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Abstract. Spatial differences in mortality have been reported in Africa amongst children under-five years of age. Risk
factors contributing to this geographical variation include bio-demographic and socio-economic factors, the prevalence
of infectious diseases and the variability in the quality of child health care. This paper is concerned with investigating
the link between early childhood mortality and malaria risk. We used data from the Mapping Malaria Risk in Africa
(MARA) and Demographic and Health Survey (DHS) databases to explore this relationship. The DHS survey includ-
ed questions on bio-demographic and socio-economic status, complete birth histories and survival time of each child
within the five years preceding the survey. Survival times were computed in months until death or until the survey was
done. The malaria risk was based on prevalence data estimated at the precise DHS sampling location. A spatial Cox
regression model was applied to analyze child survival, assessing the influence of both individual-specific factors, malar-
ia endemicity and group-specific environmental factors, approximated by geographical location. Geographical location
was considered at subdistrict level. Our analysis shows that although malaria endemicity is not associated with the risk
of infant mortality, it is an important risk factor for child mortality. The results confirm the effects of bio-demograph-
ic and socio-economic variables (maternal education, maternal age, birth order and place of residence) on infant and
child mortality. The subdistrict-specific variation of infant and child mortality shows a rural-urban distinction with a
relatively lower risk of mortality in main urban areas.
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Introduction

Malaria is common in Malawi and children
<5 years of age reportedly suffer a mean of 9.7
malaria episodes a year (Wirima, 1996; NSO,
1997). Not only is this parasite infection the cause
of over 40% of deaths in children under two but
also one of the most frequent causes of morbidity

and mortality in all Malawian children <5 years of
age. The annual cost of malaria is estimated at US$
35 per household, i.e. 7.2% of the average house-
hold income (Ettling et al., 1994).

Spatial differences have been reported in Africa in
mortality amongst children under-five years of age
(Balk et al., 2004; Gemperli et al., 2004; Kandala
and Ghilagaber, 2006). Risk factors contributing to
the geographical variation include bio-demographic
and socio-economic factors, the prevalence of infec-
tious diseases and the variability in the quality of
child health care (Madise and Diamond, 1995;
Root, 1999). In addition to the direct link between
malaria and early childhood death (Smith et al.,
2004; Snow et al., 2004), there are also indirect
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associations through low birth weight and/or
anaemia (Kalanda et al., 2005). Malaria and HIV
co-exist in much of sub-Saharan Africa and is also
common in Malawi. The HIV infection destroys
CD4 cells, the immune cells that are required for the
development of antimalarial immunity, and almost
doubles the risk of malaria parasitaemia and clinical
malaria (Taylor and Hoffman, 2000; Abu-Raddad
et al., 2006). HIV infection is therefore a major con-
founder when considering the influence of malaria
on child mortality rates.

This paper is concerned with investigating the link
between early childhood mortality and malaria.
Efforts to quantify the impact of malaria on child-
hood mortality have been hampered by lack of high
quality cause-specific data. Addressing this chal-
lenge we used data from the Mapping Malaria Risk
in Africa (MARA) and Demographic and Health
Survey (DHS) databases to explore the relationship
between malaria and childhood mortality. The DHS
survey included questions on bio-demographic and
socio-economic status, complete birth histories and
survival time of each child within the five years pre-
ceding the survey. Survival times were computed in
months until death or until the survey was carried
out. The malaria risk was based on available preva-
lence data. 

Studies on malaria and child mortality in Malawi
are few and limited either to hospitals or to small
rural areas (Bloland et al., 1996). These do not pro-
vide a comprehensive representation of the true sit-
uation as a vast number of children die outside the
health care system (Government of Malawi, 2002).
Moreover, they do not directly assess the role of
malaria risk. In this study, the DHS and MARA
databases provide an opportunity to explore this
relationship in detail.

A spatial Cox regression model was applied
(Hennerfeind et al., 2006) to analyze child survival
assessing the influence of both individual-specific
factors, malaria endemicity and group-specific envi-
ronmental factors, approximated by geographical
location. Geographical location was considered at
the subdistrict level using this unit for spatial analy-

sis. This choice was driven by the need to highlight
small area variation which should not only be more
meaningful for health policy decision makers but
also improve our understanding of the epidemiolo-
gy of early childhood mortality in the country. This
information is critical for designing interventions to
achieve the greatest impact.

Bayesian inference was used to estimate the model
through Markov chain Monte Carlo (MCMC) sim-
ulation techniques. Three models, i.e. (i) non-spa-
tial, all variables and unstructured random effects;
(ii) non-spatial and spatial random effects and all
variables; and (iii) spatial and non-spatial effects
and all variables without the effect of malaria, were
fitted to investigate whether malaria endemicity,
socio-economic and bio-demographic covariates
explain infant and child mortality.

Materials and methods

Data

The data came from the Malawi DHS of the year
2000 (NSO and ORC Macro, 2001), which
employed a two-stage stratified sampling design to
provide estimates of health and demographic indi-
cators. In the first stage, 560 enumeration areas
(EAs), as defined in the Malawi Population and
Housing Census of 1998, were selected as primary
sampling units, stratified by urban/rural status and
with the sampling probability proportional to the
population of the selected EA. In the second stage, a
fixed number of households were randomly selected
in each EA. All women aged 15-49 years were eligi-
ble for interview. A total of 13,220 women were
interviewed using an interviewer-administered ques-
tionnaire which included questions covering com-
plete birth histories.

This study analyzed child survival within the five
years preceding the survey. The survival time of
each child was computed in months until death or
the censoring time (i.e. when the survey was con-
ducted). Individual-specific risk factors, collected
as part of Malawi DHS, included socio-economic
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and bio-demographic factors (Table 1). Group-spe-
cific risk factors included malaria endemicity and
environmental factors approximated by geograph-
ical location at the subdistrict level. Malaria
endemicity was measured by the malaria preva-
lence rate predicted at the EA level using a geosta-
tistical model developed by Kazembe et al. (2006).
Each child was assumed to be equally exposed to
malaria risk in each community (EA), with each
child in the same EA assigned the same risk value.
The malaria data were from children of age ≤10
years, collected retrospectively at 73 different sites,
and are consistent with the mortality data used
here. The prevalence rates were categorized into
four sub-groups: low (0-25%), medium (25-50%),
high (50-75%) and very high (75-100%) levels of
malaria endemicity.

Table 1 presents descriptive summaries of the
mortality rates by covariates. The risk for both

groups varied with demographic and socio-econom-
ic factors. Within the five years of the survey, 13%
of children (n = 1559) had died. Of these, 1107
(77%) died during the first 12 months of their life,
and the remaining 452 (23%) died between their
first and fifth birthday. The mean rate was 150 child
deaths per 1000. The mean survival time for infants
was 4 months (median = 3 months), whereas the
mean child survival time was 23 months (median =
24 months). 

Statistical modeling

A spatial Cox regression model (Hennerfeind et
al., 2006) was applied to determine factors associat-
ed with the risk of early childhood mortality.
Assuming that Tij is the observed number of months
lived or the censoring time for j-th child in area i, the
hazard function at time T = t is given by the equation

Covariates Infant deaths Childhood deaths

(n = 1107)‡ % (n = 452) %

Malaria endemicity
0-25%
25-50%
50-75%
75-100%

Sex
Female
Male

Residence
Urban
Rural

Mother’s education
None
Primary
Secondary or higher

Birth order
1st born
2nd and above

Preceding birth interval
<2 years
2 years or more

Mother’s age
<20 years
20-24 years
25-29 years
≥30 years

56
469
479
130

524
583

130
977

325
736
46

347
760

303
805

104
383
299
321

9.2
9.3
9.2
9.8

8.8
9.8

6.2
9.9

8.8
10.0
5.5

12.0
8.4

13.8
6.8

31.9
24.9
22.0
22.6

18
154
234
46

220
232

63
389

156
278
18

112
340

122
329

22
131
165
134

3.0
3.0
4.5
4.4

3.9
3.7

3.0
4.0

4.2
3.8
2.1

3.9
3.8

4.9
3.5

5.7
4.4
4.6
4.1

Table 1. Summary of infant and child mortality by selected risk factors included in the analysis.

‡ The number and proportion who died in each risk category.
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h(t|β, vij) = h0(t)exp(βvij) (1)

where h0(t) is the baseline hazard at time t, and
the βs are a vector of regression coefficients for the
fixed and time-invariant variables (vij). The expo-
nent of a coefficient, i.e. exp(β), is interpreted as the
hazard ratio (HR), i.e. the ratio of instantaneous
risk which is assumed to be constant over time.
Since individuals were clustered in geographical
regions, a group-specific random frailty term, Ψi,
was introduced to augment the Cox model, i.e.

h(t|β, vij) = h0(t)exp(βvij+Ψi) (2)

The above model indicates that childhood sur-
vival is influenced by both individual-specific fac-
tors (vij) and group-specific environmental factors
Ψi. Here it is assumed that the environmental fac-
tors are approximated by geographical location.
Two spatial structures are distinguished: 
(i) spatially distributed random effects, ui (to cap-

ture similarities across areas), and 
(ii) unstructured random effects, ui (to allow with-

in-area heterogeneity) so that Ψi = si+vi (Besag
et al., 1991). 

Fitting the model above (2) assumes a semi-para-
metric additive predictor, known as the geoadditive
survival model (Hennerfeind et al., 2006), which
results in

ηij(t) = ƒ0(t)+βvij+ui+si (3)

where ηij is the log-additive predictor at time t for
child j in area i. The term  ƒ0(t) = log(h0(t)) is the log
baseline hazard effect at time t. The other terms are
as defined above.

A Bayesian approach was used to estimate the
model above (3) with the following prior distribu-
tions specified for the parameters. The spatially
structured component (si) was assigned an intrinsic
conditional autoregressive (CAR) prior (Besag et al.,
1991). This assumes that the mean for each area, si,
conditional on the neighbouring areas, has a normal
distribution with its mean equal to the average of

neighbouring areas, si, and variance inversely pro-
portional to the number of neighbours, mi. The
CAR prior has the form of

p(si | si ; l neighbouring i) ~ N ( 1—mi
∑

l adj i
si , τ

2
s—mi
) (4)

where l adj i denotes that i and l are adjacent areas
and τ2

s is a spatial variance, which at a further step
of hierarchy, is modeled using inverse gamma (IG)
with known parameters, i.e. a = 1, b = 0.005. The
unstructured random effects, ui , were assumed to
follow an exchangeable normal prior, ui ~N (0, τ2

u),
where τ2

u measures the degree of heterogeneity,
which again was assigned an IG hyper prior. The
baseline hazard effect, ƒ0(t), was assigned a penal-
ized spline with a second-order random-walk prior.
The fixed regression coefficients were assigned dif-
fuse priors. Inference was based on samples drawn
from the posterior distribution using MCMC tech-
niques. Model fit was implemented in BayesX 1.4
(Brezger et al., 2005). For all models, 25,000 itera-
tions were run with the initial 5000 discarded and
every 20th sample stored to give a final sample of
1000 for parameter estimation.

For infant and child mortality, three models were
fitted to investigate whether malaria endemicity,
socio-economic and bio-demographic covariates can
explain the rates. The first model (M1) was non-
spatial and included all variables and the unstruc-
tured random effects to allow for sample design.
Model M2 included spatial and non-spatial random
effects and all variables, while model M3 also
included spatial and non-spatial random effects and
all variables except the effect of malaria. The model
comparison was based on the deviance information
criterion (DIC) (Spiegelhalter et al., 2002) given by
the equation

DIC = D̄+ p
D

where D̄ is the deviance of the model evaluated at
the posterior mean of the parameters, and repre-
sents the fit of the model to the data. The compo-
nent p

D
is the effective number of parameters assess-
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ing the complexity of the model. Since small values
of D̄ indicate a good fit, while small values of p

D

point in the direction of a parsimonious model,
small DIC values reflect a better model. 

The proportion of total residual spatial variance
was computed as φ=τ2

s /(τ2
s +τ 2

u). The closer this ratio
is to 1, the more dominant is the spatially structured
component, while the closer it is to 0, the more
dominant is the unstructured random effect. When
φ is close to 0.5, it is not possible to distinguish
between the two outcomes. In this case, the total

variance (τ2
s +τ 2

u) can be plotted.

Results

Table 2 presents results for the three models fitted
for infant mortality. Model M3 did not include
malaria and was the best fit (DIC = 7204.48). The
risk varied with demographic and socio-economic
factors. The risk was higher for boys than for girls
and rural children were more at risk than urban
children. The level of risk was inversely proportion-

Covariates Model 1‡

HR (95% CI)

Model 2

HR (95% CI)

Model 3

HR (95% CI)

Malaria endemicity
0-25%
25-50%
50-75%
75-100%

Sex
Female
Male

Residence
Rural
Urban

Mother’s education
None
Primary
Secondary or higher

Birth order
1st born
2nd and above

Preceding birth interval
<2 years
2 years or more

Mother’s age
<20 years
20-24 years
25-29 years
≥30 years

Variance components
τ 2

u 

τ 2
s 

φ
Model fit

D̄
p

D

DIC

1.00
1.01 (0.88, 1.18)
0.98 (0.86, 1.14)
1.04 (0.86, 1.27)

1.00
1.07 (1.01, 1.13)

1.00
0.79 (0.70, 0.88)

1.00
1.26 (1.12, 1.42)
0.71 (0.57, 0.87)

1.83 (1.42, 2.32)
1.00

1.61 (1.42, 1.83)
1.00

1.04 (0.70, 1.55)
1.18 (0.94, 1.49)
0.97 (0.77, 1.20)
1.00

0.10 (0.04, 0.18)

7057.34
74.82

7206.98

1.00
0.99 (0.87, 1.16)
0.96 (0.85, 1.12)
1.12 (0.90, 1.35)

1.00
1.07 (1.01, 1.14)

1.00
0.78 (0.70, 0.88)

1.00
1.26 (1.13, 1.42)
0.72 (0.58, 0.86)

1.80 (1.44, 2.29)
1.00

1.62 (1.42, 1.79)
1.00

1.04 (0.71, 1.52)
1.18 (0.94, 1.49)
0.98 (0.78, 0.13)
1.00

0.05 (0.004, 0.13)
0.09 (0.01, 0.22)
0.57

7077.05
65.24

7207.54

1.00
1.07 (1.01, 1.14)

1.00
0.77 (0.69, 0.88)

1.00
1.26 (1.13, 1.41)
0.71 (0.57, 0.86)

1.83 (1.43, 2.32)
1.00

1.63 (1.43, 1.81)
1.00

1.05 (0.72, 1.49)
1.77 (0.92, 1.45)
0.97 (0.78, 1.22)
1.00

0.01 (0.001, 0.10)
0.16 (0.03, 0.37)
0.80

7098.22
53.13

7204.48

Table 2. Fixed and random estimates of the three models fitted on infant mortality (1q0) in Malawi.

Legend: HR = hazard ratio, CI = credible interval; DIC = deviance information criterion (see text). ‡Model 1 is non-spatial with all variables
including malaria and unstructured random effects; model 2 is spatial with all variables; model 3 is also spatial, but excluded the effects of
malaria.
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al to the level of education of the mothers, i.e. chil-
dren of mothers with high-school education were
less at risk than children born to mothers with only
primary school education, or to mothers without
any education. In addition, first-born children were
at increased risk and birth interval if less than two
years also placed children at increased risk.

Figure 1A shows the plot of residual spatial effects
based on model M3 representing unobserved, or
unknown, environmental or geographical factors. A
clear spatial variation is displayed in the map with

increased hazard along the lakeshore regions and in
the southern region and decreased hazard in the cen-
tral-western areas and in the north of the country
(confirmed by the standard errors in Figure 1B).
Spatially structured variation also overwhelmed the
unstructured spatial heterogeneity (φ = 0.8).

The results for child mortality are given in Table
3. Based on the DIC, model M2 showed the best fit
(DIC = 3825.36). The risk of child mortality
increased in areas with 50-75% malaria endemicity.
Rural children were at slightly higher risk compared

Fig. 1. Maps showing residual spatial effects (subdistrict hazard ratios) and the corresponding standard errors for infant and
child mortality. Map (A) shows the residual spatial effects for the infant mortality model and the corresponding standard errors
(map (B)) based on model M3 in Table 2. Map (C) shows residual spatial effects for the child mortality model and the corre-
sponding standard errors (map (D)) based on M2 in Table 3.
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to urban children. Having mothers with secondary
or higher education in contrast to no or primary
education provided relative protection. Children
were at greater risk if the preceding birth interval
was less than two years and if the mother was under
20 or between 25-29 years of age relative to moth-
ers older than that. Significant subdistrict-specific
residual risk was evident, as depicted by the total
residual effects, i.e. exp(u) · exp(s) (Figure 1C), and
confirmed by the standard errors (Figure 1D).
Relatively high risk was observed in the central and

southern region, while low risk prevailed in parts of
the northern and southern regions.

Discussion

This study is one of the few assessing the spatial
pattern of early childhood mortality and the effect
of malaria endemicity. Apart from Gemperli et al.
(2004), for example, studies have generally focused
on the role of socio-economic and bio-demographic
covariates. Importantly, these have been included in

Covariates Model 1‡

HR (95% CI)

Model 2

HR (95% CI)

Model 3

HR (95% CI)

Malaria endemicity
0-25%
25-50%
50-75%
75-100%

Sex
Female
Male

Residence
Rural
Urban

Mother’s education
None
Primary
Secondary or higher

Birth order
1st born
2nd and above

Preceding birth interval
<2 years
2 years or more

Mother’s age
<20 years
20-24 years
25-29 years
≥30 years

Variance components
τ 2

u 

τ 2
s 

φ
Model fit

D̄
p

D

DIC

1.00
0.84 (0.68, 1.01)
1.26 (1.05, 1.51)
1.28 (0.99, 1.62)

1.00
1.03 (0.94, 1.12)

1.00
0.91 (0.79, 1.00)

1.00
1.18 (0.99, 1.42)
0.64 (0.46, 0.84)

1.34 (0.93, 1.88)
1.00

1.26 (1.03, 1.52)
1.00

2.23 (1.22, 3.99)
1.24 (0.92, 1.70)
1.43 (1.05, 1.95)
1.00

0.02 (0.001, 0.09)

3780.59
23.98

3828.55

1.00
0.82 (0.67, 1.01)
1.26 (1.04, 1.54)
1.25 (0.97, 1.58)

1.00
1.03 (0.95, 1.13)

1.00
0.91 (0.80, 1.00)

1.00
1.18 (0.97, 1.44)
0.62 (0.45, 0.86)

1.39 (0.94, 2.01)
1.00

1.29 (1.06, 1.54)
1.00

2.22 (1.14, 3.92)
1.24 (0.90, 1.75)
1.43 (1.06, 1.93)
1.00

0.01 (0.001, 0.07)
0.004 (0.001, 0.01)

0.4

3787.85
18.76

3825.36

1.00
1.03 (0.94, 1.14)

1.00
0.92 (0.80, 1.01)

1.00
1.17 (0.96, 1.46)
0.62 (0.41, 0.86)

1.35 (0.93, 1.98)
1.00

1.29 (1.06, 1.56)
1.00

2.26 (1.14, 3.99)
1.24 (0.90, 1.75)
1.42 (1.05, 1.89)
1.00

0.01 (0.001, 0.05)
0.16 (0.02, 0.43)
0.80

3762.24
35.36

3832.96

Table 3. Fixed and random estimates of the three models fitted on child mortality (4q1) in Malawi. 

Legend: HR = hazard ratio, CI = credible interval; DIC = deviance information criterion (see text). ‡Model 1 is non-spatial with all variables
including malaria and unstructured random effects; model 2 is spatial with all variables; model 3 is also spatial, but excluded the effects of
malaria.
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this analysis as confounding covariates. In agree-
ment with previous studies (Madise and Diamond,
1995; Root, 1999; Balk et al., 2004; Gemperli et al.,
2004; Kandala and Ghilagaber, 2006), the present
results confirm the link between socio-economic
and demographic factors (such as place of residence,
maternal age, maternal education, birth spacing and
birth order) and the risk of childhood mortality in
Malawi. On one hand, our present analysis shows
that malaria endemicity, in addition to the effect of
socio-economic and bio-demographic factors, is
associated with early childhood mortality. On the
other, this effect was shown to be different when
infants and children were compared. Indeed, the
risk of infant mortality is similar at all levels of
malaria endemicity, despite the bivariate data show-
ing that the risk of infant mortality marginally
increased at the highest level of malaria endemicity
(category 75-100% in Table 1). For child mortality,
however, the malaria risk was found to impose a
greater risk at the intermediate or higher levels
(≥50% prevalence) than at lower levels of endemic-
ity. Certainly, this effect was evident from the bivari-
ate data (Table 1), although not strongly significant
in Model 2 of Table 3. However, category 25-50%
was associated with similar risk of deaths relative to
the low (0-25%) category.

The differential impact of malaria risk can be
explained from two perspectives. For infants, it is
likely that the effect of maternal immunity is still
protective in the first six months of life (Smith et al.,
2004; Snow et al., 2004). Nevertheless, the indirect
consequences of malaria transmission intensity on
infant mortality cannot be ruled out. Research in
this area indicates that the incidence of low birth
weight is an indirect attribute of maternal malaria
which acts on the infant at the foetal stage of life
(Steketee et al., 2001). In endemic areas, maternal
malaria infection is known to predispose towards
pre-term delivery, which in turn leads to peri- or
neonatal mortality (Van Geertruyden et al., 2004).
The impact of maternal malaria is reported to be
greater among primigravidae than in multigravidae
women (Steketee et al., 2001). Furthermore, mater-

nal malaria is associated with retarded early growth
and under-nutrition (Kalanda et al., 2005), which
mostly manifests in infants at the age of 6-12
months. Under-nutrition and retarded growth are
the underlying causes of more than 53% of all cases
of child death that occur annually (Caulfield et al.,
2004).

In general, the risks an infant faces during birth
and the first 11 months of life are very different
from those experienced after this period. Infant
deaths, especially at the neonatal stage, are more
closely linked to endogenous factors such as con-
genital malformations, hereditary diseases and low
birth weight (Balk et al., 2004). Older children are
more likely to die of exogenous factors such as acci-
dents and malnutrition, while malaria and other
preventable infectious diseases present an increased
impact due to the waning of maternal immunity
(Van Geertruyden et al, 2004). However, this dis-
tinction may not always be true. For example, high
levels of HIV in children attributed to mother-to-
child transmission strongly contributes to childhood
mortality, particularly in the first two years of life
(Taylor et al., 2000).

The subdistrict-specific geographical variation in
infant and child mortality showed consistently high-
er risk in rural than in urban settings (Fig. 1). This
urban-rural distinction could be a combined result
of many factors. Malaria transmission is generally
more intense in rural areas even though the malaria
prevalence map (Kazembe et al., 2006) is not suffi-
ciently detailed to show this. Rural children, regard-
less of stage of life, suffer higher mortality as a result
of increased exposure to Plasmodium falciparum,
which our malaria variable only partly explains.
Rural areas are also the most deprived, for instance
due to severe and deep poverty, non-availability or
inaccessibility of prompt health care. In addition,
other shared community factors might impose large-
scale clustering of putative factors, hence the spatial
variation in the health outcome (Benson et al.,
2005). Unobserved risk of common and leading dis-
eases of childhood mortality such as diarrhoea,
measles, HIV/AIDS and acute respiratory infections
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(e.g. pneumonia), some of which vary spatially
(Kandala et al., 2006), may induce a disproportion-
ate patterning in child mortality with poor or rural
areas experiencing increased hazards (Benson et al.,
2005). Taken together, the burden of childhood
mortality may be higher in rural areas than in most
urban areas.

The linkage between the DHS mortality data and
the estimated malaria prevalence data provides an
exciting analysis based on the epidemiological evi-
dence that endemic malaria increases the risk of early
childhood mortality. The implicit basic assumption
in these analyses is that the frequency or duration of
exposure to malaria, coupled with other individual
factors (e.g. age, location and behavioural factors)
influences early childhood mortality. The fundamen-
tal problem is whether cross-sectional data are suffi-
cient to confirm this kind of hazard-exposure link-
age. In our opinion, the data obtained and presented
in this study provide a possible connection between
hazard and exposure (Gemperli et al., 2004).

Since our results depend on the reliability of the
survival times, the limitations of this study hinges pri-
marily on the potential shortcoming of using moth-
ers’ reports on childhood mortality. This may intro-
duce a bias with regard to survival times as outcomes
are often imputed and lumped due to rounding of
age. Nevertheless, many studies using DHS data have
reported reliable results even from the least educated
women in rural areas (Balk et al., 2004; Gemperli et
al., 2004). Another limitation is the possibility of
measurement errors of the estimated malaria values,
which may bias the results. This approach has been
used successfully by others, e.g. Gemperli et al.
(2004), and is likely to give a conservative estimate of
malaria risk at DHS sampling locations.

Another limitation of this study is the lack of data
on HIV prevalence, particularly since the experience
in sub-Saharan Africa suggests that this infection is
an important cause of reported child mortality. Lack
of effective treatment programmes using anti-retro-
viral drugs to prevent mother-to-child transmission
is likely to result in increased HIV transmission. The
viral load of HIV of the mother also affects HIV

transmission and the influence of HIV may there-
fore cause infant and child mortality. It is currently
estimated that 50% of untreated, HIV-positive chil-
dren die before the age of two years and that anoth-
er 30% do not make it past five (Taylor et al., 2000;
Abu-Raddad et al., 2006). HIV infection is thus a
major confounder when considering the influence of
malaria on child mortality rates, thus, these studies
might be strengthened by controlling for HIV preva-
lence. This modeling extension can be the focus of
further study, when HIV data become available at
child level. 

Despite the limitations discussed above, we feel
that this study fills a significant gap in the know-
ledge of geographical variations of early childhood
mortality in Malawi. The maps identify areas of
increased hazard and these patterns have important
implications for health policy aimed at reducing all-
cause child mortality by 50% by 2010. Such a poli-
cy may take a comprehensive approach aiming at:
(i) a reduction in HIV incidence which can affect

malaria immunity;
(ii) targeted prevention of mother-to-child treat-

ment programmes; 
(iii) integrated management of childhood illnesses

(IMCI); and
(iv) dedicated malaria control programmes designed

for areas where high childhood mortality have
been found. 
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