environmental conditions,
including human behaviour, dwellings and peri-domi-
ciliary characteristics that can potentially influence
vector presence, abundance and infestation, are not
well known for all species. In fact, there are up to 45
triatomine species in Brazil, which all have different
ecological niches (palm trees, rocks anfractuosities,
animal burrows, etc.) and behaviour.

Environmental conditions partially determine the
presence, density and spatio-temporal distribution of

pathogens, vectors and hosts and thus the epidemics,
the (re)-emergence and/or the endemicity of many vec-
tor-borne diseases. In this framework, much deals with
mapping environmental and geo-localized epidemio-
logical data (prevalence and, ideally, incidence), while
transmission of the disease is considered a “black
box” (Peterson, 2007). This approach is justified when
the epidemiological data are aggregated making geo-
localised cases, and associated transmission zones
coincide spatially and temporally. However, this pro-
vides only a poor insight into how the eco-epidemio-
logical system functions. In fact, understanding the
true mechanisms of transmission demands a finer spa-
tial and temporal resolution than is normally applied
and, without a strong hypothesis on possible trans-
mission locations, the vector and its ecology become
the focus of the system (Romaña, 2004; Peterson,
2006, 2007). Such studies map environmental charac-
terisation, notably derived from high, or very high,
resolution image processing, geo-localised entomolog-
ical data (presence/absence and/or abundance data)
and, but rarely jointly, epidemiological data (Girod et
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al., 2011). However, when using remotely sensed data,
a compromise between spatial and temporal resolu-
tion has to be found (Kitron et al., 2006). Moreover,
the availability of remotely sensed data can be particu-
larly restricted in regions with persistent cloud cover,
which is often the case in tropical zones. Beyond these
practical limits, such an approach can also be ques-
tioned from a theoretical point of view. In fact, the spa-
tially observable resultants of the eco-epidemiological
system depend on environmental, social, demographic
and behavioural characteristics as well as on the inter-
actions between these factors at different scales. Thus,
associations between the epidemiological and/or ento-
mological data and the space dimension encompass the
links between such data and the factors listed above.
We suggest that a specific study of the spatial and/or
temporal properties of the entomological and/or epi-
demiological data should be carried out before linking
such data with any explanatory variables, as this
approach would permit the exploration of the spatial
and/or temporal properties at different scales. 

Numerous epidemiological studies on Chagas dis-
ease take into account the spatial dimension in an
implicit way by integrating environmental variables
having by nature a strong spatial basis (e.g. Costa et
al., 2002; Peterson et al., 2002; Dumonteil et al.,
2004; Abad-Franch et al., 2010). However, studies
that explicitly take into account the spatial dimension
remain rare. For example, Ramirez-Sierra et al.
(2010) studied domiciliary infestation of four villages
on the Yucatan peninsula, Mexico with regard to
insect sex, infection status and distance between
houses and the village boundary, the latter variable
being suggested by observations and the outcome of a
model proposed by Slimi et al. (2009). In a compara-
ble way, Roux et al. (2009) used several attributes to
explicitly characterise the spatial structure of a
Brazilian village in the semi-arid region of Bahia: (i)
distance to the village centre; (ii) distance to the spe-
cific house where the majority of the insects was
found; and (iii) relative situations of the domiciliary
unit (central or peripheral and connected or isolated).
Such a characterisation contributed to the explana-
tion of the presence of two triatomines: Panstrongylus
geniculatus (Latreille, 1811) (adults) and Triatoma
sordida (Stål, 1859) (juveniles). These two character-
isations of the village structure remain subjective.
Among works that specifically took into account the
spatial dimension, Khan et al. (2010) used both spa-
tial analysis and remote sensing to study the infesta-
tion of Argentinean communities by Triatoma infes-
tans (Klug, 1834). The Getis-Ord local spatial statis-

tic was used to identify spatial clusters corresponding
to “hotspots of high-prevalence domestic infesta-
tion”, while multivariate regression analysis was
applied to identify the environmental and demo-
graphic factors that could explain the inclusion of a
community in a hotspot. To explain re-infestation,
Kitron et al. (2006) used the Getis-Ord local spatial
statistic as focal statistic and the local K-function in
order to identify clusters around a priori known
sources for T. infestans and T. guasayana
(Wygodzinsky and Abalos, 1951) dispersal. In addi-
tion, Slimi et al. (2009) have proposed a cellular
automata model that permits the explicit considera-
tion of both temporal and spatial dimensions to sim-
ulate the infestation in a “virtual” village, while
Barbu et al. (2010) put forward a spatially explicit
model to reconstruct observed spatial and temporal
patterns of house infestation by T. dimidiata in a vil-
lage on the Yucatan peninsula, Mexico.

The objective of our approach, schematically pre-
sented in Fig. 1, was to investigate the application of a
method for the identification and modelling of spatial
multi-scale patterns (part I) and the application of a
multivariate descriptive data analysis to explain the
patterns identified (part II). The applicative context is
the study of the presence and abundance of Chagas
disease vectors (T. sordida and P. geniculatus) in a vil-
lage in a semi-arid region of Bahia, Brazil. First, we
apply the modelling approach proposed by Dray et al.
(2006), based on the principal coordinates analysis of
a neighbour matrix (PCNM) (Borcard et al., 2004),
consisting in the modelling of the spatial structure of a
set of sampling sites, by orthonormal eigenvectors that
maximise the Moran’s I index of spatial auto-correla-
tion and thus characterise significant spatial patterns.
Borcard et al. (2004), Dray et al. (2006) and Bellier et
al. (2007) have investigated to what extent these
eigenvectors (considered as variables) explain one (or
a set of) response variable(s) and Dray et al. (2006)
proposed a data-driven model selection method based
on the Akaike information criterion (AIC). In this first
part of our communication, the entomological data
and the methodology are described in a specific
applicative framework that emphasises the adapta-
tions of Dray et al.'s work (2006). 

Materials and methods

Study area  

Santa Rita, belonging to the Iraquara municipality,
is a rural locality at an altitude of about 700 m above
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Fig. 1. Schematic representation of the overall methodology used. AICc: corrected Akaike information criterion; DU: domiciliary
unit; FAMG: factorial analysis of mixed groups; PCNM: principal coordinate analysis of neighbour matrices.

Fig. 2. SPOT-5 image (copyright CNES/SPOT Image-Seas Guyane
Project) of the study site in panchromatic mode and spatial reso-
lution of 2.5 m (acquisition date: 15 January 2007). White
squares represent houses, geo-positioned by means of a GPS.
Dotted lines delimit the groups of dwellings mentioned in the text.

sea level with about 500 inhabitants in the central part
of Bahia, in northeast Brazil. It is part of the environ-
mental protection area Marimbus/Iraquara. A subjec-
tive and broad-scale observation of the spatial struc-
ture of the village shows a densely inhabited zone (here
referred to as the main hamlet) and four isolated
groups of three to five houses, one in the south, denot-
ed S in Fig. 2, and three in the north, denoted N, NN1
and NN2, respectively.

The main hamlet and surrounding areas is shown in
Fig. 2, which is a SPOT-5 panchromatic image with a
spatial resolution of 2.5 m emanating from the Seas
Guyane Project (http://www.seas-guyane.org) and
acquired, on 15 January 2007.

Collection methodology

The domiciliary unit (DU), i.e. the human dwelling
and its peri-domiciliary space with all annexes as
defined by Silveira and Rezende (1994), constituted
the sampling unit. For each of the 132 village DUs,
geo-localized by means of a global positioning system
(GPS) instrument (GARMIN eTrex Legend®), eggs,
juveniles, adults and exuvii were collected from
October to December, 2007. In the homes, the insects
were searched for in cracks and crevices of walls,
under mattresses, behind cabinets and tables, in boxes
or in piles of clothing or objects. In the peri-domicil-
iary spaces, every possible insect niche was considered:
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plants (alive or dead), fences, henhouses, pig-sties cor-
rals, warehouse deposits, stacks of tiles, bricks, stone
slabs and wood.

Entomological data

Table 1 summarises the results of triatomine cap-
tures and Fig. 3 represents the data spatially. Overall
195 eggs and 53 exuvii were found, while 154 juve-
niles of the T. sordida species were captured. Twelve
juveniles were not identified, but there is a strong pre-
sumption that these also belonged to the T. sordida
species. Similarly, due to the almost systematic pres-
ence of T. sordida juveniles with eggs and exuvii, these
two latter stages were also assumed to belong to the T.
sordida species.

The adults found belonged to the species T. sordida,
T. lenti (Sherlock and Serafim, 1967), T. pseudomacu-
lata (Correa and Espinola, 1964), P. lutzi (Neiva and
Pinto, 1923) and P. geniculatus. Forty-six T. sordida
specimens were found but only five of the P. genicula-
tus species. In one unique DU, 35 T. sordida specimens
were found, while the other infested DUs had only one
individual (of variable species) each, except one where
one T. sordida and one P. geniculatus were found.

Adults and non-flying (here referred to as juveniles)
specimens coexisted in five DUs, where four of them
were exclusively infested by T. sordida, while one DU
was infested by two T. sordida juveniles, one egg and
one T. pseudomaculata adult.

In the analysis, we considered the cumulated num-
ber of eggs, exuvii and juveniles of the T. sordida
species in order to characterise the non-flying stages
(here referred to as juveniles). Presence of insects at
these evolution stages indicates suitable conditions for
reproduction and development. Given the very low
number of individuals found for some of the species,
we considered only two adult species in the analysis:
T. sordida and P. geniculatus (Table 1).

Spatial modelling

We applied the spatial modelling method proposed
by Dray et al. (2006) as it provides the most explana-
tory, spatial model given the entomological data. In
the following, the different steps of the method are
detailed in the specific framework of our application
by focusing on the methodological adaptations. The
implementation of the method was performed by
means of the free and open-source geographical

Fig. 3. Maps of vector occurrences. Small white squares represent DUs with no specimen found. (a) Juvenile abundance (black
squares); (b) presence of adults of two species: T. sordida (large white squares) and P. geniculatus (grey squares). 
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information system (GIS) GRASS (GRASS
Development Team, 2010) and the free R environ-
ment for statistical computing (R Development Core
Team, 2010).

Raw data pre-processing

The variable juveniles were first logarithmically
transformed after the value of one had been added to
the data, in order to make the distribution more sym-
metrical. No significant linear spatial trend was found
for this variable. Consequently, the variable was not
de-trended before being analysed (Borcard et al.,
2004).

Due to the distribution of adults, we recoded the
data to obtain information on presence and absence.
We then computed the complete disjunctive table
Y=[yi,j]i=1, ..., N; j=1, ...2·S with yij ∈ {0,1}, and finally per-
formed the following transformation of the indicator
variables as described by Legendre and Gallagher
(2001) and Pagès (2002):

where i and j represent the row and column indexes,
respectively, y.. the sum of all cells of the
presence/absence species table, i.e. the product of the
number of species (S) by the number of sites (N) and
y.j the sum of the jth column. This coding ensures that
the χ2 distance is used for site comparison in the fol-
lowing, which is consistent with a presence/absence

coding of the species values and more generally with
categorical variables. It provides other properties
detailed below in terms of the spatial model selection
criterion.

Neighbour matrices

Five types of neighbourhood structures (here also
called graphs) were tested as mentioned by Dray et al.
(2006): the Delaunay triangulation graph, the Gabriel
graph, the relative neighbourhood graph, the mini-
mum spanning tree, and distance based graph (dnn),
considering that two sites i and j are neighbours if
d(i,j)<=γ.

We explored several uniformly distributed values for
γ and for each dataset (juveniles and adults). The min-
imum value was set to 75 m. Taking univariate and
multivariate variograms into account (Wagner, 2003)
for juvenile and adult data, respectively, the maximum
value for γ was the maximum inter-site distance for
which the empirical variogram was significant, i.e. 650
m and 775 m for juveniles and adults, respectively
(Fig. 4). Consequently, the sets of  values for juveniles
and adults were Sγ

j = {75, 175, 275, 375, 475, 575,
650} and Sγ

a = Sγ
j ∪ {675, 775}. 

Neighbour matrice weighting

Previously presented spatial structures assign the
same weight to all links (weight = 1). However, we
may expect that DU similarity in terms of

y'ij = y..  ·             =                      ,
yij

S ·  y.j

yijN ·

Table 1. Summary of Triatomine capture results.

Development stage / species
Total
found

Minimum
found per DU

Maximum
found per DU

Number of
infested DUs

Exuvii, eggs
and non-

flying stages

Eggs 195 4 65 6

Exuvii 53 1 23 10

Juveniles
(Triatoma sordida)

166 1 106 10

Eggs + exuvii +
juveniles

(called juveniles in
the study)

414 1 161 14

Adults

Triatoma sordida 46
1 

(in all but one DU)
35 

(in one DU)
12

Panstrongylus
geniculatus

5 1 1 5

Panstrongylus lutzi 3 1 1 3

Triatoma
pseudomaculata

2 1 1 2

Triatoma lenti 1 1 1 1



insect/species presence and abundance is greater for
close DUs than for distant ones. More specifically, in
terms of dispersal behaviour, we may assume that
insects have more chances to colonize proximate DUs
than distant ones. Consequently, according to Dray et
al. (2006), we defined different weighting functions as:
f1=1-(d/dmax)α with α є {1, 2, 5, 10} and f2=1/dβ, with
β є {0.1, 0.2, 0.5, 1}.

Overall, 88 (11 graphs × 8 weighting functions)
weighted graphs were tested for juveniles and 104 (13
graphs × 8 weighting functions) for adults.

Model generation and selection

The PCNM was computed for candidate spatial
structures generated with the methodology detailed in
Dray et al. (2006). For each eigenvector, the signifi-
cance of Moran’s I index value was tested with a 999
permutation procedure. Eigenvectors that presented
significant spatial auto-correlation (P <0.01) in the
sense of Moran’s I were retained as proposed by
Bellier et al. (2007). The eigenvectors were then sort-
ed into descending order according to their capacity to
explain the response variable (juvenile abundance) or
the set of response variables (presence of adults), i.e.
according to the explained variance provided by linear
regression. They were then entered, one by one, for
model definition (as many models as eigenvectors) and
the corrected AIC (AICc) was computed to select the
model with the minimum AICc value, i.e. the one that
realised the best compromise between variance expla-
nation and parsimony (for procedural details, see
Dray et al., 2006).

Results

Juveniles

The minimum AICc value was obtained with the
dnn graph with a distance γ equal to 575 m and the
weighting function f2 with β = 0.2 (Fig. 5). This model
is defined by 28 eigenvectors and explains 82.3% of
the total variance of juvenile abundance data (Fig. 6a).
Fig. 7 shows the spatial representation of the first 12
eigenvectors that explain 66.9% of the total variance.

Figure 6b shows that the spatial model for juvenile
data selected the majority of eigenvectors associated
with positive values, i.e. with large-scale spatial pat-
terns (Dray et al., 2006). However, it excludes the
eigenvector associated with the maximum value. The
first eigenvector of the model for juveniles emphasises

E. Roux et al. - Geospatial Health 6(1), 2011, pp. 41-51

Fig. 4. Variograms of juveniles (a) and adults (b). Continuous lines represent the 2.5 and 97.5 percentiles estimated with 2,000 ran-
dom permutations. Dashed and dotted lines represent the 95% percentile estimated with 2,000 random permutations. Dotted lines
correspond to half the maximum distance between two sites.

Fig. 5. Weighting functions selected for juveniles (f2, β = 0.2) and

adults (f1, α = 1).
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Fig. 6. (a) Cumulative percentage of the explained variances by the selected spatial models for juvenile and adult data. Cumulative
percentages associated with the numbers of orthogonal eigenvectors chosen by the two models (28 and 32 eigenvectors for juveniles
and adults, respectively) are shown, as well as the cumulative percentages associated with the first 12 eigenvectors depicted in Figs.
7 and 8. (b) and (c) Eigenvalues of the PCNM re-ordered by their capacity to explain juveniles and adults, respectively. Black bars
correspond to the eigenvalues associated with selected eigenvectors by the AICc selection procedure.

Fig. 7. Spatial representation of the first 12 eigenvectors of the selected spatial model for juveniles. Black and white squares corre-
spond to positive and negative values of the eigenvector components, respectively. The square size is proportional to the absolute
value of the eigenvector components. The eigenvectors are ranked by their capacity to explain juvenile abundance. This capacity is
indicated by the percentage of variance of the juvenile data explained by the eigenvector. The other numbers correspond to the eigen-
vector number in the model (from 1 to 12) and to the associated eigenvalue. The eigenvalues are proportional to the Moran’s I of
spatial autocorrelation (Dray et al., 2006).
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Fig. 8. Spatial representation of the first 12 eigenvectors of the selected spatial model for adults. See legend of Fig. 7 for explana-
tions of symbols and numbers.

the DUs (black squares in Fig. 7) belonging to a band
oriented southwest-northeast corresponding to the
main road crossing the village, which separates the
south-eastern from the north-western part.
Eigenvectors associated with negative values were also
selected, as they are associated with local-scale spatial
patterns. In Fig. 7, spatial patterns associated with
eigenvectors 2, 10 and 12 are shown to characterise
very local features associated with a particular area of
the village, near DU no. 117, where the great majori-
ty of the next-generation insects were found (43% of
the exuvii, 16% of the eggs and 63% of the juveniles).

Adults

The minimum AICc value was obtained with the dnn
graph with a distance γ equal to 775 m and the weight-
ing function f1 with α = 1 (Fig. 5). It provides a linear
weighting as a function of the distance between sites.
The model is defined by 32 eigenvectors and explains
79.9% of the total variance of the presence of adults
(Fig. 6a). Fig. 8 shows the spatial representation of the

first 12 eigenvectors, which explains 58.8% of the total
variance. The first eigenvector, corresponding to the
highest value, clearly discriminates the isolated DU
groups, especially the extreme northern ones denoted
NN1 and NN2 in Fig. 2, associated with the presence
of P. geniculatus (Fig. 3b). The fourth eigenvector is
comparable with the first eigenvector of the juvenile
model. The ninth eigenvector discriminates very central
DUs (black squares) from the peripheral ones (white
squares). Local patterns were associated with different
parts of the main hamlet with a relatively high density
of houses: the north-western part (eigenvector 2), the
north-eastern part (eigenvectors 7 and 11), the south-
eastern part (eigenvectors 3, 10 and 12) and the south-
western part (eigenvector 8).

Discussion

Where insects are transiently present and/or in very
low density in the domestic habitat, community par-
ticipation has been found highly reliable for entomo-
logic surveys and also shown to be more sensitive than
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manual collection (Barbu et al., 2010; Ramirez-Sierra
et al., 2010). Although we initially chose manual col-
lection, it was performed by the same person to avoid
operator bias. Moreover, this procedure permitted
identification of the infestation process around highly
infested sites, something that would not have been
possible even by long-term, continuous collection
based on community participation. Nevertheless,
manual collection was necessary to make a first inven-
tory of the situation, drawing attention to the public
health issues associated with triatomines and to
encourage people to bring insects to the Triatominae
Information Centres (Postos de Informação de
Triatomíneos = PIT), installed in the villages since the
1980s. However, it should be admitted that the chosen
collection procedure prevents the study of temporal
dynamics. To overcome this limitation, community
participation should be seriously considered.

Dray et al. (2006) take into account all the eigen-
vectors provided by PCNM computation. This
approach provides highly explanatory variables.
However, such selected variables do not necessary
present significant spatial patterns in the sense of
Moran’s I. The set of selected variables can comprise
highly specific explanatory variables that can be diffi-
cult to interpret within the application context and
that cannot be used for knowledge generalization.

In Bellier et al. (2007), only one spatial structure is
defined corresponding to the truncated distance
matrix proposed in Borcard et al. (2004). Only eigen-
vectors that present a significant spatial auto-correla-
tion according to the Moran’s I were selected. This
results in a model with strong spatial correlations but
a model that depends much on a priori and arbitrary
chosen spatial structures. In this paper, we benefit
from the advantages of these two approaches, while
avoiding their drawbacks: (i) by performing a spatial
model selection with no a priori spatial structure, and;
(ii) by taking into account model components with a
strong spatial correlation. 

Given the data pre-processing used, model selection
criteria differ for juveniles and adults, while being con-
sistent with the data characteristics. For juveniles char-
acterised by a quantitative variable, the selected spatial
model realises the compromise between the model par-
simony and the minimum variance of multiple linear
regression residuals. For adults, on the other hand,
investigating the presence/absence data given the
weighting of the indicators of the complete disjunctive
table, the selected model realises the compromise
between the model parsimony and the maximum cor-
relation ratio.

The first eigenvector of the spatial model for adult
insects essentially explains the P. geniculatus species
distribution. It corresponds to the first eigenvector of
the PCNM, associated with a large-scale variation,
more specifically with the distance to the village centre
in the latitudinal direction. The application of the
methodology for explaining spatial repartition of the
P. geniculatus species is questionable due to the low
number of infested sites (n = 5) and because this
species was clearly associated with isolated DUs locat-
ed in the northern part of the village, except for one
specimen. A de-trended version of this species abun-
dance data, i.e. the residuals of a multiple linear
regression model on geographic coordinates, could
have been considered (Borcard et al., 2004; Dray et
al., 2006). However, due to the low number of infest-
ed sites, and the fact that only one individual has been
found at each site, these de-trended data differed too
much from the true observations. Moreover, we
applied the methodology on the de-trended version of
the adult data (Legendre and Gallagher, 2001). The
selected model did not provide a better explanation
and was not more parsimonious than the model select-
ed with the proposed methodology.

Models obtained by the methodology used result in
high numbers of components (28 and 32 for juveniles
and adults, respectively) and interpreting each of them
is a difficult task. As in Bellier et al. (2007), eigenvec-
tor clustering could result in a better insight regarding
the different significant scales identified by the model.
However, mapping of eigenvectors with explanatory
variables (environment, behavioural, etc.), as done in
part II of this paper, provides more information.

For both juvenile and adults, spatial patterns are
associated with both local and global scales. However,
the spatial model for juveniles is defined by a more
localized neighbourhood (γ = 575 m) than the model
for adults (γ = 775 m). Moreover, the weights of the
links for the juvenile spatial structure decrease fast as
function of the inter-site distance, whereas these
weights decrease linearly with the inter-site distance
for adults (Fig. 5). These results indicate that the spa-
tial correlation for juveniles are associated with more
local scales and can be interpreted as “near-to-near”
dispersal. Barbu et al. (2010) have demonstrated that
T. dimidiata disperse at rather small distances too. In
our case, local-scale phenomena for juveniles seem
essentially derived from a “near-to-near” dispersal of
the insects associated with DU no. 117 that was host
to the great majority of the insects (43% of the exuvii,
16% of the eggs and 63% of the juveniles). A similar
infestation, or re-infestation, process around highly
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infested sites has  previously been observed for
T. infestans and T. guayasana (Kitron et al., 2006;
Ramirez-Sierra et al., 2010).

Large-scale spatial patterns appear to be linked to
the distance to the centre of the main hamlet, this dis-
tance being positively correlated with the presence of
insects. This suggests a colonisation from the wild
environment surrounding the village and a progressive
infestation towards the village centre as already
observed and modelled (Slimi et al., 2009; Ramirez-
Sierra et al., 2010; Barbu et al., 2010). Thus, by objec-
tive and quantitative approaches, two dispersal
modalities can be derived: (i) infestation steming from
the “natural” environment surrounding villages, and;
(ii) local dispersal from one domiciliary unit of a vil-
lage to the nearest one. 

Conclusion

The methodology presented here makes it possible
to spatially model the presence and abundance of dis-
ease vectors at different scales. It also supports the
construction of a hypothesis regarding the dispersal
behaviour of the insects. Infestation can originate
from the “natural” environment surrounding villages
as well as be the result of local dispersal from one
domiciliary unit of a village to another.

The methodology presented here can be applied to
other geo-localised data, e.g. disease cases. Naturally,
many factors influence the eco-epidemiological system
and consequently the spatial patterns of its observable
characteristics (presence and abundance of the vec-
tors/hosts, prevalence/incidence of disease). In Part II
of this paper, we propose a method to hierarchically
explore a multi-factorial set of data to explain the spa-
tial patterns observed.
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