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Abstract. Pneumonia and influenza represent a significant public health and health care system burden that is expect-
ed to increase with the aging of developed nations’ populations. The burden of these illnesses is far from uniform how-
ever, with recent studies showing that they are both highly spatially and temporally variable. We have combined spa-
tial and time-series analysis techniques to examine pneumonia and influenza hospitalizations in the province of
Ontario, Canada, to determine how temporal patterns vary over space, and how spatial patterns of hospitalizations
vary over time. Knowledge of these patterns can provide clues to disease aetiology and inform the effective manage-
ment of health care system resources. Spatial analysis revealed significant clusters of high hospitalization rates in north-
ern and rural counties (Moran’s I = 0.186; P <0.05), while county level time series analysis demonstrated significant
upward trends in rates in almost a quarter of the counties (P <0.05), and significant seasonality in all but one county
(Fisher-Kappa and Barlett Kolmogorov Smirnov tests significant at the level P <0.01). Areas of weak seasonality were
typically seen in rural areas with high rates of hospitalizations. The highest levels of spatial clustering of pneumonia
and influenza hospitalizations were found to occur in months when rates were lowest. The findings provide evidence
of spatio-temporal interaction over the study period, with marked spatial variability in temporal patterns, and tempo-
ral variability in spatial patterns. Results point to the need for the effective allocation of services and resources based
on regional and seasonal demands, and more regionally focused prevention strategies. This research represents an
important step towards understanding the dynamic nature of these illnesses, and sets the stage for the application of
spatio-temporal modelling techniques to explain them.
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Introduction es and health care system demands (Morris and

Munasinghe, 1994; Carey et al., 2003; Dowell et al.,

The utility of spatial and time-series analysis tech-
niques are increasingly recognized in health research
as a means to better understanding disease process-
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2003; Crighton et al., 2005). Individually, however,
these techniques are limited in that there is always a
danger that important temporal changes may be
missed by aggregating over time, and important spa-
tial changes may be missed by aggregating over
space. Stemming from our past work which identi-
fied both significant spatial and temporal variability
in pneumonia and influenza hospitalizations in
Ontario, Canada (Crighton et al., 2007a,b), this
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study combines these dimensions to seek evidence of
spatio-temporal interaction. The application of spa-
tio-temporal analysis techniques to health services
data such as pneumonia and influenza hospitaliza-
tions has been largely unexplored to date. A better
understanding of the patterns of health service use
will serve to better inform more effective allocation
of resources and services, and provide clues to the
determinants of diseases such as pneumonia and
influenza.

Pneumonia and influenza represent a significant
public health and health care system burden across
the developed world. In Canada, these illnesses are
the most frequent cause of death from infectious dis-
ease, and with between 60,000 and 70,000 hospi-
talizations per year, pneumonia and influenza are
the most common respiratory disease diagnoses
contributing to hospitalization (Health Canada,
2001). The weight of this burden, however, is by no
means felt uniformly across space or time. Past time-
series studies have identified various pneumonia and
influenza outcomes to be significantly seasonal in
nature, demonstrating highly consistent peaks in
winter months and troughs in summer months
(Keistinen et al., 2001; Dowell et al., 2003).
Variations in the seasonal timing of peaks and
troughs by age groups, have also been reported
(Crighton et al., 2004). Associations between air
pollution, low air temperature, and most signifi-
cantly, circulating viruses, are among the factors
that have been linked to these patterns (Glezen et
al., 1996; Donaldson and Keatinge, 2002).

Spatial variability in pneumonia and influenza
hospitalizations have also been reported. A study in
the United Stated (US) (Morris and Munasinghe,
1994) revealed marked regional patterns in pneu-
monia hospitalizations, which were explained in
part by socio-economic and health care system fac-
tors including education, income and physicians per
capita. Our work similarly found significant geo-
graphic clustering in hospitalization rates at the
Ontario county level, by age and gender (Crighton
et al., 2007a). Factors associated with these patterns
include education, proportion of Aboriginal popula-
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tions, behavioural factors such as smoking and
drinking, influenza vaccination and temperature
(Crighton et al., 2007b). While each of these studies
has contributed to our understanding of either the
spatial or temporal patterns of pneumonia and
influenza, the underlying processes driving these
patterns are inherently spatial and temporal in
nature. This represents an important limitation that
is increasingly becoming recognized by epidemiolo-
gists and health geographers alike (Earickson and
Meade, 2000; AvRuskin et al., 2004; Assuncao et
al., 2005; Greiling et al., 2005).

While research on spatial and temporal dimen-
sions of disease is not new, the availability of datasets
and improved computing capacity have led to an
increased interest in the development and applica-
tion of spatio-temporal analytical methods
(Earickson and Meade, 2000; AvRuskin et al., 2004;
Assuncao et al., 2005; Greene et al., 2005). This has
perhaps been most notable in the study of chronic
diseases such as cancer (Carlin and Xia, 1998;
Earickson and Meade, 2000; AvRuskin et al., 2004;
Assuncao et al., 2005; Greene et al., 2005; Greiling
et al., 2005), although factors such as the 9-11
attacks in New York have stimulated research on
rare disease outbreak detection (Kleinman et al.,
2004). Studies on spatio-temporal patterns of
influenza have also been conducted. These include
work by Boussard et al. (1996) who, using weekly
sentinel data from France, produced time-series
maps of influenza to characterize the spatio-tempo-
ral spread of the disease. Although strictly descrip-
tive, this work allowed for the visualization of dis-
ease evolution over time and space, and has signifi-
cant potential for helping to establish disease control
measures and understand disease aetiology. More
recently, Assuncao et al. (2005), tested a space-time
permutation scan statistic on daily New York City
hospital influenza surveillance data. Primarily
methodological in focus, the results of this work
revealed the statistic was effective in detecting clus-
ters prior to a city wide flu outbreak. Finally, a study
from Greene et al. (2006) examined spatio-temporal
patterns of pneumonia and influenza mortality in
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people over 65 years of age in the 48 contiguous US
states. Here correlograms and regression models
were used to estimate the relation between syn-
chrony and dominant virus subtype during influenza
seasons. Among the results was the finding that the
degree of regional correlation in mortality patterns
varied according to the dominant circulating virus
subtype. Although important, these studies only rep-
resent a starting point for our understanding of spa-
tio-temporal patterns of pneumonia and influenza.

In an effort to better understand the spatio-tem-
poral patterns of these illnesses, we have incorpo-
rated descriptive spatial and time-series analysis
techniques to the study of monthly, county level
pneumonia and influenza hospitalizations data for
the province of Ontario (see Fig. 1). Specifically, this
study attempts to determine how temporal patterns
of pneumonia and influenza hospitalizations vary
over space and how spatial patterns of hospitaliza-
tions vary over time.

100 o 100 200 300 Kilomaeters
== ——

Fig. 1. Study area: counties of Ontario, Canada.
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Materials and methods
Study site

We conducted a retrospective, population-based
study to assess spatio-temporal patterns in hospital-
izations for pneumonia and influenza in the
province of Ontario (Fig. 1). There were approxi-
mately 12 million Ontario residents as of 2001
included in this analysis. For residents of Ontario,
access to health care services is universal through
the Ontario Health Insurance Program. Ontario is a
geographically diverse region covering an area larg-
er than France and Spain combined. Northern areas
of the province are sparsely populated with
resource-based economies. Northern summers are
mild and winters prolonged and cold. Southern
Ontario is made up of both sparsely populated rural
agricultural areas, and the province’s major urban
centres (i.e. Toronto, the provincial capital;

County names

STORMONT & DUNDAS

PRESCOTT & RUSSELL

OTTAWA

LEEDS & GRENVILLE
ARK

FRONTENAC

LENNOX AND ADDINGTON
HASTINGS
W= E PRINCE EDWARD
10 NORTHUMBERLAND

PETERBOROUGH
12 KAWARTHA LAKES
13 DURHAM

14 YORK

15 TORONTO

16 PEEL

17 DUFFERIN

18 WELLINGTON

19 HALTON

20 HAMILTON

21 NIAGARA

22 HALDIMAND-NORFOLK
23 BRANT

24  WATERLOO

25 PERTH

26 OXFORD

27 ELGIN

28 CHATHAM-KENT
28 ESSEX

30 LAMBTON

R

QUEBEC

31 MIDDLESEX

32 HURON

33 BRUCE

34 GREY

35 SIMCOE

36 MUSKOKA

37 HALIBURTON

38 RENFREW

39 NIPISSING

40 PARRY SOUND

41 MANITOULIN

42 SUDBURY (DISTRICT)
43 GREATER SUDBURY
44 TIMISKAMING

45 COCHRANE

46 ALGOMA

47 THUNDER BAY

48 RAINY RIVER

49 KENORA
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Hamilton; Windsor; and London). Ottawa, the
Nation’s capital, is located in the far east of the
province. In these areas, summers are hot, and win-
ters, while still well below freezing, are somewhat
more moderate.

Data

The Canadian Institute for Health Information
(CIHI) Discharge Abstract Database was used to
obtain information on hospitalizations for pneumo-
nia and influenza as the principal diagnosis, by coun-
ty of patients’ usual residence. This database records
discharges from all inpatient hospital stays in Ontario
acute care hospitals, documenting diagnoses as coded
by the International Classification of Diseases, Ninth
Revision, Clinical Modification (ICD-9-CM). Nine
years of CIHI hospitalization data were examined,
covering the period between April 15t 1992 and
March 315¢, 2001. The temporal unit of analysis used
are months, and the geographic unit of analysis are
census divisions or “counties” (N = 49).

Researchers using this database have found that
CIHI diagnoses are coded with a high degree of
accuracy (Williams and Young, 1996). There is very
little missing information in the Ontario database;
other province-level studies have similarly found
that less than 1% of the basic information on
patients is missing (Bedard et al., 1994; Malcolm
and Rawson, 1995). The reliability of the coding of
data collected by the CIHI is 74% to 96% for the
ICD-9 diagnosis. For pneumonia, however, the reli-
ability of specific aetiologic information is low
(approximately 52%) (Durant et al.,, 1987), in
aggregate form, pneumonia and influenza have been
found to be reliably coded (81%) (Upshur, 1997).
Influenza and pneumonia are commonly examined
in aggregate (ICD-9 codes: 480-487) as the influen-
za virus often precedes secondary bacterial pneumo-
nia and influenza is one of the main causes of viral
pneumonias (Upshur, 1997; Upshur et al., 1999;
Crighton et al., 2004, 2007a,b).

All records with a principal discharge diagnosis of
influenza or pneumonia (ICD-9 code: 480-487)
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were selected (N = 241,803). The total number of
discharges for each county were assessed over the
study period. All transfers from within one acute
care hospital to another within this study group
were excluded from the analysis. Annual county
level population data for residents of Ontario were
provided by Statistics Canada (Statistics Canada,
2004). Monthly population estimates were derived
through linear interpolation, and from these data,
directly age and gender standardized rates were cal-
culated (Breslow and Day, 1987). Rates were further
standardized for length of month.

Analysis

Analysis of the data involved combining time
series and spatial analysis techniques to explore spa-
tio-temporal patterns of pneumonia and influenza
hospitalizations.

Spectral analysis was conducted to test for county
level seasonality. Spectral analysis detects periodici-
ty in time series (Fuller, 1976). Two tests for the null
hypothesis that the series is strictly white noise were
conducted. The Fisher-Kappa (FK) test is designed
to detect one major sinusoidal component buried in
white noise, whereas the Bartlett Kolmogorov
Smirnov (BKS) test accumulates departures from
the white noise hypothesis over all frequencies
(Priestly, 1981). The autocorrelation function
(ACF) was then used to measure the correlation
between observations at different time lags (Box
and Jenkins, 1976). Stationarity of the time series
were assessed by visually inspecting their autocor-
relation and partial ACFs. R-squared autoregres-
sion coefficients (Riuw,ﬁg) were then calculated.
Autoregression can be used for quantifying the
strength of the seasonality within a set of serially
correlated observations as occurs with time-series
data (Crighton et al., 2003). Finally, a linear regres-
sion model was used to estimate the trend in hospi-
talization rates over the study period.

Spatial analysis was done to assess the degree of
spatial autocorrelation in the county level time-
series results, and on the monthly aggregated data,
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using the global Moran’s I statistic. Significant spa-
tial autocorrelation indicates a regular pattern in the
data over space such that a value at a given location
depends on, and is similar to, a value of defined spa-
tial neighbours. Neighbour relationships are typical-
ly expressed in a row standardized spatial weights
matrix W whose elements wij represent the binary
spatial weights assigned to pairs of units i and j
(Cliff and Ord, 1981; Bailey and Gatrell, 1995). For
this analysis, neighbours are defined using rook’s
case adjacency, which considers all counties with
common borders as neighbours.

Moran’s I is a global test and does not detect
localized patterns. Further analysis was therefore
conducted using the local indicator of spatial asso-
ciation (LISA; Anselin, 1995). The LISA allows for
the decomposition of the Moran’s global indicator
into the contribution of each individual observation.
The LISA statistic indicates the degree of local spa-
tial clustering of similar or dissimilar observations
of an attribute. To test for significant departures
from zero autocorrelation, a Monte Carlo permuta-
tion approach was used, and a Bonferroni correc-
tion applied to adjust for multiple testing.

All analyses were performed using SAS 8.2 (SAS
Institute Inc., Cary, NC, USA), ArcView GIS, version
3.3, software (ESRI Inc, Redlands, CA, USA) and
Space Time Intelligence System (STIS), version 1.11,
software (TerraSeer, Inc. Crystal Lake, IL USA).

Results

There were a total of 241,803 pneumonia and
influenza hospitalizations in Ontario over the
study period, representing a mean yearly provin-
cial rate of approximately 242 per 100,000 popu-
lation, with mean monthly county rates ranging
from 14 to 56 per 100,000 (Table 1). The spatial
pattern of mean pneumonia and influenza hospi-
talization rates can be seen in Figure 2. The high-
est rates are in northern and rural counties, includ-
ing Manitoulin, Kenora and Timiskaming, and the
lowest rates in southern and predominately urban

counties including York, Ottawa-Carleton,
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Toronto and Peel. The Moran’s I statistic shows a
moderate, statistically significant degree of spatial
autocorrelation in the data (Moran’s I = 0.186;
P = 0.023), indicating that counties with similar
hospitalization rates are clustered together. A
sequence of monthly time-series maps covering the
9-year study period were produced (data not
shown). These revealed that the general north-
south, urban-rural spatial patterns seen in the
aggregate data, appear to persist when the data is
disaggregated over the study period, although sig-
nificant spatial autocorrelation is typically only
seen between the late spring and autumn.

Table 1 shows the mean minimum and maximum
rates by county along with their corresponding
months. Seasonal minimum rates consistently
occurred between July and September with rates
ranging from less than 10 per 100,000 in the pre-
dominately urban southern counties including York,
Ottawa-Carleton and Middlesex, to over 30 per
100,000 in the
Manitoulin and Kenora. Seasonal maximum rates
occurred between January and March, with the low-
est rates again in the urban southern counties, and
the highest rates in the northern and rural counties.
These seasonal patterns for select counties are illus-
trated in Figure 3. The coefficient of variation (CV),
defined as the standard deviation expressed as a per-
centage of the mean, was used to assess the varia-
tion in rates (Table 1). The lowest CVs (e.g. <35%)
are seen primarily in the urban and southern coun-
ties where the lowest hospitalization rates were
identified. CVs in the northern and rural counties
are frequently above 45%, and in two counties
exceed 60%.

Consistent and significant seasonality in pneumo-
nia and influenza hospitalizations was observed in
48 of 49 counties (FK and BKS tests were significant
at the level of P <0.01; Table 1). In one county,
Haliburton, the FK test was not significant (P >0.05)
although the BKS test was. The R/Z\W,,,_,g ranged from
0.18 in Haliburton, which is interpreted as very
weak seasonality, to 0.75 in Ottawa-Carleton,
which is interpreted as strong seasonality.

rural northern counties of
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Table 1. County level summary statistics and time-series analysis results for pneumonia and influenza hospitalizations in
Ontario, Canada, between 1992 and 2001.

Mean rate Mean Mf:an
County 1 2 minimum maximum cvP FK*f BKS4T R2ucore Trend
00,000 &
rate (month)  rate (month)

Stormont & Dundas 33.9 17.5 (8) 56.1 (3) 45.0 34.99 0.570 0.74 1.60 *
Prescott & Russell 23.1 11.1(8) 35.8 (2) 42.6 24.93 0.413 0.53 0.72 *
Ottawa-Carleton 14.1 9.0 (8) 19.9 (2) 31.2 34.37 0.543 0.75 0.33
Leeds & Grenville 27.3 15.8 (7) 40.3 (3) 38.9 27.40 0.534 0.69 -0.01
Lanark 27.3 18.3 (7) 41.4 (3) 35.3 20.43 0.419 0.59 0.72 *
Frontenac 21.8 13.1(8) 34.3 (3) 40.6 28.46 0.489 0.66 0.62
Lennox & Addington 23.2 13.8 (8) 34.9 (1) 46.1 12.76 0.338 0.33 1.73 %
Hastings 23.8 14.7 (8) 35.2 (2) 37.4 24.66 0.428 0.55 0.29
Prince Edward 29.6 17.3 (8) 48.4 (3) 50.7 19.12 0.359 0.47 1.24
Northumberland 27.1 13.7 (8) 38.6 (1) 42.7 18.37 0.297 0.44 -0.59 *
Peterborough 23.4 11.2 (8) 36.9 (3) 43.9 28.82 0.520 0.65 0.76 **
Kawartha Lakes 35.6 18.0 (8) 64.8 (2) 45.0 32.20 0.525 0.70 0.82
Durham 23.7 14.3 (8) 34.0 (1) 31.1 32.76 0.553 0.72 0.21
York 14.1 8.5 (8) 20.9 (1) 32.6 30.57 0.526 0.67 -0.02
Toronto 16.2 11.0 (8) 23.4 (1) 28.8 33.50 0.545 0.75 0.24
Peel 15.8 10.2 (9) 25.8 (1) 36.2 32.18 0.512 0.73 0.40
Dufferin 32.5 18.6 (8) 45.4 (2) 42.4 18.73 0.336 0.46 0.39
Wellington 21.3 12.1 (7) 31.8 (1) 40.8 30.15 0.478 0.64 -0.03
Halton 16.5 10.3 (8) 24.3 (2) 35.5 32.11 0.531 0.66 0.57 *
Hamilton 17.3 11.5 (8) 26.0 (1) 35.7 24.74 0.525 0.63 0.76 **
Niagara 19.2 11.2 (8) 27.9 (3) 36.8 32.79 0.547 0.69 0.59
Haldimand-Norfolk 24.8 15.0 (8) 34.9 (1) 37.3 24.31 0.463 0.57 0.23
Brant 24.9 14.8 (9) 41.0 (2) 44.3 29.89 0.512 0.64 0.31
Waterloo 19.4 11.1 (8) 30.5 (1) 40.2 29.66 0.493 0.69 0.66 *
Perth 24.2 12.7 (8) 36.3 (3) 48.7 23.02 0.383 0.49 0.22
Oxford 20.6 11.9 (7) 32.6 (3) 45.5 25.22 0.498 0.63 0.75
Elgin 23.6 15.6 (8) 36.0 (1) 46.8 20.17 0.456 0.51 -0.23
Chatham-Kent 26.0 16.4 (9) 38.6 (1) 41.8 23.55 0.408 0.54 0.42
Essex 18.2 11.7 (9) 27.6 (1) 36.7 26.44 0.455 0.67 0.00
Lambton 23.6 13.5 (7) 37.6 (2) 47.2 27.45 0.550 0.67 -0.27
Middlesex 142 8.1(8) 21.8 (1) 37.6 27.21 0.457 0.62 0.15
Huron 31.4 182 (7) 47.1 (3) 4.7 23.57 0.415 0.50 0.16
Bruce 32.1 19.6 (8) 53.7 (3) 43.7 28.05 0.428 0.61 0.57
Grey 28.9 15.2 (8) 46.5 (1) 49.0 26.44 0.456 0.59 0.40
Simcoe 25.3 13.8 (8) 37.9 (1) 36.5 31.56 0.513 0.70 0.81*
Muskoka 25.8 14.5 (8) 40.3 (1) 48.0 18.10 0.372 0.44 0.41
Haliburton 25.3 13.9 (6) 30.5 (1) 60.7 6.47 0.167 0.18 -0.89
Renfrew 25.5 15.3 (7) 38.6 (2) 40.1 26.93 0.471 0.59 0.21
Nipissing 29.2 13.0 (8) 40.2 (1) 39.9 25.34 0.457 0.56 0.36
Parry Sound 25.9 14.5 (8) 38.1(3) 49.4 17.52 0.389 0.41 0.78
Manitoulin 56.1 30.9 (9) 93.1 (3) 60.6 17.36 0.328 0.36 1.42
Sudbury (district) 25.4 14.6 (8) 35.3 (1) 52.5 12.10 0.244 0.28 -0.31
Greater Sudbury 20.5 13.5 (8) 33.1 (1) 42.7 20.69 0.370 0.53 0.93 **
Timiskaming 38.8 26.1 (8) 52.6 (3) 37.3 13.49 0.366 0.41 1.01
Cochrane 33.2 19.2 (9) 49.7 (3) 38.9 20.45 0.422 0.55 0.25
Algoma 24.4 14.1 (8) 37.7 (3) 40.5 26.68 0.494 0.65 0.95 *
Thunder bay 26.2 15.2 (8) 38.3 (1) 36.5 22.19 0.432 0.56 0.34
Rainy river 31.9 16.7 (9) 48.5 (1) 58.5 15.37 0.294 0.39 0.72
Kenora 48.8 30.7 (8) 64.8 (1) 36.2 17.96 0.427 0.53 1.81

*P <0.05; **P <0.01; *Rates have been standardized for age, gender and length of month; PCV = coefficient of variation; FK (Fisher Kappa
test) tests the null hypothesis that the series is Gaussian white noise against the alternative. Hypothesis that the series contains an added deter—
ministic periodic component of unspecified frequency. The 5% and 1% critical values for this test are 7.16 and 8.65, respectively; dBKs
(Bartlett's Kolmogorov-Smirnov test) tests the null hypothesis that the series is white noise. The 5% and 1% critical values for this test are 0.149
and 0.179, respectively; TBKS and FK tests were significant for all counties at the level of P <0.01 with the exception of Haliburton where FK
was not significant (P >0.05) and BKS was significant at the level of P <0.05.
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Moran's | = 0.186
P-value = 0.023
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Fig. 2. Age and gender standardized mean pneumonia and influenza hospitalization rates per 100,000 population in Ontario

from 1992 to 2001.

The linear regression model estimating trends in
county level hospitalizations (Table 1), revealed sig-
nificant increases in rates in 11 of 49 counties.
Significant trends ranged from increases of 0.57 to
1.73 per 100,000 per year, or approximately 2.5%
to 5.6% over the study period (Table 1). A small but
significant downward trend was identified in one
county with rates decreasing by 0.59 per 100,000
per year, or 1.6% over the study period.

The results of the county level seasonality analyses
were mapped and tests of global and local autocorre-
lation were conducted to explore spatial patterns of
the time series results (Table 2; Fig. 4). Figure 4 illus-
trates the spatial pattern of the R,%m,eg. Areas with the
strongest seasonality (R,%m,eg) are seen in both urban
and rural counties in the south and east, and include
counties with both relatively high and low rates of
hospitalization. Areas of weak seasonality are found
most commonly in rural counties in north central
Ontario near Sudbury, and include counties with typ-

ically high rates of hospitalizations. The Moran’s I
statistic indicates that there is a high degree of spatial
autocorrelation in Rimo,gg values (Moran’s I = 0.303,
P = 0.003). LISA analysis revealed local clusters of
significantly high wamg values around the urban
area of Toronto and York, and significantly low val-
ues around Hastings in the east. Similar spatial pat-
terns were seen for the FK and BKS values (Table 2).

—— Manitoulin
- o \ — Kenara
Fromenac

— York

Rate/100,000 population

dan  Feb  Mar  Apr May  Jun Jul Aug  Sep oot Nov  Dec

Month/year

Fig. 3. Monthly aggregated pneumonia and influenza hospi-
talization rates for select Ontario counties from 1992 to 2001.
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Table 2. Spatial autocorrelation of county level time-series
results for pneumonia and influenza hospitalizations in
Ontario from 1992 to 2001.

Moran’s I P-value
FK 0.321 0.002
BKS 0.264 0.002
Rf\utoreg 0305 0003
Trend -0.097 0.212

No significant global or local spatial autocorrela-
tion in the county level temporal trend data was
found (Table 2).

Results from the Moran’s I statistics for the mean
monthly pneumonia and influenza hospitalization
rates (Table 3) indicates that there is a moderate,
statistically significant degree of positive autocorre-
lation in the data for the months of April through to
October, when rates are typically at their lowest
(Fig. 3). The strongest autocorrelation is seen in
May and June (Moran’s I = 0.308 and 0.295, respec-
tively). Significant clusters of high hospitalization
rates are seen during these months in northern coun-
ties, including Kenora, Rainy River, Cochrane and
Thunder Bay. Between the months of November and
March, when hospitalization rates are at their high-
est, no significant global spatial autocorrelation was
detected (Table 3), although a significant local clus-
ter of low rates centered around Toronto was seen
in February and March (data not shown).

Discussion

To our knowledge, this paper represents the first
study to examine spatio-temporal patterns of hospi-
talizations for pneumonia and influenza. The find-
ings provide evidence of spatio-temporal interaction
over the 9-year study period, with marked spatial
variability in temporal patterns, and temporal vari-
ability in spatial patterns.

The heterogeneity in pneumonia and influenza
hospitalization rates and significant spatial cluster-
ing identified (Moran’s I = 0.186, P = 0.023; Fig. 2)
confirms findings from previous work (Crighton et
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al., 2007a). The highest rates are seen in rural and
northern areas, and the lowest rates in urban and
more southern areas. An examination of time-series
maps suggests that although county rates and spa-
tial autocorrelation fluctuated on a monthly basis,
the overall spatial pattern seen in the data remained
generally consistent on a year to year basis over the
study period. This suggests that the underlying
processes that determine these monthly patterns
also remained consistent over the study period.

A significant upward trend in hospitalization
rates in almost a quarter of Ontario counties was
identified here. A similar trend over the same time
period (1992 to 2001) was not found in our previ-
ous work which used provincially aggregated data
(Crighton et al., 2004). While rates of pneumonia
hospitalizations might be expected to increase due
to Ontario’s aging population structure (Statistics
Canada, 2004), this cannot explain the findings
here, as our data was directly age standardized.
More likely explanations for these findings include
county level changes in factors including socio-
economic conditions, environmental conditions
and health care services (Morris and Munasinghe,
1994; Crighton et al., 2007b). The theoretical
nature of these relationships has been illustrated in
a conceptual framework linking broad health
determinants to pneumonia over space and time
(Crighton et al., 2007b). Further research is
required to assess these relationships. While the
increase in rates identified here are not large, they
are significant and should be monitored.

The consistent significant seasonality of hospital-
ization rates identified in all but one of Ontario’s
counties (Table 1) suggests that the factors deter-
mining seasonal patterns of pneumonia and influen-
za at the province level are similarly important at
the county level. Factors reported in the literature to
be associated with these patterns include the pres-
ence of circulating influenza virus (Black et al.,
1999; Goel et al., 1999; Cox et al., 2000), respira-
tory syncytial virus (RSV) (Crowcroft et al., 2002),
temperature (Glezen et al., 1996; Friger and
Lieberman, 1999) and air pollution (Glezen et al.,
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Fig. 4. County level results of the R? autoregression (R%mm,eg) measuring the strength of seasonality, for pneumonia and influen-

za hospitalizations from 1992 to 2001.

1996). Considerable county level variability in the
seasonality measures are seen, however, with the
R/Z\um,eg values ranging from 0.18, indicating very
weak seasonality, to 0.75, indicating strong season-
ality, with like values clustering over space (Table 2,
Fig. 4). This spatial variability suggests that region-
al differences in seasonal determinants such as those
mentioned above, are leading to these differences,
or, perhaps more likely, that significant interactions
are occurring with other spatially-explicit factors,
including socio-economic status and health care
service. Multivariate spatio-temporal modelling
controlling for the effect of spatial and temporal
variable factors is required to help unravel these
relationships. The particularly weak and inconsis-
tent seasonality identified in Haliburton could be
further related to unreliable rates due to a small
county population, or even to chance alone.

The maximum spatial autocorrelation of pneumo-
nia and influenza hospitalizations occurs in months

Table 3. Spatial autocorrelation of county level, monthly
aggregated pneumonia and influenza hospitalizations in
Ontario from 1992 to 2001.

Month Moran’s I P-value
January 0.155 0.053
February 0.071 0.160
March 0.144 0.058
April 0.263 0.016
May 0.308 0.006
June 0.295 0.011
July 0.173 0.043
August 0.177 0.044
September 0.237 0.007
October 0.155 0.032
November 0.060 0.202
December 0.097 0.102
Overall 0.186 0.023
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when rates are lowest (i.e. April to October) and the
minimum when rates are highest (November to
March). While there is no simple explanation for
this finding, it could be expected that seasonal and
spatial differences associated with different pneu-
monia aetiologies plays a role. The aggregated ICD-
9 codes used in this analysis consist of a variety of
bacterial and viral pneumonias, some of which have
been shown to differ in their seasonal distribution
(Dowell et al., 2003), and could also be expected to
vary in their geographic distribution. Currently the
reliability of specific aetiologic information for
pneumonia in ICD-9 data is low (Durant et al.,
1987), and in the majority of cases, the causative
organism is unspecified. Specific, reliable etiologic
data would greatly improve our understanding of
these illness patterns, however, enhanced diagnostic
codes and diagnostic capacity is required. Given the
importance of pneumonia on the health care system,
and our renewed interest in respiratory diseases
post-SARS, such improvements would be timely.

This is a largely descriptive study. While we have
employed a previously developed conceptual frame-
work to inform our findings (Crighton et al.,
2007b), we have not analytically examined the
determinants of the spatio-temporal patterns. The
modifiable areal unit problem (MAUP) represents
another potential limitation, in that patterns identi-
fied here may depend on the areal aggregations used
(Openshaw, 1983). A similar issue exists with the
temporal aggregations used. Furthermore, the use of
hospitalizations is not necessarily reflective of mor-
bidity in the population and does not account for
differential access to services (Eyles et al., 1991).
However, given that health insurance is universal in
Ontario, hospitalizations are believed to represent a
good estimate of severe morbidity.

Conclusions

The findings from this study demonstrate the
presence of marked spatio-temporal variability in
pneumonia and influenza hospitalizations in
Ontario. In doing so, they point to the need for the
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effective allocation of services and resources based
on regional and seasonal demands, more regionally
focused prevention strategies such as influenza vac-
cination programmes, and better infectious disease
surveillance programmes. An important method-
ological contribution comes from the application of
spatio-temporal analysis techniques to population
level, health services data. However doing so, has
revealed a number of practical data limitations.
These include the inevitable problem of small case
counts as data is disaggregated over time and space,
and data quality issues resulting from limited diag-
nostic capacity and crude diagnostic codes. While
options for addressing the former are limited,
improvements in diagnostic capacity for diseases
such as pneumonia and influenza is obtainable and
should be encouraged. This study lays the founda-
tion for future work including the examination of
alternative pneumonia and influenza outcome meas-
ures such as physician visits and mortality, formal
testing of spatio-temporal clusters, and multivariate
spatio-temporal modelling.
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