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Abstract. Spatial autocorrelation is problematic for classical hierarchical cluster detection tests commonly used in multi-
drug resistant tuberculosis (MDR-TB) analyses as considerable random error can occur. Therefore, when MDR-TB clus-
ters are spatially autocorrelated the assumption that the clusters are independently random is invalid. In this research, a
product moment correlation coefficient (i.e. the Moran’s coefficient) was used to quantify local spatial variation in mul-
tiple clinical and environmental predictor variables sampled in San Juan de Lurigancho, Lima, Peru. Initially, QuickBird
(spatial resolution = 0.61 m) data, encompassing visible bands and the near infra-red bands, were selected to synthesize
images of land cover attributes of the study site. Data of residential addresses of individual patients with smear-positive
MDR-TB were geocoded, prevalence rates calculated and then digitally overlaid onto the satellite data within a 2 km
buffer of 31 georeferenced health centres, using a 10 m?2 grid-based algorithm. Geographical information system (GIS)-
gridded measurements of each health centre were generated based on preliminary base maps of the georeferenced data
aggregated to block groups and census tracts within each buffered area. A three-dimensional model of the study site was
constructed based on a digital elevation model (DEM) to determine terrain covariates associated with the sampled MDR-
TB covariates. Pearson’s correlation was used to evaluate the linear relationship between the DEM and the sampled
MDR-TB data. A SAS/GIS® module was then used to calculate univariate statistics and to perform linear and non-lin-
ear regression analyses using the sampled predictor variables. The estimates generated from a global autocorrelation
analyses were then spatially decomposed into empirical orthogonal bases, using a negative binomial regression with a
non-homogeneous mean. Results of the DEM analyses indicated a statistically non-significant, linear relationship
between georeferenced health centres and the sampled covariate elevation. The data exhibited positive spatial autocor-
relation and the decomposition of Moran’s coefficient into uncorrelated, orthogonal map pattern components which
revealed global spatial heterogeneities necessary to capture latent autocorrelation in the MDR-TB model. It was thus
shown that Poisson regression analyses and spatial eigenvector mapping can elucidate the mechanics of MDR-TB trans-
mission by prioritizing clinical and environmental-sampled predictor variables for identifying high risk populations.
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resistant tuberculosis (MDR-TB) for identifying
covariates associated with high-risk populations
(Smith, 1994; Clarke et al., 2002; Johnston, 2003).
MDR-TB is defined as TB resistant at least to isoni-
azid (INH) and rifampicin, which commonly devel-
ops in the course of TB treatment (Iseman, 1993).
Multiple regression model outputs are often used to
establish the significant level and, thus, the relative
predictive importance of a set of sampled MDR-TB
predictors. The regression estimates can then be
used to construct maps using geographical informa-
tion systems (GIS) for determining predictor vari-
ables that are associated with MDR-TB for further
statistical analysis. The assumptions underpinning
multiple regression, however, necessarily impose
several important constraints that may not always
be satisfied, or that might require careful considera-
tion when mapping MDR-TB explanatory parame-
ters. For example, the relationships between the out-
come and the sampled predictor variables in a
MDR-TB model, generated from multiple regres-
sion analyses, are assumed to be linear, and the vari-
ance of the residual errors are assumed to be the
same, regardless of the value of the covariate meas-
urements. If there is non-linearity, serial correlation,
heteroscedasticity and/or non-normality in a model,
the forecasts, confidence intervals, and insights
yielded by a regression model may be seriously
biased or misleading (Hastie and Tibshirani, 1990).
Another problem in the use of regression coeffi-
cients is the occurrence of predictor variables that
are not independent, i.e. non-zero correlations
amongst covariates (Miles and Shevlin, 2001), giv-
ing rise to collinearity (Gantz, 1997). When more
than two covariates in a model are highly correlat-
ed, multicollinearity can occur (Slinker and Glantz,
1985; Pedhazur, 1997), which can seriously distort
the interpretation of a MDR-TB model.
Multicollinear explanatory variables are difficult to
analyse, as their effects on a response variable can
be due to either true synergistic relationships among
the variables, or confounding effects creating spuri-
ous correlations (Glantz and Slinker, 2001;
Maddala, 2001; Fotheringham et al., 2002).
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Consequently, linear coefficients, based on collinear
and multicollinear variables, can bias sampled
covariate measurements yielding unstable parameter
estimates and unreliable significance tests in a
MDR-TB model.

Since the role of each predictor variable in a
MDR-TB model is to increase precision, the effect of
covariate measurement error on maximum likeli-
hood (ML) and quasi-maximum likelihood (MQL)
estimates of regression parameters must be consid-
ered. Obtaining estimates that are unbiased; howev-
er, has proven to be difficult when random effects
are incorporated into a generalized linear model
(GLM), which normally uses a common algorithm
for the estimation of the ML and MQL (Chatterjee,
1988). GLMSs can be used to model spatial distribu-
tion by relating the response variable (abundance,
or presence/absence) and spatially referenced
covariates but such models ignore unmeasured
covariates. Generalized linear mixed models
(GLMMs), a natural outgrowth of both linear
mixed models and GLMs, enable the accommoda-
tion of non-normally distributed responses and
specification of a non-linear link between the mean
of the response and the predictors, and they can
model random effects which also can account for
unmeasured covariates and overdispersion. For
example, a penalized quasi-likelihood method can
be used for fitting GLMM (Fotheringham et al.,
2002), which can account for overdispersion in
sampled data which arises through the omission
from the regression models of important variables,
existence of outliers, and the use of inappropriate
link functions (Hastie and Tibshirani, 1990).
Although ML and variants are standard for both
linear mixed models, e.g. restricted ML (REML)
and GLMs, its use in infectious disease modeling has
been limited to simple models due to the need to
numerically evaluate high-dimensional integrals.
High-dimensional integrals are usually solved with
Monte Carlo algorithms and quasi-Monte Carlo
algorithms. However, residual-based diagnostics for
multivariate heteroscedasticity from previously con-
structed models using Bayesian statistics has
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revealed that errors in variance uncertainty estima-
tion are common and can substantially alter numer-
ical predictions of a model by inflating the value of
test statistic thereby, increasing the chance of a type
I error, i.e. incorrect rejection of the null hypothesis
(Jacob et al., 2009d).

To solve these problems, statistical methods can
be applied to control for interaction, among sam-
pled predictor variables when mapping MDR-TB-
related data. One of these alternatives is to incorpo-
rate localized interaction terms into a spatial statis-
tical algorithm using the sampled predictor vari-
ables together with their interactions and an auto-
covariate term, i.e. Moran’s index (Moran’s I). The
autocovariate term enables different measures and
their approximations in autologistic models to be
compared with respect to aggregated patterns
caused by different processes (Anselin, 1995). The
performance of approximations for the autocovari-
ate strongly depends on the cause of spatial aggre-
gation in the data (Griffith, 2003). Inclusion of a
spatial autocovariate term has important effects on
model selection. For example, autocovariate terms
can be used to calculate autonormal, autopoisson or
autologistic regression, to capture spatial autocorre-
lation in a model originating from endogenous
processes, such as contagious population growth
and movement of censused individuals between
sampling sites (Griffith, 2003). Autocorrelation is
the degree to which a set of features tend to be clus-
tered together, i.e., positive spatial autocorrelation
(PSA), i.e. when similar attribute values aggregate or
when the data are unevenly dispersed (negative spa-
tial autocorrelation (NSA)) over the earth’s surface
(Cliff and Ord, 1973).

Autocorrelation is a very general statistical prop-
erty of explanatory variables observed across geo-
graphic space. Its most common forms are patches
and gradients. Spatial autocorrelation presents a
problems for standard testing as autocorrelated
data violates the assumption of independence of
most standard statistical procedures (Griffith,
2003). Since the presence of spatial autocorrelation
can violate the ordinarily stated assumption of sto-
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chastic independence among observations, on
which statistical inference from most classical sta-
tistical models is based, it is important to identify
whether different measures can account for differ-
ent spatial autocorrelation patterns in MDR-TB
parameters. Ignoring spatial autocorrelation in
MDR-TB modeling distributions can introduce
uncertainty in model fit.

Autocovariate models may address residual spa-
tial autocorrelation components among sampled
explanatory variables by estimating the co-variation
of a response variable at any one sampled site based
on the response values at surrounding sites
(Chatterjee, 1988). In autologistic regression models
employed in the analysis of spatial distributions, an
additional explanatory variable, the autocovariate,
is used to correct the effect of spatial autocorrela-
tion (Griffith, 2003). While this approach has been
widely used over the last 10 years in biogeographi-
cal analyses, it has not been assessed for its validity
and performance against simulation data generated
from infectious disease processes. Furthermore,
since autologistic regression models consistently
underestimate the effect of the environmental vari-
able in a disease model and give biased estimates
compared to a non-spatial logistic regression (Jacob
et al., 2008a), a model generated with alternative
methods available may reveal that autologistic
regression is more biased and less reliable and
should be used only in concert with other reference
methods.

Recent quantitative geographical analysis meth-
ods have supplemented mapping georeferenced
explanatory data by decomposing the Moran’s I
into synthetic variates, whose linear combinations
constitute a spatial filter logistic model, with a GLM
specification to determine residual autocorrelation
(Griffith, 2003). The eigenvector filtering approach
is a non-parametric technique that removes the
inherent autocorrelation from generalized linear
regression models by treating it as a missing variable
(i.e. first order) effect. The spatial filtering then con-
verts the variables that are spatially autocorrelated
into spatially independent variables in an ordinary
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least squares (OLS) regression framework. The aim
of a non-parametric spatial filtering is to control for
autocorrelation with a set of proxy variables rather
than to identify a global autocorrelation parameter
for a spatial process (Griffith, 2003). The basis for
this procedure is the decomposition of the Moran’s
I into orthogonal and uncorrelated map pattern
components. This decomposition makes orthogonal
the latent spatial correlation represented by the geo-
graphic configuration of locations described by a
given spatial weights matrix. “The procedure can be
used to account for redundant locational informa-
tion by generating the eigenvectors a special set of
vectors associated with a linear system of equations
(i.e. a matrix equation)”. Unexplained MDR-TB
data clustering may be only artefactual as a result of
differential case reporting, unknown demographic
changes or duplication of case data (Godoy, 2004).
These corresponding eigenvectors can then be used
as predictor variables in a regression equation for
determining covariates associated with specific
MDR-TB parameters.

This study was carried out to identify geographic
areas with on-going MDR-TB transmission by gen-
erating spatial eigendecomposition models within a
SAS/GIS® (SAS Institute Inc.; Cary, NC, USA) data-
base. GIS combined with robust statistical methods
and software may assist clinicians, epidemiologists
and programme managers by adding descriptive
images that are systematically created according to
proper scientific protocol for evaluations of poten-
tial MDR-TB covariates. For example, high-resolu-
tion terrain data generated from digital elevation
models (DEMs) orthophoto mosaics, or multispec-
tral satellite imagery combined with linear and/or
non-linear correlation statistics in GIS may facilitate
regional analysis of MDR-TB data by identifying
landscape characteristics associated with georefer-
enced environmental-sampled variables. In this
research, spatial indices were generated based on
DEM statistics in ArcGIS® (Redlands, CA, USA)
and Poisson probability models generated in
SAS/GIS®, using multiple clinical and environmental
MDR-TB predictor variables sampled in San Juan
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de Lurigancho (SJL), Lima, Peru. Our research

objectives were to:

(i) perform Poisson regression analyses to deter-
mine covariates affecting MDR-TB prevalence;

(ii) generate global autocorrelation statistics for
evaluating spatial dependence among the sam-
pled data; and

(iii) determine latent autocorrelation components in
model output, using a stepwise negative bino-
mial regression analysis with a gamma distrib-
uted mean for identifying MDR-TB epicenters
in SJL.

Generating GIS cluster models based on MDR-TB
parameters, using GLMMs, autocovariate regres-
sion and eigenvector mapping, may elucidate the
mechanics of MDR-TB transmission for optimising
existing management programs by spatially target-
ing high-risk populations.

Materials and methods
Study site

The work was carried out in SJL, the largest dis-
trict in the northeast of Lima, Peru (Fig. 1). With
a current population exceeding one million people
and a total surface area of 131.3 km?2, constituting
4.91% of the total area of the province of Lima, it
is the country’s most populous district. SJL is bor-
dered by the districts of Carabayllo and San
Antonio in the Huarochiri province to the north,
by the Comas, Independencia and Rimac districts
to the west and by Lurigancho to the east. The
Rimac River marks the district’s border with
downtown Lima and El Augustino to the south.
The most important urban areas in the district are
Mangomarca, Zarate, Las Flores, Canto Grande
and Bayovar. One of the first urban areas in SJL is
Caja de Agua, located at the entrance of the dis-
trict surrounded by the San Cristobal and Santa
Rosa hills from south to west (Fig. 2). The altitude
of SJL ranges from 2,240 m above mean sea level
(AMSL) at the peaks of Cerro Colorado Norte to
200 m AMSL at the level of the Rimac River. The
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Fig. 2. Caja de Agua and other urban areas in the San Juan de
Lurigancho, study site.
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urban areas have been developed in a longitudinal
direction from the river border up to 350 m
AMSL. Lima has a mild climate, although it is sit-
uated in the tropics. The weather in the SJL study
site is influenced by the cold offshore Humboldt
Current, which ensures that summer temperatures
hover around 16-20°C; only a few degrees lower
in June and July. Humidity in the city is very high
and fog is often present, especially between May
and November much like in many parts of the
country.

Subjects and setting

This was a prospective, multi-centre, observational
study comparing the use of several investigational
techniques with standard methods to assess the in
vitro antimicrobial susceptibility of Mycobacterium
tuberculosis, either directly from patient specimens
or from culture isolates. Data acquired from a retros-
pective study of a cohort of patients diagnosed with
pulmonary TB and MDR-TB over an 18-month
period in the SJL study site was used. All patients
underwent drug susceptibility testing for first-line
drugs for TB treatment. Overall, 1250 adults with
pulmonary tuberculosis cultures were confirmed.
After collection of baseline samples and completion
of initial measurements, including susceptibility tes-
ting by conventional and research methods, all sub-
jects started anti-TB chemotherapy as dictated by the
standard of care at the site of enrollment. Subjects
were recruited, among patients presenting with
smear-positive pulmonary TB at diagnostic and tre-
atment sites in the following health centres: San
Fernando, La Huayrona, Canto Grande, Jose Carlos
Maridtegui, Hudscar XV, Hudscar I, Ganimedes,
Cruz de Motupe, Piedra Liza, Baydvar, Jaime
Zubieta, San Juan, San Benito, Mangomarca, San
Hilarion, Campoy, 15 de Enero, La Libertad, Juan
Pablo II, Ascarruz Alto, 10 de Octubre, Sta Fe de
Totoritas, Proyectos Especiales, Santa Rosa,
Ayacucho, Zarate, Medalla Milagrosa, Campoy
Alto, Montenegro, Santa Maria, Tupac Amaru II
and Caja de Agua.
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After confirmation of the sputum-smear
microscopy results, the subjects were screened for the
presence of productive cough. Patients with positive
sputum-smears are the ones with the capacity to
spread the infection (Zignol et al., 2006). Eligible
subjects received an explanation of the study and pro-
vided written consents to participate. Initial data
from the screening included past medical history,
basic socio-demographic descriptors (age, sex, occu-
pation, address, etc.) and detailed symptom-oriented
history with physical examination. Drug susceptibili-
ty testing for INH, rifampin, ethambutol and strepto-
mycin was performed on the initial sputum culture
isolates of all enrolled subjects. Those subjects with
initial drug-resistant M. tuberculosis isolates were
confirmed using a treatment regimen with a duration
deemed appropriate by the Committee of the
National Tuberculosis Control Programme (NTCP)
and the Committee for Evaluation of Retreatment
(CER). All information collected was recorded on
standardised data collection forms, labeled with the
date and the subject’s name and study number, edited
as needed, and entered into data files for further
analysis. Case report forms were developed to record
baseline, clinical and socio-demographic information
as well as laboratory data such as human immunod-
eficiency virus (HIV) testing results, mycobacterial
smear and culture results.

Geographic mapping

Field sampling was conducted from July 2005 to
July 2007. Thirty-one health centres in the study site
were mapped and classified using a differentially cor-
rected global positioning systems (DGPS) Max
from CSI-Wireless (Calgary, Alberta,
Canada). This remote technology relies on the
OmniStar L-Band satellite signal yielding a positional
error of X.179m (+/- 0.392 m) (Jacob et al., 2009a).

receiver

Remote sensing data

QuickBird (www.digitalglobe.com) images were
acquired on March 11, 2008 for the SJL study site.
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QuickBird multispectral products provided four dis-
crete non-overlapping spectral bands covering a
range from 0.45 pm to 0.72 pm, with a spatial res-
olution of 0.61 m. QuickBird imagery was classified
using the iterative self-organizing data analysis tech-
nique (ISODATA), unsupervised routine in ERDAS
Imagine v.8.7™ (Earth Resource Data Analysis
System; Atlanta, GA, USA). The images were co-
registered manually, using gathered ground control
point and georectified images from the QuickBird
data. The satellite images were co-registered by
applying a first order polynomial algorithm with a
nearest neighbour resampling method and the uni-
versal transverse mercator (UTM) zone 37S datum
WGS-84 was used for the projection of the spatial
sampled datasets.

Environmental parameters

Variables recorded included MDR-TB prevalence
rates, distance between individual health centres,
population data and land surface elevation and
slope per sampled site in the SJL study site. Distance
measures were recorded in ArcInfo 9.2® (ESRI;
Redlands, CA, USA) with QuickBird data and field
sampling. The distances between health centers
were categorized into numerous classes (e.g. 1 = 0-5
km, 2 = 5-10 km, and so on) and the number of
MDR-TB cases at each individual health centre was
recorded.

Grid-based algorithm

A 10 x 10 m grid-based algorithm was overlaid
on the base maps of the study site in ArcInfo 9.2
(ESRI) to generate spatial sampling units. A 2 km
buffer was placed around each health centre and a
unique identifier was placed in each gridded
buffer (Fig. 3). The level of house spacing, road
types and networks, community water sources
and access to utilities were also noted within each
buffer. Information contained in Census and dis-
trict Development Reports for the SJL study site,
as well as environmental descriptions from previ-
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Fig. 3. Digital elevation model (DEM) generated from covariates sampled in the San Juan de Lurigancho, study site.

ous field and topographical maps were used to
assist with the stratification process. The bound-
aries of selected grid cells were located in the field
using the hand-held DGPS navigational units and
base maps with landmarks/paths/roads. Latitude
and longitude readings were taken at the corners
and centre of each selected grid cell to confirm the
location and extent of the grid cell boundaries.

Digital elevation model (DEM)

A three-dimensional model of the study site was
constructed, based on the DEM, using the ArcScene
extension of ArcGIS® (ESRI). The DEM used was a
raster representation of a continuous surface, origi-
nating from the Shuttle Radar Topography Mission
(SRTM) which has a spatial resolution of 92 m. The
purpose of the DEM construction was to extract topo-
graphic parameters that may have been associated
with the georeferenced MDR-TB predictor variables

sampled in the SJL study site. Data from SRTM ver-
sion 2 (i.e. the finished version) was downloaded from
http://srtm. usgs.gov/. The MDR-TB predictor vari-
ables were defined by geocoordinates in a tiled format.

Regression analysis

All sampled parameters were entered into Excel
files and analysed using SAS/GIS®. The first stage of
these analysis used Poisson regression to determine
the relationship between the clinical and environ-
mental-sampled MDR-TB covariate measurements.
The Poisson regression assumed that each independ-
ent count estimate (i.e. 7;), recorded at a health cen-
tre location “i” = 1, 2, ... n, was from a Poisson dis-
tribution. These data were described by a set of pre-
dictor variables denoted by matrix X, a 1 xp vector
of covariate indicator values for a georeferenced
health centre location i in the SJL study site. The
expected value of these data was given by
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p(X;) = n,(X;) exp(X;p), where f was the vector of
non-redundant parameters, and the Poisson rates
were parameter given by A(X;) = p;(X;)/n;(X;); the
rates parameter Aj(X;) was both the mean and the
variance of the Poisson distribution (McCullagh and
Nelder, 1989) for a sampled health centre location.
The regression analyses were performed in
SAS/GIS® using a 95% confidence level. The data
was log-transformed before analysis to normalise
the distribution and minimize the standard error.

There was considerable overdispersion in the
model. Thus, we used a negative binomial model to
evaluate the sampled MDR-TB covariates as nega-
tive binomial models fitted by the ML method are
considered to be convenient and practical for han-
dling overdispersion in remote-sampled covariates.
This approach allowed the likelihood ratio and
other standard ML tests to be implemented, permit-
ting the fitting procedure to be carried out by using
an iterative weighted least squares regression similar
to those of the Poisson (Jacob et al., 2005, 2009c¢).
In this research, the fitting of overdispersed Poisson
models was performed using;:
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in Arc, a computer programme described in Glantz
and Slinker (2001) and obtained at the follwing site:
http://www.stat.umn.edu/arc.
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Autoregressive spatial models

We restricted our attention in this research to the
autoregressive Gaussian spatial
process and the autoregressive Gaussian response
model (i.e. spatial lag model). We assumed that a
common spatial structure V applied to all terms in
the autoregressive spatial models, and that either
autocorrelation tests or the spatial eigenvectors
were developed with this spatial structure as their
underlying basis. An “n x n” spatial structure
matrix V was used to specify the hypothetical pair-
wise spatial similarity relationships among the
MDR-TB observations. By definition, the matrix
diagonal elements were zero and the notation “V”
was used generically for different coding schemes.
For empirical convenience, we used a topological
adjacency specification to denote these spatial rela-
tionships.

In this research, the generic specification of
autoregressive spatial models used for analysing the
sampled MDR-TB clinical and environmental-sam-
pled covariates was:

simultaneous

y=p,V,+ (L-p V) X1+ . + (I - pV) x, B+ €
(2.1)

where ¢ = N(0, 02I) which involved the estimation
of (k +1) spatial autocorrelation coefficients. Model
(2.1) allowed us to deduce a nested sequence of
more commonly used models of autoregressive spa-
tial processes. Depending on constraints imposed on
the spatial autocorrelation in the sampled MDR-TB
parameters, O, Py, ..., Py, different autoregressive
models were specified by setting, P=py=p= ...
= p,, which led to a simultaneous autoregressive
(SAR) spatial model:

y=pV,+(I-p V) XB+e
(2.2)

For the spatial lag model, the autocorrelation
parameters in the sampled MDR-TB clinical and
environmental predictor variables were further con-
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strained by the spatial lag factors of exogenous vari-
ables, which in this research became zero (i.e. p; = ...
= p,= 0, ); whereas, for the endogenous variable, we
had p = p,. This process generated the model:

y=pV,+ XB+¢
(2.3)

The misspecification perspective for spatial regres-
sion models assumed that the basic regression
model, y = X+ ¢, had spatially autocorrelated dis-
turbances ¢’, which was decomposed into a specif-
ic white-noise component ¢ (i.e. a stationary time-
series or a stationary random process with zero
autocorrelation) and a set of unspecified and/or mis-
specified models which had the structure:

y=XB+Ey+e
\—“,é—/
= (2.4)

where Ey was the misspecification in the MDR-TB
model term. This misspecification perspective for
spatial autocorrelation was not directly comparable
with the spatial process models (2.2) and (2.3),
which were based on spatial relationships in the ran-
dom components y and/or &. Nevertheless, specific
terms were isolated in the spatial process models,
where the structure was similar to that of the mis-
specification term. This resemblance established an
indirect link between the MDR-TB models (2.2) and
(2.3) and misspecified model (2.4). Furthermore, the
unknown misspecification term was approximated
by a set of spatial proxy variables. Spatial proxy
variables are characterized by strong components,
such as a spatially autocorrelated patterns (Griffith,
2003).

Spatial error autocorrelation were included in
the regression specification by bringing the spa-
tially unlagged endogenous variable y exclusively
to the left-hand side of the regression equation. In
an autoregressive expression, the response vari-
able is on the left-side of the equation, while the
spatial lagged version of the variable is on the
right side (Glantz and Slinker, 2001). This statisti-
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cal adjustment was accomplished by expanding
the matrix term:

(I-pV)' = 3 phVE
) (2.5).

The simultaneous autoregressive error model (2.2)
was then rewritten as y - pVy = X - pVXp + &. The
disturbances & were assumed to be white-noise.
Substituting the transformation (5) rendered:

y=(-pV)L[XB -pV (XP) + ¢,
y =3 PLVHXB - pVXB + ),
y =; PkVEXB - 2 Pk VEI(XB) + 2 pkVke,

y=XB+ 3 pEVEX - 3 pVE(XP) + 3, ptVie,
=0

y:X/)’+gkaks+£

misspecification - term

The model generated implied that the estimated
regression parameters f3 were unbiased for the basic
regression equation, i.e. y = X3+ €', where ¢ incor-
porated the misspecification term and the white-noise
disturbances. However, the standard errors of the
regression parameters were biased. Therefore, we used
the spatial lag model (3), but expressed as (I - pV) y =
XB+ e. Substituting the transformation (5) rendered:

y =3 ptVE (X + e),

y=X[5+Zkak(X/J’+£)+£.

misspecification - term

In this case, the misspecification term Y, pkVk (Xp
+¢)k =1, ..., ) included the exogenous variables
“X”. Consequently, the exogenous variables were
correlated with the misspecification term. Under this
condition, the standard OLS results for the basic
regression model generated from the sampled MDR-
TB parameters, i.e. y = XB + €', provided biased esti-
mates f3 of the underlying regression parameters f3.
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In this research, we used Moran’s I in ArcGIS®
defined as:
_ N i 2 wi/‘(Xi'Xz (Xf'X)

> 2;‘ wj 2 (X - X)?

where “N” was the number of MDR-TB covariates
indexed by i and j, X the variable of interest (i.e.
prevalence rate), X the mean of X, and w; was a
matrix of spatial weights. The expected value of
Moran’s I under the hypothesis of no spatial auto-
correlation was:

I

-1

E)=—g—1

where the variance in the MDR-TB model was gen-

erated using:

— NS4 = S3SS
(N-1)(N-2)(N-3) (3 E;‘ wi/')2

Var (I)

and where all spatial autocorrelation components in
the MDR-TB model were quantified using:

S, = % > 27‘ (wy+ w;)?
i (Zjwi+ Jiw)?
1
N1Y, (x- x)*
(N1 Y (x;- X)2)?
(N2-3N +3)8,-NS,+ 3 (3, 3, w;)?
1

6 (2 E;‘ wij)z
1

Sz=

S3=

S5 = Sl- 2.NSl=

Values range from -1 (perfect dispersion indicat-
ing NSA) to +1 (perfect correlation or PSA) in the
sampled clinical and environmental explanatory
variables. Zero values in the MDR-TB models indi-
cate a random spatial pattern.

Results

Our main result is the development and imple-
mentation of approximate normality for the detec-
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tion of MDR-TB clusters of correlated events. We
assumed that a buffered health centres region was
divided into separate, non-overlapping, administra-
tive areas. The georeferenced health centre was
selected in ArcGIS® which was the representative
middle point (i.e. centroid). The total number of
health centres in the study region was denoted by 1.
We labeled each buffered health centre area i, as the
p-th closest health centre to a neighbouring health
centre i, p € {1, ..., I - 1}, and i, = i. We let N, be the
population size of the i-th health centre, thus the
total patient population was N = 3i = 1INi. We then
let C; and C,, be the number of sampled clinical and
environmental covariates with exactly x in the i-th
cell, respectively, with observed MDR-TB prevalence
values of ¢; and ¢;.. We also had C; = 3, C,,, and the
random variable V; = 3. xC,. denoting these attrib-
ute values in a health centre i with the observed value
of v, We assumed that C= Y, C;and V = 3, V. denot-
ed the total number of covariates for the SJL study
site, respectively, with observed values of ¢ and v.

Fig. 4. Base-map of the study site in San Juan de Lurigancho,
Lima, Peru.
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We generated a broad-scale quantification of
topography in the study site using a spatial hydro-
logical model (Fig. 4). Results of the analyses, using
Pearson’s correlation determined the linear relation-
ship between the sampled MDR-TB covariates
which indicated a statistically non-significant linear
relationship between georeferenced health centres
and the covariate elevation (m) (r = 0.423;
P <0.001; 7 = 31), with a standard deviation (SD) =
104.6 for the sampled MDR-TB covariates and
SD = 23.0 for elevation (m) (Table 1).

The field-sampled covariates were then linked with
the satellite data in ArcGIS® order to query spatial
proximities of the sampled habitats in SAS/GIS®. The
SAS Bridge for ESRI alleviated the need for cus-
tomized MDR-TB data transfers by providing the
ability to exchange spatial data between ArcGIS®
and SAS®. A model was developed for allowing a
parsimonious, but flexible, representation of the
covariance matrix of a multivariate model generated
from the MDR-TB predictors. Poisson regression
analyses were created from the sampled data. An
examination of the coefficient estimates from a
Poisson model specification indicated; however, that
significant overdispersion was present. Thus, to
remove the effects of overdispersion and provide
more accurate estimates of standard error, a negative
binomial with a gamma distributed mean was used
to model the MDR-TB parameters.

In this paper we also concentrated on standard
regression models y = Xf + €, where y was an (n x 1)

Table 1. Pearson correlation for georeferenced MDR-TB
health centre data and the predictor variable elevation in the
SJL study site.

Predictor Statistical tests MDR-TB Elevation (m)
variables health centre
data

MDR-TB Pearson correlation 1 0.423
health centre Sig. (2-tailed) <0.001
data N 31 31
Elevation (m) Pearson correlation 0.423 1

Sig. (2-tailed) <0.001

N 31 31
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vector of the endogenous variable for the # sam-
pled MDR-TB parameters, X an (7 x k) matrix of
k exogenous variables, including an (7 x 1) unity
vector 1, b the (k x 1) vector of regression param-
eters, and € an (z x 1) vector of random distur-
bances. We assumed that spatial autocorrelation
among regression disturbances was induced by
exogenous spatially autocorrelated factors, which
were not incorporated into the model. This led to
a model misspecification by shifting parts of the
relevant information from the mean response Xf
(or first-order component) into an (7 x 7n) covari-
ance structure of the disturbances [or second-order
component cov(€)].

The correlation, or lack thereof, between the
exogenous variables and the misspecification terms
of the MDR-TB models were used to design spatial
proxy variables so that the properties of either
model could be satisfied. We considered two differ-
ent projection matrices, M, = I - 1(17 1)1 1T and
My, =1 - X(XT X)' XT. The projection matrix M,
was a special case of the more general projection
matrix My, (Griffith, 2003). The general projection
matrix My, included, in addition to the constant
unity vector 1, additional exogenous variables. The
set of eigenvectors {ey, ... , €,}s4r Was extracted from
the quadratic form

{ers - seutsar = evec

1
My (V + V7) M(X)]

and designed orthogonal to the exogenous variable
X. The projection matrix My, imposed this con-
straint. In contrast, the set of eigenvectors that was
extracted from

1
{ery v se,) 10 = evec [M“)T (V + VT) M(l)} .

These two different sets of eigenvectors estab-
lished a basis for a spatial regression model. Both
expressions were solely defined in terms of exoge-
nous information. This model feature enabled us to
also use the eigenvector spatial filtering approach
for predictions of the endogenous variable y. The
associated sets of eigenvalues {A, ... , 4,};,, and
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{Aly oo s Ayfsar, with a A= A, , range, were used for
properly standardizing adjacent link matrices V that
were related to irregular spatial tessellations, gener-
ated from the MDR-TB parameters. The compo-
nents of each eigenvector ¢; when mapped onto an
underlying spatial tessellation, exhibited a distinc-
tive topographic pattern ranging from PSA for A, >
E(I), to NSA for, A, > E(I).

Each eigenvector was mapped where E(I) was the
expected value of Moran’s under the assumption of
(i) spatial independences and (ii) use of the related
projection matrix Mg or My, respectively. The
associated Moran’s I autocorrelation coefficient, of
each eigenvector ¢; generated, was equal to its asso-
ciated eigenvalue A; = [eT (V + VT)e]] / (2eTe), if V
was scaled to satisfy [17(V + VT)1] / 2=n. The spa-
tial pattern in the eigenvectors was, - somewhat syn-
thetic for positive global autocorrelation in that the
local patterns of the MDR-TB parameters exhibited
only positive local autocorrelation, but not negative
local autocorrelation (and vice versa for negative
global autocorrelation). Finally, the eigenvectors e;
and ¢; within each set of eigenvectors, were mutual-
ly orthogonal, as the symmetry transformation

1

> (V+VT)

was a quadratic form.

Estimation results, for these models, appear in Table
3. Although the reported positive and negative spatial
autocorrelation spatial filter component pseudo-R2
values did not exactly sum for the complete spatial fil-
ter, they was very close to their corresponding totals,
suggesting that any induced multicollinearity was
quite small. Multicollinearity is a term to denote the
presence of linear relationships or near linear relation-
ships among sampled predictors and explanatory,
independent, or concomitant variables in a model
(Hastie and Tibshirani, 1990). Positive spatial auto-
correlation and NSA spatial filter component pseudo-
R2? values are reported. GLMM estimation results
appear in Table 4. These spatial autocorrelation com-
ponents suggest the presence of roughly 14% redun-
dant information in the sampled datasets.
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Table 2. Global spatial analyses of MDR-TB prevalence rates
by health centers in the Lurigancho study site.

Study site Sampled Transformation MC sMC GR

number

San Lurigancho 31 LN(count + 1.5) 0.58 0.06 0.81

LN = Natural logarithm; MC = Moran’s coefficient; sMC = stan-
dard error of the MC; GR = Geary ratio.

Table 3. Poisson spatial filtering model results for MDR-TB
prevalence rates by health centres in the San Lurigancho
study site.

Spatial statistics Model output

SE: # of eigenvectors 7

SF: MC 0.03
SF: GR 0.68
SF pseudo-R2 0.32
Positive SA SF: # of eigenvectors 2

Positive SA SF: MC 0.90
Positive SA SF: GR 0.06
Positive SA SF pseudo-R?2 0.04

Negative SA SF: # of eigenvectors 3

Negative SA SF: MC -0.48
Negative SA SF: GR 0.63
Negative SA SF pseudo-R2 0.29
Deviance statistic 1.03
Dispersion parameter 0.11

MC = Moran’s coefficient; GR = Geary’s ratio; SF = spatial filter;
SA = spatial autocorrelation. A pseudo-R? is the squared correla-
tion between observed and GLM-predicted counts.

Table 4. Poisson spatial filter (SF) generalized linear mixed
model (GLMM) random effects for MDR-TB prevalence
rates by health centres in the San Lurigancho study site.

Statistics Model output
Mean 0.03
Standard deviation 0.31

MC 0.14

GR 0.78
Pseudo-R?2 0.86

Changes in significance (using a 0.10 level)

of eigenvectors none

MC = Moran’s Coefficient; GR = Geary Ratio; SA = spatial auto-
correlation.
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Discussion

The spatial hydrological model generated from
the clinical and environmental-sampled MDR-TB
predictor variables revealed that elevation was not
an important variable in the DEM model. The accu-
racy of our DEM; however, may have been limited
by spatial resolution (i.e. 92 m). Several factors can
play a role in the quality of DEM-derived products
(i.e. terrain roughness, sampling density, interpola-
tion algorithm and terrain analysis algorithm), but
spatial resolution is the most important for topo-
graphic  feature detection and extraction
(http://eros.usgs.gov/). Spatial resolution of DEMs is
vital for generating MDR-TB models with less sim-
ulated errors while allowing for higher quality
orthoimagery production, hydrologic modeling,
view-shed determination, slope/aspect analyses, and
three-dimensional surface visualization. More
DEMs should be generated for the SJL study site at
varying resolutions for further clarification of eleva-
tion and other terrain covariates and their associa-
tion with georeferenced MDR-TB parameters. For
example, a 10 m drainage-enforced DEMs compiled
using both the hypsography contour and hydrogra-
phy elements present in 7.5-minute topographic
quadrangle maps may be useful for modeling MDR-
TB parameters. Ten m DEMs have the same vertical
accuracy as 30 m level 2 products, but their 1/3-arc-
second profile supplies a much improved represen-
tation of features of the actual landscape. Local dif-
ferences among DEM grid cells are often analysed to
calculate slope and other land surface parameters
using the relative vertical accuracy, or point-to-point
accuracy on the surface of the elevation model, and
the absolute accuracy which determines the quality
of such parameters derived from local differencing
operations (http://eros.usgs.gov/). Thus, the resolu-
tion of a DEM used for quantifying MDR-TB
covariates at each pixel (i.e. absolute accuracy) and
the accurateness of the sampled clinical and envi-
ronmental-sampled data represented (i.e. relative
accuracy) may be vital for generating a geometri-
cally correct reference frame for validating parame-
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ters such as elevation associated with MDR-TB
parameters sampled in the SJL study site.

A negative binomial regression analyses identified
nearest neighboring health centre distance as signif-
icantly influencing the sampled MDR-TB data. On
visual inspection of the cluster maps it was clear
that there is relative clustering among all MDR-TB
parameters as evident by the steep rise in prevalence
estimates at small distances. Physical distance
between social networks is among the most impor-
tant facilitators of MDR-TB transmission (Godvoy,
2004). Monitoring changes in local case numbers
using distance based measurements could help tar-
get health services to specific regions in the SJL
study site with the highest disease burden.
Descriptive MDR-TB maps of the spatio-temporal
patterns of sampled clinical and environmental
covariates should be generated, using different sta-
tistical tests based on distance- based measurements
using space—time interaction models (e.g. the Knox
test and k-nearest neighbor test) and a cluster-detec-
tion algorithm (e.g. the space—time scan statistic).

Spatial autocorrelation indices based on log-trans-
formed MDR-TB prevalence rates sampled in each
health centre, revealed PSA. The use of prophylactic
treatment and other MDR-TB control measures
may tend to have demographic dimensions with
spatial expressions in the SJL study site. Socio-eco-
nomic factors may also impact contagion diffusion,
inducing PSA in sampled MDR-TB covariates. For
example, neighborhoods in the SJL study site were
composed of clustered households with similar
attributes among specific sociodemographic charac-
teristics (e.g. distance to the nearest health centre).
Communities with overcrowded housing experience
a higher prevalence of latent MDR-TB infection
and/or risk factors for progression from MDR-TB
infection to disease (Manton and Stallard, 1981;
Godoy, 2004). Other risk factors for MDR-TB may
include substance abuse, and insufficient nutrition
(Reichman et al., 1979), which may be more preva-
lent in communities with socio-economic disadvan-
tages such as unemployment and homelessness
(Concato and Rom, 1994). Furthermore, the PSA
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found in the spatial distribution of health centres in
the SJL study site may reflect the effects of changes
in spatial patterns and the effectiveness of local pub-
lic health programmes that attempt to minimise the
size of MDR-TB infected populations.

In our spatial filtering analyses of the clinical
and environmental MDR-TB data, synthetic vari-
ates appeared in the numerator of Moran’s I.
Eigenvectors were extracted from a transformed
spatial link matrix which exhibited distinctive spa-
tial patterns with associated spatial autocorrela-
tion levels. This matrix decomposed the Moran’s I
statistic generated using the sampled MDR-TB
covariates for constructing a Poisson spatial filter-
ing GLMM. One advantage of a spatial filter
approach is that it also enables use of a GLM spec-
ification which for disease mapping purposes is
based upon the binomial, Poisson, or negative
binomial probability models depending upon
whether a disease map is expressed in terms of a
binary, a percentage or a count variable (Griffith,
2005). The regression residuals represented spa-
tially independent variable components. Mean,
variance and statistical distribution characteriza-
tions and descriptions of the georeferenced ran-
dom variables and their interrelationships were
derived in terms of the eigenfunction spatial filter.
The eigenvectors described the full range of all
possible mutually orthogonal MDR-TB map pat-
terns, in the SJL study site, based on the clinical
and environmental-sampled covariates.

The spatial dependency in our models suggested
the presence of spatially pseudo-replicated data in
the MDR-TB observations due to the presence of
latent autocorrelation. In this research, redundant
information in the MDR-TB model was most prob-
ably attributable to the locational arrangements of
sampled health centres in the SJL study site, which
caused the observations to be dependent, rather
than independent. As redundant information, spa-
tial autocorrelation in MDR-TB data may be linked
to missing value estimation and interpolation, as
well as the notions of effective sample size and spa-
tial configuration of georeferenced data (Dutilleul,
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1993). Spatial autocorrelation devices are construct-
ed from geographic weights matrices, which are
used to capture the covariation among values of one
or more random variables that are associated with
the configuration of areal units (Griffith, 2003). In
future analyses of MDR-TB parameters, in the SJL
study site, an eigenfunction spatial filter formula-
tion should be used to reduce sampling variability in
accordance with the degree of redundant informa-
tion quantified based on latent autocorrelation esti-
mates. Other Gaussian regression models, such as
moving average models, conditional autoregressive
models or autoregressive models without a common
factor constraint, may also be accommodated by
the eigenvector spatial filtering approach for quan-
tifying spatially pseudo-replicated MDR-TB data.
In this paper, we demonstrate that the eigenvector
spatial filtering approach can be embedded into a
semiparametric statistical framework using MDR-
TB parameters. Although the eigenvector spatial-fil-
tering approach is statistically and numerically
robust, for spatial tessellations generated from spa-
tio-temporal sampled datasets of MDR-TB parame-
ters, it does require specific statistical restrictions.
For example, since eigenfunction decomposition
yields 7 eigenvectors, an MDR-TB researcher needs
to restrict attention to only those eigenvectors
describing substantive PSA and NSA (e.g. MC >
0.25, a value that tends to relate to about 5% of the
variance being attributable to redundant informa-
tion arising from latent spatial autocorrelation, in
our areal unit neighborhood configuration).
Generating statistical limitations reduces the candi-
date set to a more manageable number for describ-
ing a given MDR-TB map. Supervised stepwise
selection from a set of such eigenvectors is a useful
and effective approach to identifying the subset of
eigenvectors that best describes latent spatial auto-
correlation in an MDR-TB map. This procedure
begins with only the intercept included in a regres-
sion specification. Next, at each step an eigenvector
is considered for additional model specification.
For the stepwise linear Gaussian model, commonly
the eigenvector having the largest partial correlation
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is selected, but only if its corresponding F-ratio
achieves or surpasses a prespecified level of signifi-
cance; this is the criterion used to establish statisti-
cal importance of an eigenvector for describing the
full range of all possible mutually orthogonal MDR-
TB map patterns which may be also interpreted as
synthetic map variables that are analogous to the
residual spatial variables. In stepwise generalized
linear modeling regression, the eigenvector that pro-
duces the greatest reduction in the log-likelihood
function chi-square test statistic is selected, but only
if it produces at least a prespecified minimum reduc-
tion; as before, this is the criterion used to establish
statistical importance of an eigenvector (Griffith,
2003). In each statistical procedure, at each step all
eigenvectors, generated from MDR-TB parameters,
previously entered into a spatial filter equation are
reassessed, with the possibility of removal of vectors
added at an earlier step. The forward/backward
stepwise procedure terminates automatically when
some prespecified threshold values (respectively for
F-ratios and chi-square statistics) are encountered
for entry and removal of all candidate eigenvectors.
The ultimate inclusion criterion is determined by the
Moran’s I coefficient value of the residuals, which
should indicate an absence of spatial autocorrela-
tion. Satisfying this condition sometimes requires
supervised backward elimination of marginally
selected eigenvectors because their inclusion can
force the residual Moran’s I coefficient value to
decrease too far below zero. This final stopping cri-
terion for the linear Gaussian model is relatively
easy to implement as Moran’s I coefficient distribu-
tional theory is known for linear regression residu-
als; a corresponding stopping rule for GLM regres-
sion is far more difficult to implement because of a
lack of such distributional theory.

In conclusion, a DEM revealed that elevation was
not significantly associated with the sampled MDR-
TB data. A negative binomial regression analyses
identified the independent variable distance between
health centres as significantly influencing sampled
data. We then decorrelated the MDR-TB observa-
tions using a spatial filter analyses which revealed
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PSA in all models tested; similar log-MDR-TB
prevalence rates of the health centres aggregated in
geographic space. The spatial filtering analyses
transformed all variables containing spatial depend-
ence into covariates free of spatial dependence by
partitioning the original georeferenced attribute
variable into two synthetic variates: (i) a spatial fil-
ter variate capturing latent spatial dependency, that
otherwise would have remained in the response
residuals, and (ii) a nonspatial variate that was free
of spatial dependence. These latent autocorrelation
estimates suggested the presence of roughly 14%
spatially pseudo-replicated data in the clinical and
environmental-sampled explanatory variables.
Poisson regression models and a distance weighted
error autocovariate matrix can be used for analyz-
ing and prioritizing clinical and environmental-sam-
pled MDR-TB covariates. Furthermore, eigenvector
mapping can be used for resource allocation and for
implementing MDR-TB control strategies in urban
environments.
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