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Abstract. Correlation in space between seasonality of malaria and seasonality of rainfall was studied in Sri Lanka. A
simple seasonality index was developed by making use of the bimodal seasonality of both malaria and rainfall. The
malaria seasonality index was regressed against the rainfall seasonality index taking spatial autocorrelation into
account. Despite the presence of spatial autocorrelation, the coefficient for the rainfall seasonality index in explaining
the malaria seasonality index was found to be significant. The results suggest that rainfall is an important driver of
malaria seasonality. 
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Introduction

In the field of malaria transmission and prediction
modelling there is not only an interest in risk per se
but also an increasing interest in identifying the sea-
sonality of malaria over larger geographical areas
(Mabaso et al., 2005, 2007; Childs et al., 2006;
Gemperli et al., 2006; Grover-Kopec et al., 2006).
Malaria case time-series in Sri Lanka show both
strong long-term fluctuations and seasonality (Fig. 1).
The long-term fluctuations are generally attributed
to the impact of malaria control strategies and the
development of insecticide resistance. Seasonality,
on the other hand, is generally attributed to climat-
ic factors, in particular rainfall which provides the
breeding habitats for the malaria vector mosquitoes
and sustains the aquatic, immature stages of their
life cycle. The optimum amount and frequency of
rainfall depend on the physical nature of the breed-

ing site and the requirements of the vector in ques-
tion. It should be remembered that rainfall may also
have an indirect impact on mosquito breeding, e.g.
when it occurs upstream or when rain water is
transported for irrigation purposes. Hence, rainfall
impinges on mosquito population dynamics in a
rather complex way. For example, a large amount of
rain within a short period of time may wash away
aquatic stages as well as adults, while continuous,
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Fig. 1. Confirmed monthly malaria cases in Sri Lanka for the
period January 1972 - December 2003.
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low-volume rainfall may not be optimal for colo-
nizing mosquito species that require temporary
breeding sites. Although malaria-case time-series
(from which long term non-seasonal trends were
removed) and rainfall time-series appear to have
strong cross-correlations, a large part of these cor-
relations can be explained by both series being
cyclical with a similar periodicity (Briët et al.,
2008). Many biological processes follow annual
cycles and high cross-correlations do not necessari-
ly infer a causal link. However, there is spatial
information that suggests that rainfall seasonality
could be a driver of malaria seasonality and
although the island of Sri Lanka is only 65,610
km2, in total, it shows strong spatial variability in
climate (de Silva and Fernando, 1997). The south-
western part of the country (often described as the

wet zone since it receives more than 1900 mm of
rain annually) is affected by two periods of mon-
soon rains with peaks in May and October, whereas
rainfall peaks in November/December with a very
minor, almost imperceptible peak in April (Fig. 2) in
the so called dry zone in the north-east which
receives less than 1900 mm rain annually.
Corresponding to this distribution of rainfall,
malaria-case time-series show a strong bimodal sea-
sonality in the south-western part of the island,
whereas the malaria time-series become more
monomodal in nature towards the north and east
with the second peak in the middle of the year
being much less important (Fig. 3). In order to
establish whether there is a correlation between
rainfall seasonality and malaria seasonality over
space, a regression analysis was carried out.

Fig. 3.The seasonal distribution of malaria cases in Sri Lanka.
Legend: the compound number of monthly malaria cases
(logarithmically transformed) from January (bar far left) to
December (bar far right) from 1972 to 2003. The value of 0.6
has been added to all data to make them positive.

Fig. 2. Seasonal variability of rainfall (geometric means) for
the period January 1972 - December 2003 in Sri Lanka.
Legend: the height of the bars should be compared to that of
the standard bar which corresponds to 200 mm of rain. The
bar to the far left in each icon represents the geometric mean
of the monthly rainfall in January and that to the far right the
geometric mean of the monthly rainfall in December.
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Materials and methods

Malaria and rainfall data

Records of the total count of blood films exam-
ined for malaria, and how many of these are posi-
tive for malaria, are reported monthly by govern-
ment health facilities and aggregated by the medical
officer responsible for each so called health area
(a sub-district health administrative division). This
study is based on information regarding such blood
film counts provided by the Anti Malaria Campaign
(AMC) of Sri Lanka for the period 1972 - 2003. For
some of the records, the number of blood films
examined was marked as “not received” (and there-
fore classified as missing). For 14.9% of the records,
the value was given as zero or left blank. For the lat-
ter records (the blanks), there was ambiguity as to
whether the data were missing due to problems in
data recording or whether they could also be taken
as zero, i.e. no patients presented themselves for
examination in that particular area in that particu-
lar month. In the data cleaning procedure (see sta-
tistical methods below), 1.4% of the records were
declared as not available (NA). This included the
records where the place for entering the number of
blood films examined was marked as “not received”
(0.95% of all the records) and the records for which
the number of the blood films could be classified as
a lower additive outlier (Burman and Otto, 1988)
(0.44% of all records). The data from the districts in
the north and east, where data gathering and report-
ing was affected by the armed conflict, had the
largest percentage of NA labels: Jaffna (5.4%),
Mannar (26.1%), Vavuniya (8.9%), Kilinochchi
(2.0%), Trincomalee (2.0%) and Ampara (5.4%).
Over time, some health areas changed boundaries or
split into two, e.g. in 1972 and 2003, the number of
health areas was 98 and 230, respectively, and were
therefore deemed unsuitable for temporal data
aggregation. For the purpose of this study, health
areas with variable boundaries were aggregated into
larger areas corresponding to malaria data for
which the catchment area did not change over the

1972 - 2003 period. Thus, the surface of Sri Lanka
was divided into 37 areas (Figs. 2 and 3) and the
“cleaned” monthly malaria-positive data were
aggregated accordingly. Precipitation records, col-
lected by 342 stations across the island, were pur-
chased from the Meteorological Department of Sri
Lanka and monthly rainfall surfaces were created
through spatial prediction using kriging. Three sta-
tions with consistently aberrant rainfall records,
detected through cross-validation using kriging
(Ribeiro and Diggle, 2001), were removed from the
dataset. From each monthly rainfall surface, the
average value of rainfall was extracted for each
area.

Statistical methods

In a data cleaning procedure, the time series of
blood film counts in health areas were logarithmi-
cally transformed to normality (after the value one
was added to the data). Under the null hypothesis,
each observation was assumed to be part of a sea-
sonal autoregressive integrated moving average
(SARIMA) process (Box and Jenkins, 1968) with
parameters P = 0, d = 1, q = 1, P = 0, D = 1, and
Q = 1. Observations were marked as additive out-
liers if the likelihood ratio test statistic (for an addi-
tive outlier) for the observation was below a thresh-
old of 6 (Burman and Otto, 1988) and classified as
NA. For each of these and other NA observations
that were not at the beginning or at the end of a
series, values for the number of malaria-positive
blood films were estimated through a one-step-
ahead SARIMA forecasting model on the original
series and on the reversed series. These two esti-
mates were then averaged. This approach has been
discussed by Mwaniki et al. (2005). Finally, the
health area data series were aggregated to district
resolution before analysis, as these spatial units
remained constant over the study period, whereas
for many health areas boundaries changed (within
the district boundaries) over the study period.

For each area and for each calendar month of the
year, the 34-year (the period matching the malaria
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data available) mean rainfall was calculated and the
values logarithmically transformed. For each area,
the first rainfall peak was calculated as the sum of
the rainfall climatology during the calendar months
March - August, and the second rainfall peak was
calculated as the sum of the rainfall climatology
during the calendar months September - February.
The logarithmically transformed ratio of the two
peaks was used as an index of rainfall seasonality.
For malaria-case count time-series, a similar proce-
dure was applied except that the long-term trends
were calculated using a 13-point moving average fil-
ter with the coefficients at the extremes given half
weight (Chatfield, 2004) and removed. Also, the
first malaria peak was calculated as the sum of the
seasonal figure during the calendar months April -
September and the second malaria peak as the sum
of the seasonal figure during the calendar months
October - March. 

The distribution of the malaria seasonality index
was tested for normality using the Shapiro-Wilk test
(Royston, 1982). The presence of spatial autocorre-
lation of the malaria seasonality index among areas
was tested with the Moran’s I test (Moran, 1950).

Let yi be the malaria seasonality index in area i,
i = 1, …, 37. It was assumed that yi ~ arise from a
normal distribution with mean µi and precision
parameter τ, that is yi ~ N(µi, τ). We considered
µi = β0 + β1 xi + φi where xi measures rainfall sea-
sonality. β0, β1 are regression coefficients and φi is an
area-specific random effect taking into account the
spatial correlation introduced by the spatial struc-
ture of unobserved covariates. For the φi‘s, a CAR(γ,
τs) model was adopted which assumes that   

φi φ-i , τs, γ ~ N (γ—Σ—φ—-i
—n-i  

, 1
——n-iτs)

where γ is a spatial correlation parameter, ni is the
number of areas bordering area i and σ2

i = 1τs
meas-

ures between area variation. To facilitate model fit a
Bayesian modelling framework was used. The fol-
lowing prior distributions were chosen for the
parameters: β0, β1 ~ U(-∞, ∞), τ, τs ~ Ga(0.005,
0.005), γ ~ U(a, b) with limits a, b specified as

described by Gelfand and Vounatsou (2003). The
CAR(γ, τs) was considered as a prior distribution for
the φi‘s. The effect of this prior distribution is to
shrink the observed value (in this case the malaria
seasonality index) of an area to that of the local
mean, where the local mean is the mean of all con-
tiguous areas excluding the area itself. The posteri-
or distribution of the seasonality index of an area is
therefore a compromise between the prior, which is
based on the seasonality index of neighbouring
areas, and the data for the area. Two spatial models
were fitted: (i) a CAR(γ, τs) and (ii) a CAR(1, τs).
The latter model assumes maximum spatial correla-
tion although it does not give a proper distribution
for the φi‘s (Sun et al., 2000). The former model
gives a well-defined proper distribution. Bayesian
CAR models have been widely used in malaria map-
ping (Kazembe et al., 2006; Kleinschmidt et al.,
2002; Mabaso et al., 2005). A non spatial model
was also applied. The deviance information criteri-
on (DIC) (Spiegelhalter et al., 2002) was used to
determine the best fitting model. The models were
estimated using a Markov chain Monte Carlo
process using three chains, and 1,500,000 iterations
(including a burn-in of 500,000 iterations), with a
thinning rate of 100. Convergence was assessed by
studying plots of the Gelman-Rubin convergence
statistic as modified by Brooks and Gelman (1998).

The including analysis described above was
repeated including zone as a regressor. Also, because
there is some concern that cases in areas with his-
torically low transmission may primarily have been
acquired elsewhere (and patterns would therefore
not represent local transmission) the analysis (with-
out zone as regressor) was repeated excluding nine
areas with a geometric mean annual case-load of
less than 600 over the study period (all of these
except Chilaw were situated in the wet zone and
some were situated at high elevations): Colombo
district, Kalutara district, Galle district, the north-
ern part of Matara district, the western part of
Ratnapura district, Nuwara Eliya district (compris-
ing of two areas), eastern part of Kandy district, and
Chilaw (the southern part of Puttalam district).
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All data management and analysis was performed
in the software environment R (2007). The
Bayesian regression analysis was carried out in the
software package “WinBUGS” (Lunn et al., 2000),
which can be called from R using the R package
“R2WinBUGS”.

Results

There was no evidence that the malaria seasonali-
ty index, nor the residuals of any of the regression
analyses, were not Gaussian distributed, according
to the Shapiro-Wilk test. A scatter plot of the malar-
ia seasonality index against the rainfall seasonality
index (Fig. 4) showed that there are no clear outliers.
The Moran’s I test for the complete dataset (n = 37,
I = 0.46, 95% credible interval = 0.45 - 0.52) and the
reduced dataset (n = 28, I = 0.45, 95% credible inter-
val = 0.42 - 0.54) showed that there was significant
spatial autocorrelation in the malaria seasonality
index, thus nearby pairs of districts had a more sim-
ilar malaria seasonality index than distant pairs.

Estimates for the mean of the coefficients in the

non-spatial, CAR(1, τs) and CAR(γ, τs) models
(Table 1) were very similar. The standard deviations
of the coefficients for the rainfall seasonality index
in explaining malaria seasonality were larger (as

Fig. 4. Scatter-plot of malaria seasonality versus rainfall season-
ality in Sri Lanka. 
Legend: the malaria seasonality index on the vertical axis is
viewed against the rainfall seasonality index on the horizontal
axis for areas in the wet zone receiving more than 1900 mm rain-
fall annually (solid circles) and in the dry zone (open circles). 
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Model Parameter Mean Standard deviation 95% Credible interval

Non spatial β0

β1

τ
Moran’s I
DIC

-0.20
2.53
4.65
0.16

52.18

0.11
0.51
1.10
0.04

-0.41, 0.01
1.54, 3.55
2.68, 6.92
0.12, 0.27

CAR (1, τs) β0

β1

τ
τs

Moran’s I
DIC

-0.18
2.69

10.34
40.90
0.11

45.47

0.14
0.73

23.34
80.37
0.11

-0.44, 0.09
1.29, 4.19
2.99, 52.50
1.00, 276.70

-0.10, 0.36

CAR (γ, τs) β0

β1

τ
τs

γ
Moran’s I
DIC

-0.19
2.61

10.71
53.50
-0.03
0.12

41.10

0.13
0.56

32.20
93.04
0.70
0.09

-0.44, 0.05
1.53, 3.73
2.90, 61.91
0.94, 314.21

-1.37, 0.96
-0.09, 0.27

Table 1. Results of regression of the malaria seasonality index against the rainfall seasonality index in malarious areas in Sri
Lanka.

Legend: tau = precision = 1/variance; gamma = spatial auto correlation coefficient; DIC = deviance information criterion.
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expected) in the spatial models as compared to the
non-spatial model. The 95% credible interval of the
posterior distribution of the rainfall seasonality
index coefficient did not include zero. The CAR
(γ, τs) was the best fitting model because the DIC
had the smallest value.

In the CAR(γ, τs) model with both the rainfall
index and the zone as covariate, the 95% credible
interval of the posterior distribution of the rainfall
coefficient was larger but still did not include zero
(results not shown). It should be noted that the
zone coefficient was highly significant in explain-
ing the rainfall seasonality index (P <0.00001),
thus colinearity may have played an important
role.  There was no evidence for zone-rainfall sea-
sonality interaction (analysis not shown). After
accounting for the effect of the rainfall seasonali-
ty (and the zone effect), the residuals in the non-
spatial model showed a much weaker, albeit sig-
nificant, spatial autocorrelation based on the
Moran’s I.

Discussion

Spatial autocorrelation in the rainfall seasonality
index accounted for most of the spatial autocorre-
lation in the malaria seasonality index, as shown
by the comparison of the Moran’s I of the raw data
with the Moran’s I of the residuals of a non-spatial
model including the rainfall seasonality index. The
additional spatial correlation could be due to
unobserved variables that change gradually over
space, such as those related to soil conditions and
altitude (temperature), or factors intrinsic to
malaria transmission (as nearby districts may
influence other districts) or due to cross-border
reporting of cases. However, the analysis excluding
those areas that were thought particularly affected
by cross-border reporting yielded a similar spatial
correlation index. The CAR (γ, τs) model showed
the lowest DIC. However, there are some doubts as
to whether this model really performed this well as
the gamma parameter was not significantly differ-
ent from zero. Nevertheless, since the regression

models indicated that the 95% credibility intervals
for the coefficient for rainfall did not include zero
in the spatial models, there was evidence for a sig-
nificant correlation between seasonality of rainfall
and malaria.

The work most similar to the work presented
here is that by Mabaso et al. (2005, 2007) who
made use of a seasonal concentration index to
summarize seasonality in malaria incidence and
entomological inoculation rate (EIR). The season-
al concentration index is based on vector repre-
sentation (i.e., both magnitude and direction) of
the mean monthly values in a given year. Mabaso
et al. (2007) found that the seasonal concentration
index of rainfall was significant in explaining the
seasonal concentration index of EIR across Africa.
The EIR is more closely related to environmental
variables and is a better measure of the risk of
inoculation than reported malaria cases, which is
confounded by immunological processes. When
protective immunity is high as a result of high lev-
els of transmission, as is the case in many African
settings, it strongly confounds the relationship
between the (all age) incidence time-series and
transmission (Smith et al., 1993). When immunity
plays an important role in disease transmission, it
may create and maintain so called “endogenous
cycles” in incidence time-series, even when the
vectorial capacity (the mosquito vector popula-
tion’s potential to transmit malaria) is at a con-
stant level. Cyclical patterns in incidence time-
series may thus partly be caused by immunity
dynamics and this may confound the relationship
between incidence and extrinsic drivers such
as weather (Pascual et al., 2008). Because of
extremely low sporozoite rates in vector mosqui-
toes in Sri Lanka, it is difficult to measure the EIR
which is otherwise a good measure of the risk of
inoculation. In the absence of reliable EIR esti-
mates, the malaria-case incidence might be a satis-
factory measure of parasite transmission, provid-
ed that protective and anti disease immunity is
low. Although there are strong similarities
between the seasonal concentration index and the
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seasonality index presented here, there are also
important differences. For example, neither differ-
entiate between bimodal systems with (evenly
spaced) peaks of similar height and systems with-
out seasonality. However, the seasonality index is
continuous, whereas the seasonal concentration
index is contained in the zero-one (zero-100 if
expressed as percentage) interval. Most impor-
tantly, in bimodal systems, the seasonality index
allow differentiating between a situation with the
first peak being higher than a second (and the
reverse situation), whereas the seasonal concen-
tration index does not differentiate.

In this paper, seasonality in temperature was not
studied as it was considered of less importance than
rainfall seasonality in the Sri Lankan context. The
country is situated close to the equator and the tem-
perature therefore fluctuates over a narrow range.
Also, a large part of its temporal variability is gov-
erned by rainfall. Moreover, for most malarious
areas (except in the hilly part of the country situat-
ed just south of the centre of the island), the tem-
perature (varying between 22 and 32 degrees
Celsius) is well within the range suitable for malar-
ia transmission (Craig et al., 1999). A study in
Ethiopia found temperature to be generally not sig-
nificant in explaining malaria for districts below
1,650 m (Teklehaimanot et al., 2004). However, it
merits investigation whether temperature influences
malaria seasonality in the hills.

This paper provides evidence that, (even) after
correction for spatial autocorrelation in the data,
rainfall seasonality is significant in explaining
malaria seasonality in space. This suggests that
high cross-correlations between rainfall time-
series and malaria time-series found elsewhere
(Briët et al., 2008) are not accidental but that rain-
fall is a driver of seasonality of malaria cases.
Rainfall seasonality could thus in theory be used
as a predictor of the seasonality of malaria trans-
mission in the absence of malaria case data or EIR
data in areas of low transmission and tempera-
tures which are conducive to malaria transmission
year round. 
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