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Abstract. The relation between disease risk and a point source of pollution is usually investigated using distance from
the source as a proxy of exposure. The analysis may be based on case-control data or on aggregated data. The defini-
tion of the function relating risk of disease and distance is critical, both in a classical and in a Bayesian framework,
because the likelihood is usually very flat, even with large amounts of data. In this paper we investigate how the
specification of the function relating risk of disease with distance from the source and of the prior distributions on the
parameters of the function affects the results when case-control data and Bayesian methods are used. We consider dif-
ferent popular parametric models for the risk distance function in a Bayesian approach, comparing estimates with those
derived by maximum likelihood. As an example we have analyzed the relationship between a putative source of envi-
ronmental pollution (an asbestos cement plant) and the occurrence of pleural malignant mesothelioma in the area of
Casale Monferrato (Italy) in 1987-1993. Risk of pleural malignant mesothelioma turns out to be strongly related to
distance from the asbestos cement plant. However, as the models appeared to be sensitive to modeling choices, we sug-
gest that any analysis of disease risk around a putative source should be integrated with a careful sensitivity analysis
and possibly with prior knowledge. The choice of prior distribution is extremely important and should be based on epi-
demiological considerations.

Keywords: case-control study, environmental pollution, absestos, focused clustering, hierarchical Bayesian models, sen-
sitivity to prior choice.

Introduction

The relationship between disease risk and a point
source of pollution is usually investigated using the
distance from the source as a proxy of population
exposure. The analysis may be based on case-con-
trol data (Diggle, 1990; Diggle and Rowlingson,
1994) or case-event data (Lawson, 1993).

A crucial point, that does not depend on the kind
of study design, is the specification of the function
describing risk decay by distance from the source.
Diggle (1990) discusses some solutions and the
intrinsic difficulties in estimating model parameters
due to flatness of the likelihood function. Other pro-
posals, including directional effects, can be found in
Lawson (1993).

In the last years there has been an increasing inter-
est in modeling disease risk in relation to a point
source of pollution in a Bayesian framework; see, for
example, Wakefield and Morris (2001), Lawson et al.
(2003) and Congdon (2003). The problem of infer-
ence sensitivity to prior distributions is raised by
Wakefield and Morris (2001) for models based on
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aggregated data.
In this paper we investigate how the specification

of the function itself relating risk of disease with dis-
tance from the source and how the choice of prior
distributions on the parameters of the distance func-
tion affect the results. Without loss of generality we
have restricted our attention to case-control data.
A Bayesian approach to sensitivity analysis is used.

Our motivating example came from a population
based case-control study on incident pleural malig-
nant mesotheliomas in the area of Casale
Monferrato, 1987-1993. Casale is a medium-size
town in the North-West of Italy where a large
asbestos cement (AC) plant was active from 1907 to
1985. A full description of the data and a detailed
analysis can be found in papers by Magnani et al.
(2001) and by Maule et al. (2007).

In the present re-analysis, information on age, sex,
occupational AC exposure, occupational AC expo-
sure of any relatives and domestic exposure to
asbestos material were taken into account to adjust
for known risk factors as potential confounders.

We considered four different distance functions,
namely (i) exponential decay with threshold, (ii)
peaked effect, (iii) plateau effect, and (iv) fixed
plateau effect, to model excess risk by distance from
putative source.

Materials and methods

Data

The data came from a population-based case-con-
trol study that collected subjects with pleural malig-
nant mesothelioma newly diagnosed between 1
January 1987 and 30 June 1993 among residents in
the Casale Monferrato area, comprising 52 towns
and over 100,000 inhabitants (40,000 of whom
from Casale). In total, 103 cases and 271 controls,
are included in the present re-analysis.

Cases were retrospectively identified in the
archives of the pathology units of the hospitals serv-
ing the study area and were all histologically con-
firmed. Controls were randomly selected either

from the files of residents in the local health author-
ity or from the mortality files of residents in the
same area, and individually matched to cases by sex,
birth date (± 18 months), vital status, and date of
death (± 6 months). Individual matching was disre-
garded since in our study matching variables were
spatially-neutral (Cuzick and Edwards, 1990;
Diggle, 2003).

Alive subjects and the closest relative of deceased
subjects were interviewed from 1993 to 1995 using a
standardized questionnaire. In particular the lifelong
occupational history of the subjects, their spouses,
relatives or any other cohabitants, demographic char-
acteristics, smoking habit, radiation treatments even-
tually received, schools attended and information on
the presence and use of asbestos materials in the
house or its proximities were collected.

Three main sources of asbestos exposure were
identified: 
(i) occupational exposure in the AC industry; 
(ii) domestic exposure, with which we refer to

either the indoor presence of asbestos materials
such as asbestos fabrics of ironing tables, fire-
proof sheets for stoves and ovens, or AC mate-
rials and roofing in very close proximity to the
house (e.g. garden, courtyard); and

(iii) occupation in the AC industry of relatives and
cohabitants. 

These variables were coded as dichotomic
(“exposed”/“not exposed”). Occupational exposure
in the AC industry was chosen as a proxy to
asbestos occupational exposure tout court because
it corresponds to very high intensity of exposure and
is highly specific. Besides AC production and activi-
ties related to it (warehousing and transportation of
raw asbestos and final products), no other notice-
able sources of asbestos exposure of industrial ori-
gin were recorded in Casale (Magnani et al., 2001).
Therefore, confounding due to residual occupation-
al exposure is unlikely.

In the present re-analysis asbestos exposure infor-
mation (occupational AC exposure, occupational
AC exposure of any relatives and domestic exposure
to asbestos material) were considered together with



E. Dreassi et al. - Geospatial Health 2(2), 2008, pp. 263-271 265

information on age and sex. The data are provided
in Table 1. 

Environmental exposure was assessed by residen-
tial distance from the source. Since this is the focus
of the study, special care was dedicated to the ques-
tionnaire’s section designed to reconstruct the com-
plete residential history of all subjects, comprising
all the addresses held by subjects (within and out-
side Casale), and a descriptions of each dwelling and
its neighbourhood environment. All the residential
addresses obtained from the original questionnaires
were compared with, and completed by, informa-
tion from the town office registries, and coded as
coordinates using a global positioning system (GPS)
receiver. The geographical coordinates of the AC
plant location were determined in the same way.
Since each subject had inhabited more than one
dwelling, the address of the longest-held residence
was chosen as a proxy to residential distance expo-
sure, after exclusion of dwellings occupied in the
last 20 years before the date of diagnosis for cases,
or before the date of the interview or the date of
death for alive and deceased controls, respectively.
The spatial distribution of cases and controls and of
the AC plant is shown in Figure 1.

More details of the case-control study design were
described by Magnani et al. (2001) and by Maule et
al. (2007).

Statistical analyses

We assumed that cases and controls are a random
sample from a marked point process, the mark indi-
cating case-control status. Conditionally on the
observed locations of cases and controls, i.e. for
subject i (i = 1, . . . , 374) being resident at distance

di from the putative source, a logistic regression
model was specified, modeling the log odds of being
a case (Diggle and Rowlingson, 1994; Biggeri and
Lagazio, 1999).

In detail, we specified an additive-multiplicative
logistic model:

Υi ~ Binominal (πi, 1)

where Υi is the case-control indicator (Υi = 1 for
cases), πi is the probability of being a case and

πi
1−πi 

= exp(ω0+ω1sexi+ω2agei+ω3domi+ω4reli)[1+ω5asbi+ƒ(di)]

where exp(ω0) is a constant term proportional to
case-control ratio and ωj (j = 1, . . .,5) is the not

Sex asb rel dom

Controls

Cases

Males

166

60

Females

105

43

No

249

79

Yes

22

24

No

257

75

Yes

14

28

No

173

52

Yes

98

51

Table 1. Data: cases and controls cross-classified by sex and occupational AC exposure (asb), occupational AC exposure of
any relatives (rel) and exposure to domestic asbestos material (dom).

Fig. 1. Cases (•), controls (+) of residence locations and
asbestos cement plant source (∇).
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exponentiated effect parameter for the j-th risk fac-
tor. Notice that sex (female is the reference level),
age (continuous), domestic exposure to asbestos
material (dom, binary) and occupational AC expo-
sure of any relatives (rel, binary) are introduced as
multiplicative terms, while occupational AC expo-
sure (asb, binary) is introduced as an additive term
in the excess risk function. The effect of distance is
included in the additive term, too. The function f(·)
describes the decay of risk with increasing distance.
For binary variables we have used “not exposed” as
reference category.

The rationale of this modeling choice is that dif-
ferent exposures to the same agent sum up (i.e. com-
bine additively, see Breslow, 1986). We considered
here the two main risk factors (occupation and envi-
ronmental exposure) in the additive term of the pre-
dictor. The other covariates are left in the multi-
plicative term, even if it can be argued that for
mesotheliomas the only relevant exposure is
asbestos. For environmental exposure measured by
residential distance the motivation to choose an
additive specification is also to ensure that the risk
be unchanged at infinite distance from the source.
The distance function is obviously not increasing
and tends asymptotically to zero when distance goes
to infinity. We specified four different functional
forms for f(·):
(i) Model 1, an exponential decay with threshold

(Diggle and Rowlingson, 1994)

ƒ(di) = α exp(-β di
2)

where α is the excess relative risk at source and
β the parameter of the exponential decrease
function; 

(ii) Model 2, a peaked effect (Lawson, 1993)

ƒ(di) = α exp(γ log(di) - β di)

where γ is the parameter which models the dis-
tance at which we have the maximum risk;

(iii) Model 3, an estimated plateau effect (Diggle et
al., 1997)

ƒ(di) = {αα exp(-β(di-δ)2)   if di

if di

>δ

≤δ

where δ represents the radius of the plateau, to
be estimated from data; and

(iv) Model 4, a fixed (δ = 5) plateau effect

ƒ(di)={αα exp(-β(di-5)2)   if di

if di

>5

≤5

where the distance 5 km depends on the physi-
cal characteristic of the environment and the
information based on environmental surveys
(Magnani et al., 2001).

We first explored the characteristics of the likeli-
hood function under the different specifications.
Figure 2 reports the profile log-likelihood in prox-
imity of the maximum. In order to map the model
into the framework of Bayesian inference, we had to
specify prior distributions for the parameters. Flat
normal distributions centered on zero were used for
ω0, ω1, ω2, ω3 and ω4; for the parameter ω5 a flat
left truncated normal distribution was used.
Informative priors for the distance functions param-
eters were assumed:
(i) for the parameter related to the excess risk at

the source α ~ gamma (9, 1), with interquartile
range 6.8-10.8, percentiles 1% = 3.5 and per-
centiles 99% = 17.4; the maximum likelihood
(ML) estimates was 9.3. Maule et al. (2007)
discuss the result of high risk for environmental
exposure in Casale;

(ii) for the parameter related to risk decay
β ~ uniform (0, 3), the upper limit large enough
for the purpose to give prior weight to rapid
decay by distance;

(iii) for the parameter related to peaked risk in the
decay function γ ~ gamma (1, 1), which implies
a substantial excess risk of distances >1 km
from the source with a peak around 3-5 km
(the function gives values around 12, using for



E. Dreassi et al. - Geospatial Health 2(2), 2008, pp. 263-271 267

the other coefficient values at ML estimates).
The adjusted odds ratio at distance 3-5 km was
12.1 according to Maule et al. (2007); and

(iv) for the parameter related to the plateau radius
γ ~ uniform (0, 88). Here we left the maximum
possible radius as upper limit. For the model
with fixed plateau effect (Model 4) we put a
strong informative prior (δ ~ gamma (50, 10);
mean 5, interquartile range 4.5-5.5, 10% and
90% percentiles 4.1 and 5.9).

To evaluate the sensitivity of inference to prior
assumptions, we repeated the analyses using a new
set of prior distributions, only slightly different from
the previous one: α ~ gamma (5, 1), which assigns
non-negligible probability to very low values of
excess risk at the source (i.e. the environmental
exposure is less important); β ~ uniform (0, 10), giv-
ing even more weight to a rapid decay of risk by dis-

tance (i.e. environmental risk is concentrated);
γ ~ gamma (2, 1), which assigns less probability to
excess risk at very short distance (<0.5 km) and
greater probability to excess risk around 8 km from
the source (i.e. there is clustering of risk at a given
distance from the source).

The marginal posterior distributions of the
parameters of interest were approximated by
Markov chain Monte Carlo (MCMC) methods, by
using WinBUGS (Spiegelhalter et al., 2004). The
convergence of the algorithm was evaluated using
the test proposed by Gelman and Rubin (1992) for
multiple chains for all monitored parameters. We
decided to discard the first 500,000 iterations (burn-
in) and to store for estimation 5,000 samples (one
each 100) of the following 500,000 iterations.
Maximum-likelihood estimates were obtained using
R software.

Fig. 2. Contours of the log-likelihood functions of the four models (limits for parameter values are indicated in parenthesis).
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Results

The four plots of Figure 2 show a markedly flat
area in the profile likelihood, indicating that the
range of plausible values for the parameters (or for
a subset of them) is very large. For Model 1, the
bivariate profile likelihood for the excess risk and

risk decay parameters has a flat area with very high
plausible values for the α term. For Model 2, fixing
α, the profile for the two parameter in the risk decay
function highlights the strong correlation between
them. For Model 3, fixing α, the profile has
J-shaped form. It shows a strong uncertainty in the
β term for δ around the ML value of 10 and for

Effect Model 1 Model 2 Model 3 Model 4

Constant

Age

Sex

rel

dom

asb

α

β

γ

δ

AIC

DIC

ML

0.040

1.000

1.165

1.371

1.451

25.81

9.300

0.010

388.76

B1

0.050

1.002

1.210

1.431

1.555

26.90

9.007

0.014

387.42

ML

0.036

1.001

1.174

1.380

1.440

28.50

11.864

0.230

0.490

389.54

B1

0.052

1.003

1.227

1.440

1.571

25.64

9.440

0.296

0.622

389.15

ML

0.058

0.999

1.170

1.370

1.560

18.85

5.710

0.335

9.935

388.05

B1

0.055

0.999

1.212

1.439

1.661

26.38

7.779

1.291

10.350

388.72

ML

0.046

1.000

1.160

1.380

1.512

23.03

7.342

0.026

388.91

B1

0.051

1.001

1.213

1.449

1.576

26.450

8.124

0.173

5.117

390.06

Table 2. Parameter estimates (exponentiated values for the multiplicative part of the model) with maximum likelihood (ML)
and Bayesian (first set of priors, B1) analysis.

Effect Model 1 Model 2 Model 3 Model 4

Constant

Age

Sex

rel

dom

asb

α

β

γ

δ

DIC

B1

0.050

1.002

1.210

1.431

1.555

26.90

9.007

0.014

387.42

B2

0.068

1.002

1.211

1.586

1.422

21.39

6.177

0.017

388.34

B1

0.052

1.003

1.227

1.440

1.571

25.64

9.440

0.296

0.622

389.15

B2

0.073

1.002

1.233

1.598

1.449

20.56

6.139

0.407

1.071

391.07

B1

0.055

0.999

1.212

1.439

1.661

26.38

7.779

1.291

10.350

388.72

B2

0.077

0.999

1.223

1.688

1.424

20.97

5.180

4.763

10.87

388.93

B1

0.051

1.001

1.213

1.449

1.576

26.450

8.124

0.173

5.117

390.06

B2

0.083

1.003

1.257

1.543

1.412

17.58

4.356

2.680

5.191

395.60

Table 3. Parameter estimates (exponentiated values for the multiplicative part of the model) with the first (B1) and the second
(B2) set of prior distributions under the Bayesian analysis.
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defined values of β (around 0.02) large uncertainty
for δ <10. This means that there is information
either in a risk function with stable plateau up to
10 km and a rapid decay thereafter, or in a risk
plateau with a small radius and a slow decay after-
ward. For Model 4, fixing δ = 5, there is a large
uncertainty about the value of the decay parameter
β, with plausible large values for α. 

This, in turn, indicates that the results by a
Bayesian approach should be very sensitive to mod-
eling strategies; both in terms of a priori specifica-
tion and of distance function used (Wakefield and
Morris, 2001).

ML estimates of the parameters and posterior
means from Bayesian analysis with the first set of
prior distributions are reported in Table 2, including
AIC and DIC criteria (Spiegelhalter et al., 2002).

There is little information to discriminate between
the four models. Models 1 and 3 seem slightly bet-
ter than the other two models. The ML estimates of
the α and β terms for Model 3 are very unstable, as
compared to the Bayesian posteriors means.

Figure 3 shows the estimated ƒ(di) functions cor-
responding to Models 1-4 (using the first set of
prior). Models 1 and 2 show a very similar decay
with distance after the peak of Model 2, while the
shape implied by Models 3 and 4 is very different. 

In Table 3 results for the second set of prior distri-
butions for the distance function parameters are
summarised and compared with those given by the
first set. For Model 1, giving less probability to envi-
ronmental risk by point source, the α term resulted
in posterior estimate around 6.2 (versus 9.0), a value
yet very high. For Model 2 we loose goodness of fit
(DIC increases), the parameter estimated values tend
to compensate each other. For Model 3, the posterior
mean for the α term decreases but now the risk decay
term assumes very high value, compatible to a step
risk function. Not surprisingly, if the excess risk at the
source is higher, there is room for smoothed risk
decrease. For Model 4, the behaviour is similar, but
there is a lack of fit constraining the plateau at 5 km.

Figures 4, 5 and 6 show the prior and the posterior
distributions of the distance functions terms α, γ and δ.

Fig. 3. Estimated ƒ(di) functions with the Bayesian approach,
first set of priors for α, β and γ.

Fig. 4. Prior and posterior distributions for α parameter by
Model 1.

Fig. 5. Prior and posterior distributions for γ parameter by
Model 2.
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Discussion

The statistical analysis of the relationship between
risk of disease and distance from a putative source
of pollution is characterized by two critical points,
that are strictly related.

First, it is difficult to identify a specific functional
form. This is because usually data contain scarce
information about (Diggle et al., 1997). The number
of subject locations close to the point source is of
course much less than the number of locations far
from the source. The distance functions differ in the
first part, close to the source, where information is
scarce. Moreover, the model is non-linear and the
parameters are strongly correlated. In the case of
logistic regression the model is not multiplicative.
Non-canonical link functions can create problems
since sufficiency is not guaranteed (for examples, see
Moolgavkar and Venzon, 1987). As a result, the
likelihood function is flat and this is related to the
second point.

Second, Bayesian inferences could be strongly
dependent on the priors. When fitting non-linear
models, the Bayesian approach has clear advantages
in stability of estimates, and informative priors are
a resource. In the example discussed here, sensible
priors are easy to specify and to justify. On the con-
trary uninformative priors, if any, could be mislead-

ing (Biggeri et al., 2004). Inference sensitivity is an
important part of the analysis. We compared two set
of priors for the four models considered. Subject
specific knowledge is an important issue for guiding
in the choice of prior parameters and setting alter-
natives. See, for example, the excess risk at the
source parameter. If environmental pollution is real-
ly a hazard we would expect a high value of risk at
the source. Maule et al. (2007) discussed that envi-
ronmental asbestos exposures gave a risk of about
one-third (33%) of the occupational exposure risk,
hence an important fraction. This is based on the
estimated α around 9.0 and of the asb coefficient of
26.9. The Bayesian sensitivity analysis reports α val-
ues between 7.8 and 9.4 under the first prior,
depending on the model,  and between 4.4 and 6.2
using the second prior. Averaging over the fitted
model gives 7.02. The alternative specifications are
more conservative and as a result the sensitivity
analysis point to an environmental risk of about
30% the occupational one (7.02 versus 23.2).

A possible development would be applying
Bayesian model averaging (Hoeting et al., 1999).
However, it could be argued that some of the mod-
els are not plausible enough and we do not aim to
one overall estimate, but rather aim to evaluate and
compare alternatives. How does the plateau model
in the example with fixed risk distance at 5 km
behave? Although the model fit is the worst among
the fitted ones, this is still valuable information.
Data support is weak and we can appreciate on the
contrary that the risk is high up to 10 km from the
source (Magnani et al., 2001).

An attempt to identify point-centered clusters and
line clusters without taking into account the source
location is reported by Lawson et al. (2007). The
authors found evidence of one point-centered clus-
ter located at the AC plant (the source considered in
our example here). Weak evidence of two line clus-
ters was reported, and the posterior density of line
cluster centers mainly located within the city.
Coherently, a simpler non-parametric cluster model
highlighted a broad raised risk area. A further
refinement would be to look for line clusters having

Fig. 6. Prior distributions for δ for Models 3 and 4 and pos-
terior distribution by Model 3.
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taken into account for the risk by distance from the
source, using the parametric threshold Model 1.

Directional effects were excluded. Figure 2 in
Maule et al. (2007), however suggest that the clus-
ter center could be shifted from the plant location.
We did not model this displacement.

In conclusion, we suggest to base the choice of the
prior distributions on epidemiological knowledge.
The point source models are ill-conditioned and we
have to avoid flat or uninformative priors. ML esti-
mates could not be obtained in some dataset.
A Bayesian approach is important to sensitivity
analysis of appropriate alternatives.
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