
Abstract

Land use regression (LUR) modelling is a common approach used
in European and Northern American epidemiological studies to assess
urban and traffic related air pollution exposures. Studies applying LUR
in Africa are lacking. A need exists to understand if this approach
holds for an African setting, where urban features, pollutant exposures
and data availability differ considerably from other continents. We
developed a parsimonious regression model based on 48-hour nitrogen
dioxide (NO2) concentrations measured at 40 sites in Kaédi, a medium
sized West-African town, and variables generated in a geographic
information system (GIS). Road variables and settlement land use
characteristics were found to be important predictors of 48-hour NO2

concentration in the model. About 68% of concentration variability in
the town was explained by the model. The model was internally validat-
ed by leave-one-out cross-validation and it was found to perform mod-
erately well. Furthermore, its parameters were robust to sampling vari-
ation. We applied the model at 100 m pixels to create a map describing
the broad spatial pattern of NO2 across Kaédi. In this research, we
demonstrated the potential for LUR as a valid, cost-effective approach
for air pollution modelling and mapping in an African town. If the
methodology were to be adopted by environmental and public health
authorities in these regions, it could provide a quick assessment of the
local air pollution burden and potentially support air pollution policies
and guidelines.

Introduction 

Air pollution is a major environmental health problem affecting
large populations around the world. Exposure to air pollutants causes
a number of adverse health outcomes including respiratory infections,
cardiovascular diseases and lung cancer (Brunekreef and Holgate,
2002; Brook et al., 2004; Chen and Kan, 2008, Raaschou-Nielsen et al.,
2013). Certain populations, especially those in the developing coun-
tries, are highly impacted by the health effects related to poor air qual-
ity, which has mostly been linked to indoor air pollution from biomass
burning (Bruce et al., 2000; Lim et al., 2012). However, in these
regions, the worsening outdoor air pollution, as a result of increasing
urbanisation, population growth, motor vehicle use, unregulated
industrial emissions and unsustainable policies, is also causing con-
siderable problems (Mehta, 2003; HEI International Scientific
Oversight Committee, 2010). According to the World Health
Organization (WHO) report, an estimated 3.7 million premature
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deaths are attributed to outdoor air pollution globally in 2012; more
than 85% of these deaths occur in low and middle-income countries
(LMICs) (WHO, 2014).
The health effects of outdoor air pollution have been investigated for

a number of years in many epidemiological studies. Exposure assess-
ment plays an essential role in these studies in understanding and
defining the relationship between air pollutants and associated health
effects (Zou et al., 2009; Brauer et al., 2012). Due to financial and tech-
nical constraints, however, air pollution exposure assessment studies
conducted in the developing world are relatively scarce.
Land use regression (LUR) modelling has recently become a com-

mon approach used in air pollution epidemiological studies to assess
exposures related to urban and traffic related air pollution (Briggs et
al., 2007; Chen et al., 2010; Liu et al., 2012, Beelen et al., 2013). Models
are derived by regressing air pollution measurements taken at a set of
locations against geographical covariates that are potential proxies for
emission sources or air pollutant dispersion processes. The purpose of
these models is to estimate concentrations of pollutants in unmea-
sured locations, e.g., where people live and are exposed, thereby,
enabling studies on the association between health outcomes and
exposure (Cesaroni et al., 2012; MacIntyre et al., 2013). Furthermore,
LUR models based on measurements that fully capture the heterogene-
ity and pollutant range of an area can provide maps of pollution distri-
bution over an entire area, which would be infeasible with measure-
ments alone. LUR models have also been shown to be especially impor-
tant tools for characterising the spatial variability of pollutants that rap-
idly decay from the source (Jerrett et al., 2007; Brauer et al., 2008).
LUR modelling has thus far been employed in a variety of European

and North American cities (Hoek et al., 2008; Ross et al., 2005; Beelen
et al., 2013). To our knowledge, with the exception of a few studies in
some Asian LMICs (Chen et al., 2010; Allen et al., 2013; Saraswat et al.,
2013), this approach has not been applied in an African region. A need
therefore exists to evaluate whether such an approach also holds for
this part of the world, where urban features differ from those of other
continents. We aimed to apply the LUR approach to model and map
nitrogen dioxide (NO2) for a medium sized West-African town. Our
objective was to demonstrate that robust LUR models could be created
using available and satellite derived geographical data, and to identify
the inherent limitations and benefits of this approach in an African
context.

Materials and Methods 

Study site
The study was conducted in Kaédi (16.15°N, 13.50°S), a medium

sized town located in the semi-arid Sahelian region of Mauritania
(Figure 1). The Senegal River valley separates the town from the
neighbouring country of Senegal. Daily temperature variation ranges
from 16 to 41°C. The population was estimated to be 49,152 inhabitants
in 2010 (ONS, 2013). Kaédi has a high population density where many
live in congested housing with substandard basic services. There are
two main traffic axes in the town with paved concrete roads, crossing
the town roughly from north to south and east to west, and many sec-
ondary dirt roads. Dust storms, emission from cottage industries, road
traffic and traditional cooking using biomass fuels are the main
sources of outdoor air pollution in the town.

Air pollutant measurements
In April 2011, in conjunction with the Kaédi-wide dry season vulner-

ability assessment multidisciplinary survey, in the framework of the
Ecohealth and adaptation to climate change in water and health sectors
in West Africa project funded by the International Development
Research Centre (IDRC) (Cissé et al., 2011; Touray et al., 2012), out-
door NO2 samples were collected in Kaédi. Monitoring locations were
selected to achieve a broad, even coverage across the town and to cap-
ture the full variability of air pollution. Measurements were collected
for 48-hours using passive samplers deployed at a height of 3 m at 40
systematically selected locations across the different neighborhoods of
the town. The collected samples were stored in an icebox and transport-
ed to the Swiss Tropical and Public Health Institute, Switzerland for
analysis (Passam AG, Männedorf, Switzerland). The sampling sites
were selected for three site types representing street, urban and
regional background sites. Street sites were near major roads and
expected to have high road traffic flow. Urban background sites were
mostly in built-up areas where pollution from different sources was
readily apparent. Regional sites were located on the outskirts of the
town, further away from pollution sources (traffic and high population
settlements). 

Geographic information system analysis 
Following previous LUR models, we initially aimed to obtain or

derive GIS variables in six main categories: roads, land use, traffic
intensity, population density, household density and physical geogra-
phy (Ryan and Le Masters, 2007; Hoek et al., 2008). Traffic intensity
and household data were not available for Kaédi from local sources and,
hence, not considered in this study. Most data were obtained from
online and satellite derived resources as described below. Spatial analy-
ses were conducted using ArcGIS10 (ESRI, Redlands, CA, USA).
We used Open Street Map to digitize a spatial layer for roads, sup-

plemented with information from Google Earth to include additional
road detail and guarantee the completeness of the network across the
town. Based on the Mauritanian road network classification system,
two main road types were determined: local paved roads and local feed-
er roads. Road variables by type were calculated as total road length
within 50, 100, 150 and 200 m buffers; the Euclidian distance between
measurement sites and roads by type were also computed (Briggs et al.,
2000; Beelen et al., 2013; Abernethy et al., 2013).
We created a study area specific land use/land cover (LULC) data set

(Figure 2) using a standard image classification algorithm. We
obtained and evaluated two different resolution satellite images as
close to the sampling day as possible: the freely available multiband
Landsat-5 TM (30 m) satellite image with spectral bands: blue 450-520
nm, green 520-600 nm, red 630-690 nm, NIR 760-900 nm, SWIR1 1550-
1750 nm, SWIR2 2080-2350 nm (http://www.usgs.gov); and the multi-
spectral resolution RapidEye image (5 m-pixel size, 5 spectral bands:
blue 440-510 nm, green 520-590 nm, red 630-685 nm, red edge 690-730
nm, NIR 760-850 nm) (http://www.blackbridge.com). A multi-step
supervised classification was applied in ArcGIS10: creating a priori
training areas (samples) of land covers and applying the maximum
likelihood classifier (Richards and Xiuping, 1999). The created training
areas were evaluated by histograms and scatter plots for the degree of
overlap between classes before classifying the image. This process of
image classification was repeated a number of times, until the best
possible classification was obtained. The quality of the LULC classifica-
tion was inspected visually and verified using Google Earth as ground
truth. The final classified image was again examined for the presence
of flagrant misclassifications and corrected with a post classification
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process. In order to provide a measure for the accuracy of the LULC
classification, well recognizable regions of interests for each class were
defined in the town of Kaédi and its closer surroundings and a confu-
sion matrix was calculated (Manandhar et al., 2009). Based on the final
LULC data set, geographical variables for each land class were calculat-
ed for buffer sizes of 100, 300, 500 and 1000 m.
Buffers (zones of influence) for all of the predictor variables were

made to take into account the environmental processes of the variables
and the geographic extent of our study area. For example, we restricted
our maximum buffer size to 200 m for road variables as larger buffers
could misrepresent the observed pollutant effect. Similarly, for land use
variables, we set the maximum buffer size to 1km given the influence
of the pollutant under study. 
Population data for Kaédi were only available as census area totals

for year 2000. To obtain a finer population representation, we spatially
disaggregated the census totals using a dasymetric mapping technique.
Dasymetric mapping is a thematic cartographic method used to redis-
tribute spatially aggregated population data to a finer scale that better
depicts the underlying distribution. The technique uses ancillary data
to weight and spatially relocate populations (Mennis, 2003; Briggs et
al., 2007). We used our LULC map as ancillary data to provide the con-
textual information on how the population is likely distributed across
the town. Weights were applied to each LULC class in the ancillary data,
based on the proportion of people expected to be living there. Greater
population, for example, is expected to live in settlements compared to
farmland. Census population (i.e. within census boundaries) was then
proportioned across the LULC grid and aggregated to a 200 m grid. We
applied Focalsum functions to the resulting 200 m grid to compute pop-
ulation within buffers of 200, 400, 600, 800 and 1000 meters around the
measurement sites.
As elevation is often considered an important geographical factor

affecting pollutant concentration (Shmool et al., 2014), we extracted
elevation at measurement sites from SRTM 90 m digital elevation

model (http://www.cgiar-csi.org) and stored as a point predictor vari-
able.
The database containing potential GIS predictor variables was

exported to the statistical software R (http://cran.r-project.org/) for sta-
tistical analysis and model development.

Land use regression modelling
A multiple linear regression approach was used to develop the LUR

on the basis of untransformed NO2 concentration (dependent variable)
and the GIS predictor variables (independent variables). We followed a
supervised forward stepwise regression procedure (Hoek et al., 2008;
Eeftens et al., 2012), which allows for a logical selection of variables
that maximize the model’s percentage of explained variability (R2).
Briefly, each predictor variable was regressed against the NO2 concen-
trations and the variable that gave the highest R2 was selected as the
first variable to be included in the model. Selection of the subsequent
variables, tested in turn, was made based on the magnitude of their
additional contribution to the model (in partial adjusted R2, with at
least a 1% increase). This process of evaluating and adding variables
continued until inclusion of variables no longer improved the model. A
variable was only kept in the model if it entered with the expected
direction of effect and did not change the pre-specified direction of
effect for variables already included. All included variables were
checked for significant associations with NO2; those with P values
greater than 0.1 were sequentially removed from the model.
We checked for the presence of multicollinearity between the poten-

tial predictor variables using the variance inflation factor (VIF), where
values greater than 3 indicate collinearity (O’Brien, 2007). Spatial
autocorrelation in the residuals was tested using Moran’s I statistic
(Moran’s I P>0.05 indicates no spatial autocorrelation). Cook’s dis-
tance was also computed to detect the presence of influential sites
(being both an outlier and leverage point). Sites having Cook’s dis-
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Figure 1. Map of Kaédi, Southern Mauritania.
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tance values greater than 1, indicating an influential point, were fur-
ther analysed. 
The model was internally validated by leave-one-out cross-validation

(LOOCV) (Hoek et al., 2008; Eeftens et al., 2012; Beelen et al., 2013). In
LOOCV, one observation from the data is excluded and the model refit-
ted and applied to predict for the site left out. This is repeated for all
sites so that each site has a prediction based on a model that did not
use its measurement. The magnitude of error, root mean square error
(RMSE) and the explanatory power (R2) of the cross-validated model
were then assessed by regressing observations against predicted con-
centrations. The sensitivity of model parameters to the selection of
samples was also evaluated with a non-parametric bootstrap analysis
(Ross et al., 2005; Ryan et al., 2007). In the analysis, random n-5 sam-
ples were drawn from the observations with replacement; each time a
sample is drawn, a model was run and coefficients were recorded. This
procedure was repeated 10,000 times, and mean, standard error and
confidence intervals of these coefficients were computed. 
Finally, the validated model was rendered at a 100 m resolution (i.e.

predicted at grid cell centroids) and spatially smoothed via bilinear
interpolation to create a 48-hour NO2 concentration map. The map was
visually evaluated for plausibility. 

Results

Measurements
During the measurement campaign, one sample went missing, thus

samples from only 39 sites were retrieved. The 48-hr NO2 concentra-
tions at these sites ranged from 0.3 to 16 µg/m3. The mean concentra-
tion value was 5.26±3.19 µg/m3 with a median (interquartile range)
concentration of 5.3 (3.3-6.5) µg/m3. NO2 concentrations were different
between the three site types, with that of the street background show-
ing the highest mean concentrations (7.0±4.4 µg/m3), the urban back-
ground the next highest (5.1±2.3 µg/m3), and the regional background
lowest (2.1±1.7 µg/m3). In Kaédi, relatively elevated concentrations
were measured at the sites along the main paved north-south street
with the highest level measured near the intersection of the two main
traffic axes. Concentrations were also elevated around the town center;
whereas, low values (0.3-4.0 µg/m3) were observed in the northern part
of the town. 

Geographic information system derived predictors
A total of 65 potential predictor variables (Supplementary Table 1)

were produced in the GIS analysis and tested in the land use regression
modelling. 
The digitised road network for Kaédi had a length of 14,519 m of

paved and 90,149 m of feeder roads. Sites in the main town had the
highest road densities ranging from 1100 to 3200 m within a 200 m
buffer, while regional background sites had relatively lower density (0-
547 m) and were further from paved roads (302-1052 m).
In deriving the LULC data set, we tested two satellite images of dif-

fering spatial resolution; our final data set was based on the higher res-
olution RapidEye imagery. The image classification resulted in a 5 m
LULC data set (Figure 2) with 11 different classes (Supplementary
Table 2). The overall accuracy of the classification was 89% with a
kappa coefficient of 0.87. Main misclassifications were observed
between classes of low spectral separability, i.e. between the high and
low settlement class, between dense vegetation and pasture/fluvial, and
between the two settlement classes and thoroughfare/track class. Some
LULC classes such as water, farmland and sparse vegetation were sub-
stantially absent or dispersed around the monitoring sites while others
like settlement and thoroughfare were clustered. 
The overall altitude variability in Kaédi was very low; altitude at the

measurement sites ranged between 12 and 22 m above sea level with
the exception of one site measured at 32 m. 
We estimated the small-scale population distribution in Kaédi to

range from 0 to 1550 individuals per 200 m grid cell. At half of the sam-
pling sites, the population within each 200 m grid cell was approximat-
ed to be more than 100 people. 

Final land use regression model
A parsimonious model with four predictors was developed, giving a

final model with an adjusted R2 of 0.68 (Table 1). The variable paved
road within 100 m buffer (PAVBUF100) was the first variable to be
selected with the highest adjusted R2 of 0.35. Three additional variables
entered the model: area of dense settlement within 1000 m buffer
(SETH1000), area of moderate settlement within 300 m buffer
(SETL300), and all types of road within 200 m buffer (ROADBUFF200). 
The maximum VIF of the estimated regression coefficients was 1.23,

and Moran’s I statistic on model residuals was -0.03, P=0.89. Although
site 15 was identified as a potential influential site (Cook’s D of 1.44),
we retained it as sensitivity analysis, in which it was removed, did not
impact the model. This site is also in a location where emission from
different sources occur and removing it would create a loss of informa-
tion and statistical power. The LOOCV of the model yielded an adjusted
R2 of 0.54 and RMSE of 2.18 µg/m3. Results from the bootstrap sensitiv-
ity analysis showed that the coefficient values of the intercept and

                   Article

Table 1. Final nitrogen dioxide land use regression model based on measurements collected in April 2011.

Model variable                Beta                     SE                         P value                  VIF              Partial R2 (%)           Beta (90-10)°

Intercept                                     0.96                           0.674                                   0.16                               -                                    -                                           -
PAVBUF100                            1.91×10–2                  3.54×10–3                             <0.01                          1.23                                35                                       3.45
SETH1000                               1.76×10–5                  4.48×10–6                             <0.01                          1.13                                24                                       3.37
SETL300                                 3.56×10–5                  1.34×10–5                              0.01                            1.14                                 5                                        2.19
ROADBUF200                         8.7×10–4                   3.67×10–4                              0.02                            1.13                                 4                                        1.98
Model R2=0.71; model adjusted R2=0.68; cross validated R2=0.54; cross validated root mean square error=2.18; Moran’s I=-0.03 (P=0.89).
SE, standard error; VIF, variance inflation factor; PAVBUF100, paved road within 100 m buffer; SETH1000, dense settlement within 1000 m buffer; SETL300, moderate settlement within 300 m buffer; ROADBUF200, all
types of road within 200 m buffer. °Coefficients multiplied by the difference of the 10th and 90th percentile of the predictors. 
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three of the four model predictor variables were normally distributed.
However, the coefficient of paved road within a 100 m buffer
(PAVBUF100) appeared to be skewed and to have a some what bimodal
distribution (Figure 3).
The predicted values in the smoothed NO2 concentration map

(Figure 4) ranged between 0.96 and 12 µg/m3. Higher values are seen
around paved roads and at their intersections; whereas, suburban
areas outside the main city showed relatively low concentration values.

Discussion 

Measurements
NO2 concentrations measured in Kaédi are quite low compared to

other cities in low and middle-income countries (LMICs) (Han and
Naeher, 2006; El-Batrawy, 2011; Allen et al., 2013). Although there is no
national air quality guideline to which we can directly refer these 48-
hour NO2 values, the concentrations were still much lower than WHO’s

                                                                                                                                Article
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Figure 2. Land use/land cover map of Kaédi developed with image classification technique, using RapidEye (5 m) satellite image. NO2

measurement sites are also indicated.
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recommended values (annual mean=40 µg/m3, 1-hour mean=200
µg/m3) (Krzyzanowski and Cohen, 2008). However, variability of con-
centrations between locations is present: concentrations near roads
and urban settlements are comparatively elevated relative to concentra-
tions on the periphery of the town.
The low NO2 concentrations observed in Kaédi are most likely due to

a combination of low traffic density in the area and that the measure-
ments were taken during the hot dry season when the mixing height is
particularly high due to strong convective currents from surface heat-
ing. The case would likely have been different for other pollutants such
as particulate matter, where the sources are more numerous, e.g., road
dust resuspension (only two paved roads), open waste burning, various
cottage industries, and biomass solid fuel cooking (a common practice
in the area). 

Generating geographic information system data 
Availability of GIS data for our LUR model was one of the anticipated

challenges in this research project. We overcame this challenge by inte-
grating satellite derived information and publicly available data into a
comprehensive GIS for Kaédi. Google Earth, Open Street Maps and
other GIS web portals were the main data sources that we used. Taken
together, these sources provided important GIS information that could
be used as pollution surrogates. 
Road density is an important surrogate for traffic-related NO2 con-

centration. The majority of the papers reviewed by Hoek et al. (2008)
have included road related variables in their models. As in our case, the
lack of consolidated road network data is likely to be a challenge in
other low-income countries. To manually digitize the road network was
feasible for our small study; however, this approach may be time con-

                   Article

Figure 3. Histograms of land use regression model parameters after bootstrap analysis with 10,000 iterations. PAVBUF100, paved road
within 100 m buffer; SETL300, moderate settlement within 300 m buffer; SETH1000, dense settlement within 1000 m buffer; ROAD-
BUF200, all types of road within 200 m buffer.
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suming and costly for areas with bigger and more complex road net-
works. 
The other key surrogate that is considered important for air pollution

modelling is land use. Land use data are typically derived from satellite
images, and for many study areas are readily available GIS data sets.
Previous LUR modelling studies have used land use and land cover
variables that are, in one way or another, derived from satellite images
(Allen et al., 2013). In this study, we had to derive our own LULC data
set using image classification of satellite imagery. In creating our LULC
data set, we found the use of the 30 m resolution Landsat-5 TM data to
be too coarse to identify small area differences in LULC in Kaédi. The
finer resolution (5 m) RapidEye data, however, provided a better and
more accurate classification. Hence, selection of suitable satellite data
is important for extracting reliable and study-specific information from
the raw data. While not appropriate for our study area, Landsat-5 TM
may be suitable for larger cities than for small, congested areas like
Kaédi. The other limitation that we recognized, which could potentially
lead to a high level of misclassification, is the lack of ground truthing
available to select training areas and confirm the classification.
However, this issue was easily resolved through the use of Google Earth
images and prior (on the ground) knowledge of the study area
(acquired by the monitoring team). In general, the availability of high-
resolution satellite images offer a good potential to derive appropriate
land use predictors when readily available GIS data are lacking. The

ease of use of GIS and remote sensing tools, as has been shown by
other researchers (Maxwell, 2010; Mao et al., 2012; Allen et al., 2013),
further facilitates the exploitation of satellite imagery in air pollution
modelling and exposure assessments in low income countries.
Many applications, including air pollution modelling and exposure

assessment, often require population data at finer spatial resolutions;
however, population data are usually collected only at coarse adminis-
trative area levels. Different techniques have been used to redistribute
census population to smaller scales, e.g., area weighting being the sim-
plest approach. We used a more involved method called dasymetric
mapping, which enabled us to represent Kaédi’s population at a finer
scale and provided a more plausible population representation in the
town. Where block level population data are not available or too costly
to acquire, this method provides a viable alternative. Nevertheless, we
were limited in our application of this approach by the need to assume
weights rather than derive them deterministically. We further lacked
the necessary data to undertake a validation of our final population dis-
tribution and thus aggregated the final population data set to 200 m to
reduce the uncertainty. 
Ultimately, the fact that we could build a LUR model using these data

sources generally supports their use and this modelling approach for
air pollution modelling and exposure assessment in developing coun-
tries. In the absence of locally available GIS data, they are also cost
effective substitutes that are globally available. 
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Figure 4. Spatially smoothed 48-hour NO2 concentration map for Kaédi (based on predictions at a 100 m pixel).
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Land use regression modelling and validation
Our LUR model with an adjusted R2 of 0.68 (LOOCV R2 of 0.54) was

based on a one-off monitoring campaign of 48hr NO2 measurements
during the hot dry season at 40 sites. We were able to select variables
that together explained a substantial fraction of the variability of NO2
concentrations in the area. These variables were determined to be
plausible and stable in the model (low VIFs). Since the aim was to
develop a predictive model, variables were allowed to enter into the
model based on their predictive capacity and assessed by the model’s
explained variability (R2). Even though some important predictor vari-
ables like traffic density were not available for Kaédi, 68% of NO2 con-
centration variability in the town is explained by this model. This is
moderately comparable to results found in previous European and
North American studies. Variables included in the final model (length
of paved road, length of all types of roads, area of high and low settle-
ment) are also plausible with respect to the known NO2 pollution pat-
tern (Ryan et al., 2007; Hoek et al., 2008; Beelen et al., 2013).
Due to a limited number of sites, we did not reserve any sites for

independent validation. Instead, we internally evaluated the perform-
ance and stability of our model using LOOCV (Hoek et al., 2008; Eeftens
et al., 2012). Our cross-validated model has an explanatory power of
54%, which is 14% lower than the original prediction model. In most
LUR studies, a model is considered to be stable if the coefficient of vari-
ation of the cross-validated model is similar with that of the original
prediction model. For example, in the ESCAPE study (Beelen et al.,
2013), the cross validated R2 for most of the 36 areas was within 10%
of the model R2, documenting robustness; however, for a few areas,
there was up to 15% difference. The 14% difference we observed in this
study could be taken to indicate a moderately stable model. Further
support for the performance of our LUR model was also evaluated by
performing sensitivity analysis. Using the bootstrap method, we
showed that our model parameters were robust to sampling variation.
All of the variables except the variable paved road around 100 m buffer
(PAVBUF100) had mean bootstrap values close to the model’s coeffi-
cient values. Further analysis revealed that the skewed/bimodal distri-
bution in the coefficient PAVBUF100 was caused by the influential site.
An insignificant Moran’s I of -0.03 demonstrated no spatial auto-corre-
lation of the residuals indicating the suitability of the LUR approach. In
general, the model’s performance was reasonably good and was there-
fore applied to predict values in unmeasured areas in Kaédi. 
The concentration map for Kaédi (Figure 4) has offered a good way

to visualise the spatial structure of NO2 pollution over the modelled 48-
hour period. The effect of road traffic on the level of NO2 concentration
can be seen from the map as concentrations near major paved roads
are relatively elevated. Mapping the spatial variability of the pollutant
in general is useful to understand population exposures as well as plan
relevant air quality measures. 
The major challenge in developing this Kaédi LUR model was the

lack of GIS data. Although we have tried to overcome this problem by
using available online data sources and avoiding expensive and time
consuming fieldwork, large data gaps still exist for other predictors,
such as, point pollution sources, traffic density and household data.
Future studies might consider such limitations and collect relevant
data beforehand, for example, during the measurement campaign. We
have also only considered 48-hour NO2 measurements in the hot dry
season, which leaves open the question of model stability/comparability
when it comes to weekly NO2 levels or weekend/weekday differences.
Furthermore, additional measurements, e.g., in the rainy season, would
be needed to model seasonal patterns and long-term average concen-
trations. 

Conclusions

To date, LUR models have typically been applied in European and
North American cities. African cities often have different urban fea-
tures and air pollution sources than cities in high-income countries.
Given the complexities of air pollution in urban areas of LMICs, and the
roles of indoor/outdoor sources, much remains to be done. NO2, a spe-
cific marker of traffic air pollution in the outdoor environment, in com-
bination with other pollutants such as PM10, PM2.5, and ultrafine parti-
cles can greatly elucidate priority sources of air pollution in such set-
tings. Information on exposures in these settings is a critical start to
understanding and alleviating the considerable burden of air pollution
in the developing world.
We have demonstrated that a single short-term saturation campaign

of 40 measurements in combination with GIS data derived primarily
from on-line and satellite data can provide a pollution map for a mid-
size African town where no air pollution data have been previously
measured. Moreover, we highlight several approaches to data acquisi-
tion and processing, which can be used to support LUR model develop-
ment in similar low-income areas. If the described LUR approach were
adopted (including more pollutants and seasonal differences) by envi-
ronmental and public health authorities, it would be a cost-effective
approach to model the spatial distribution of air pollution, which would
inform/support local air pollution policies and guidelines in LMICs. 
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