
Abstract

The study of malaria spatial epidemiology has benefited from recent
advances in geographic information system and geostatistical model-
ling. Significant progress in earth observation technologies has led to
the development of moderate, high and very high resolution imagery.
Extensive literature exists on the relationship between malaria and
environmental/climatic factors in different geographical areas, but few
studies have linked human malaria parasitemia survey data with
remote sensing-derived land cover/land use variables and very few
have used Earth Observation products. Comparison among the differ-
ent resolution products to model parasitemia has not yet been investi-
gated. In this study, we probe a proximity measure to incorporate dif-
ferent land cover classes and assess the effect of the spatial resolution

of remotely sensed land cover and elevation on malaria risk estimation
in Mozambique after adjusting for other environmental factors at a
fixed spatial resolution. We used data from the Demographic and
Health survey carried out in 2011, which collected malaria parasitemia
data on children from 0 to 5 years old, analysing them with a Bayesian
geostatistical model. We compared the risk predicted using land cover
and elevation at moderate resolution with the risk obtained employing
the same variables at high resolution. We used elevation data at mod-
erate and high resolution and the land cover layer from the Moderate
Resolution Imaging Spectroradiometer as well as the one produced by
MALAREO, a project covering part of Mozambique during 2010-2012
that was funded by the European Union’s 7th Framework Program.
Moreover, the number of infected children was predicted at different
spatial resolutions using AFRIPOP population data and the enhanced
population data generated by the MALAREO project for comparison of
estimates. The Bayesian geostatistical model showed that the main
determinants of malaria presence are precipitation and day tempera-
ture. However, the presence of wetlands and bare soil are also very
important factors. The model validation performed on a subset of loca-
tions revealed that the use of high-resolution covariates (MALAREO
land cover and elevation data) improved prediction performance.

Introduction

Malaria, a leading cause of morbidity and mortality in the develop-
ing world, especially in sub-Saharan Africa, where it constitutes also a
major impediment to economic development (WHO, 2014), remains
one of the most important human parasitic diseases. Recent research
in the spatial epidemiology of malaria has benefited from the signifi-
cant progress in the development of Geographic Information Systems
(GIS) (e.g. the MARA/ARMA project, Craig et al., 1999; the Malaria
Atlas Project, Hay and Snow, 2006), computerised systems capable of
collecting, storing, handling, analysing and displaying geographically
referenced information. Further gains have been achieved due to
advances in Earth Observation (EO) systems, where gathering of
information about Earth via remote sensing (RS) technologies, have
led to the development of moderate (MR), high (HR) and very high
(VHR) spatial resolution products. The growing availability of RS data,
some of them accessible free of charge via the Internet, has played a
crucial role in determining the environmental predictors of malaria
transmission (Ceccato et al., 2005). 

The readily available up-to-date information on environmental vari-
ables pertinent to malaria transmission over large regions makes RS a
useful source of information for identification of pockets of transmis-
sion and the development of epidemic early warning systems (EWS).

Correspondence: Federica Giardina, Swiss Tropical and Public Health
Institute, Socinstrasse 57, 4002 Basel, Switzerland.
Tel: +41.61.2848109 - Fax: +41.61.2848101.
E-mail: federica.giardina@unibas.ch

Key words: Spatial epidemiology; Geostatistical models; Malaria; Remote
sensing.

Acknowledgements: we would like to acknowledge Measure Demographic
and Health Survey for providing the survey data (Mozambique DHS 2011)
and NASA for providing the MODIS data. 

Note: the present paper includes results from MALAREO (2011-2013;
http://cordis.europa.eu/project/rcn/97892_en.html), a project in the Seventh
Framework Programme of the EU, aiming to stimulate and facilitate the use
of earth observation in malaria control and management in South-Africa,
Swaziland and Mozambique.

Received for publication: 24 February 2015.
Revision received: 1 July 2015.
Accepted for publication: 17 August 2015.

©Copyright F. Giardina et al., 2015
Licensee PAGEPress, Italy
Geospatial Health 2015; 10:333
doi:10.4081/gh.2015.333

This article is distributed under the terms of the Creative Commons
Attribution Noncommercial License (by-nc 3.0) which permits any noncom-
mercial use, distribution, and reproduction in any medium, provided the orig-
inal author(s) and source are credited.

Geostatistical modelling of the malaria risk in Mozambique: effect of the
spatial resolution when using remotely-sensed imagery
Federica Giardina,1,2 Jonas Franke,3 Penelope Vounatsou1,2

1Swiss Tropical and Public Health Institute, Basel; 2University of Basel, Basel, Switzerland;
3Remote Sensing Solutions GmbH, Baierbrunn, Germany

[page 232]                                                            [Geospatial Health 2015; 10:333]                                                   

                                Geospatial Health 2015; volume 10:333

gh-2015_1.qxp_Hrev_master  24/11/15  14:21  Pagina 232

Non
 co

mmerc
ial

 us
e o

nly



Data emanating from RS can further assist malaria control and elimi-
nation programs through spatial decision support systems enabling
accurate and timely resource allocation (Clements et al., 2013), while
spatial statistics based on RS facilitate mapping malariometric indices,
such as the presence and persistence of vector (mosquitoes of the
species Anopheles) breeding sites, larval densities, the entomological
inoculation rate as well as prevalence, morbidity and mortality in the
human host (Machault et al., 2011). Further developments in Bayesian
geostatistical modelling (Diggle et al., 1998) have recently boosted
research in this area (Gosoniu et al., 2009; Giardina et al., 2014). 

The MALAREO project (www.malareo.eu; Gebreslasie and Bauwens,
2015), supported by the European Union’s 7th Framework Program
(FP7) for research aimed at building GIS, EO and spatial statistics
capabilities and implement the their products to support the malaria
control programme (MCP) in Southern Africa. The project focused on
the area that corresponds to the geographic region targeted by the
Lubombo Spatial Development Initiative (LSDI). Launched in 1999, the
LSDI had the goal of accelerating development, particularly with regard
to agriculture and tourism within an area of approximately 25,000 km2

covering southern Mozambique, eastern Swaziland and north-eastern
South Africa. 

The main product created within the MALAREO project is a HR (5 m)
land cover/land use (LULC) map based on RapidEye, a German geospa-
tial information provider focused on assisting management decision-
making through services based on their own EO imagery (Franke et al.
2013). Land cover and land use are often mapped together from RS
images, because biophysical characteristics of the Earth surface (e.g.
water, vegetation, bare soil, artificial structures), i.e. land cover, are
strongly modified by human activities, such as agriculture, forestry and
urban development (Machault et al., 2011). The LULC layer was classi-
fied into malaria-relevant classes including wetlands, permanent and
flowing water bodies, large-scale agriculture, savannah and forests. A
HR population density map was obtained by the combination of field
data (detailed settlement extents and aggregated LULC classes) with
census estimates from 2007 (Deleu et al., 2015). This approach has
been used previously for the production of population layers in the
AFRIPOP project (Tatem et al., 2007) as described by Linard et al.
(2011). However, AFRIPOP used relatively large-scale data from the 
300 m GlobCover and the 30 m Landsat Enhanced Thematic Mapper
Plus (ETM+) (https://lta.cr.usgs.gov/LETMP) for settlement mapping.

Land cover/land use types have been associated with vector habitats
based on simple classification techniques, as well as more sophisticat-
ed statistical models that link satellite-derived multi-temporal meteor-
ological data and EOs with vector biology and abundance (Kalluri et al.,
2007). Very few studies using LULC in mapping of malaria prevalence
from survey data exist, but Stefani et al. (2013) have produced a review
of studies characterising LULC features and their roles in malaria
transmission. Omumbo et al. (2005) used LULC to map malaria risk in
East Africa based on the Africover project (http://www.africover.org).
The latter was produced by visual interpretation of Landsat digital
ETM+ satellite imagery, and the authors defined two ecological zones
using the classes water body and urban/rural area type representing the
percentage area of each pixel occupied by each class. Craig et al.
(2007) regrouped the thirteen United States Geological Survey (USGS)
land cover classes from Anderson et al. (1976) into two categories,
broadly corresponding to dry and moist land cover types in Botswana,
while Gosoniu et al. (2009) grouped them into six categories, i.e. urban
area, cropland, grass/shrub land/savannah, water bodies, wetland and
forest. Both these studies used LULC as a categorical variable in their
models. Riedel et al. (2010) assessed the role of LULC, from MR
Imaging Spectroradiometer (MODIS), in the analysis of malaria indi-

cator survey data (MIS) in Zambia. Five categories were defined: wet-
lands, forests, urban areas, shrub lands and other. At each cluster loca-
tion, or group of households, the land cover covariate was summarised
by the proportion of each land category within a radius of 3 km.
Associations were found in particular with the urban class, where the
odds of malaria were significantly lower. Overall, results generally var-
ied from study to study. 

The work presented here was undertaken as the effect of varying the
spatial resolution on RS-derived environmental predictors on malaria
has not yet been studied. We show the effect of the spatial resolution of
RS-derived environmental covariates (LULC and elevation) and popu-
lation density on the estimation of malaria risk and number of infected
children, after adjusting for other environmental factors at fixed reso-
lution. Furthermore, we probe a modelling strategy for the LULC covari-
ate that allows direct estimation of the effect of each such class type,
and we study associations with malaria risk in a geostatistical model.
The malaria data used in the analysis were collected by the
Demographic and Health Survey (DHS) conducted in 2011 in
Mozambique testing children up to 5 years of age. Data have been
analysed elsewhere without the inclusion of LULC classes (Giardina et
al., 2014). Moderate resolution environmental variables were freely
available on the Web. In the area of Mozambique belonging to the LSDI
area (approximately 11,000 km2 in the southern part of Maputo
Province), LULC, elevation and population density layers were used for
model validation. In particular, we produced spatially explicit estimates
of malaria parasitemia risk and the number of infected children in the
whole country and in the MALAREO area in Mozambique. We per-
formed a predictive analysis using HR data and comparing the esti-
mates in terms of their predictive ability with the lower resolution
products. 

Materials and Methods

Study area
The Republic of Mozambique is bordered by the Indian Ocean to the

east, Tanzania to the north, Malawi and Zambia to the northwest,
Zimbabwe to the west with Swaziland and South Africa to the south-
west. Malaria, endemic throughout the country with regions ranging
from mesoendemic to hyperendemic (Mabunda et al., 2008), remains a
major cause of morbidity and mortality. The climate creates a
favourable environment for the main malaria vectors: Anopheles gam-
biae, A. arabiensi and A. funestus species. Plasmodium faliparum is the
most common species and it is responsible for approximately 90% of all
malaria infections in the country. The peak of transmission occurs dur-
ing and after the rainy season, between December and April, although
malaria is transmitted year round. In the last decade the MCP has
implemented large-scale indoor residual spraying (IRS) programmes
in several areas of 42 districts (Ministerio da Saúde-Instituto Nacional
de Estatística, 2011). Indoor residual spraying was also the major com-
ponent of the LSDI. Distribution of insecticide treated nets (ITN) and
long lasting insecticidal nets (LLIN) targeted all age groups since 2009
and coverage is estimated to have reached almost 40% (WHO, 2014).

Malaria data
The DHS 2011 in Mozambique was carried out between June and

November 2011. It consisted of a stratified three-stage sampling
design, where the primary sampling unit, referred to as cluster, was
defined on the basis of the enumeration areas from the 2007 census
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frame. A total of 611 clusters were sampled with probability proportion-
al to size, defined as the number of households. In the second sampling
stage, 20 households were selected randomly in urban clusters and 25
households in rural clusters. A representative sample of around 13,000
households was selected and 4885 children, 0 to 5 years old, was tested
for malaria parasitemia with rapid diagnostic test (RDT) and
microscopy. Geo-reference and parasitemia measurements, freely
accessible on the Measure DHS website, were available for 603 clusters
in the survey.

Remote sensing 
Land surface temperature (LST) data were obtained from MODIS at

1 km spatial resolution, while rainfall estimates (RFE 2.0) every 10
days were available at 8 km resolution via the Africa Data
Dissemination Service (ADDS). RFE 2.0 were created by the Climate
Prediction Center of United States’ National Oceanic and Atmospheric
Administration (NOAA). RFE 2.0 includes both warm cloud information
and station precipitation data using an interpolation method which
combines geostationary satellite infrared data from Meteosat
(http://www.eumetsat.int/website/home/Satellites/CurrentSatellites/Me
teosat/index.html) and Global Telecommunication System data (Xie
and Arkin, 1997).

Elevation data were obtained from an interpolated global digital ele-
vation model (GDEM) from the USGS at a spatial resolution of 1 km and
the Advanced Spaceborne Thermal Emission and Reflection
Radiometer (ASTER) GDEM Version 2 at 30 m resolution
(http://gdem.ersdac.jspacesystems.or.jp/). The climatic factors LST and
rainfall were acquired for the 6-month period prior to the survey and
the average were calculated and extracted for each data location. The
environmental factors with available temporal resolution (LST and
rainfall) were acquired for the 3-month period prior to the survey and
the average were again calculated and extracted for each data location.
In addition, AFRIPOP and MALAREO population density estimates
resampled at 100 m spatial resolution were used. The proportion of
children between 0 and 5 years living in Mozambique was obtained by
the International Data Base of the U.S. Census Bureau, Population
Division for the year 2011. All RS data at spatial resolutions between 30
and 1000 m are referred to as MR products and all those at spatial res-
olutions between 4 and 30 m are referred to as HR.

Land cover
The MODIS LULC categories were aligned with the MALAREO cate-

gories. The allocation was done on the basis of the available descrip-
tion of the layers as well as a graphical assessment. The final LULC cat-
egories are summarised in Table 1.

Statistical analysis

Land cover/land use proximity measures
While for the environmental factors we considered RS-derived values

at locations only, we assumed that LULC classes might affect malaria
parasitemia levels within larger areas surrounding the location. For
this purpose, a measure of proximity was used to link LULC type with
the DHS cluster spatial location. This was defined by the following
equation: 

eq. 1

where indicates the minimum Euclidean distance between
location i and the LULC category j. 

Geostatistical model
Let Yi and Ni be the number of malaria-infected and screened indi-

viduals at location i(i=1,…, n) and pi the probability of infection. We
assume that Yi arises from a binomial distribution, Yi ~ Bin (pi, Ni).
The influence of environmental covariates Xi and location-specific spa-
tial random effects ωi are modelled on the logit scale, i.e.:

eq. 2

where β is the vector of regression coefficients. Unobserved spatial
variation is introduced on ωi by assuming that ω = (ω1, …, ωn)T fol-
lows a latent stationary Gaussian process over the study region, 
ω ~ MVN (0,Σ). The matrix Σ has elements Σij and represents the
covariance between any pair in locations i and j. Assuming an isotropic
exponential correlation function, the matrix elements Σij are defined by

                   Article

Table 1. Land cover/land use class alignment.

MODIS                                                                                                                 MALAREO                                               LC-aligned category

Water                                                                                                                                      Standing water, flowing water                                                             Water
Evergreen needleleaf forest, evergreen broadleaf forest,                                                  Forest/savannah                                                                         Forest
deciduous needleleaf forest, deciduous broadleaf forest,
mixed forest, woody savannah                                                                                                                     
Grassland savannah                                                                                                                     Grassland/savannah                                                                   Savannah
Barren or sparsely vegetated land                                                                                                 Bare soil/rock                                                                         Bare soil
Urban and built-up area                                                                                                           Roads urban/populated                                                                   Urban
Closed shrub-land, open shrub-land,                                                                                         Bush/shrub-land                                                                          Bush
cropland/natural vegetation mosaic                                                                                                           
Permanent wetlands                                                                                                                              Wetlands                                                                             Wetlands
Croplands                                                                                                                                    Large scale agriculture                                                               Agriculture
MODIS, moderate resolution imaging spectroradiometer; LC, land cover.
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Σij = σ2 exp (–ρdij) with spatial variance σ2, rate of correlation decay ρ
with Euclidean distance between locations dij. The minimum distance
for which the spatial correlation is less than 5% is referred to as range
and can be calculated by 3/ρ in the exponential correlation function
setting.

A Bayesian model formulation requires the specification of prior dis-
tributions of all model parameters. For the regression coefficients β,
we assumed normal prior distributions with mean 0 and large variance.
For the spatial parameters σ2 and ρ, we chose non-informative inverse
Gamma and Gamma distributions, respectively. The model was fitted
using Markov chain Monte Carlo (MCMC) simulation implemented in
the software ‘Just Another Gibbs Sampler’ (JAGS) (Plummer, 2003).

This model was initially used to obtain spatially explicit estimates of
the malaria risk over the whole country by using a grid formed by pixels
of 3 km resolution for computational reasons and for comparison with
previously published work (Giardina et al., 2014). The same model was
also used to obtain malaria risk estimates in the area of Mozambique
belonging to the MALAREO project (Figure 1) at several higher spatial
resolution by resampling (or aggregating) the environmental variables
at the target spatial resolutions (i.e. 1 km, 500 m and 100 m).

The number of children between 0 to 5 years was calculated by
resampling AFRIPOP data at the target spatial resolution and assuming
the proportion of children between 0 to 5 years remained constant
throughout the country (i.e. 21%, as reported by the International Data
Base of the U.S. Census Bureau, Population Division for the year
2011). The number of infected children between 0 to 5 years was esti-
mated sampling from the predictive distributions.

Assessing the effect of spatial resolution on model-based predic-
tions

The model was validated using as training set all DHS data except the
35 locations belonging to the MALAREO area (Figure 1), which formed
the testing set. The model used MR variables in the fitting part and MR
as well as HR variables in the prediction part (Table 2). All environmen-
tal variables were resampled/aggregated at the different spatial resolu-
tions that were assessed. Model performance was compared in terms of
log-predictive density (Robert, 1996). Spatially explicit predictions
(malaria risk and number of infected children) were obtained over
grids covering this area with spatial resolutions of 1 km, 500 m and 100
m using both MR and HR variables.

Results

The effect of the environmental and climatic factors on malaria par-
asitemia risk estimated from the full DHS dataset is shown in Table 3.

The main determinants of malaria presence were rainfall and LSTday.
Among the LULC classes, the presence of large-scale agriculture and
bare soil reduced the odds of parasitemia by 8% (95% BCI: 0-15%) and
44% (95% BCI: 26-60%), respectively, while the presence of bush, for-
est, savannah and wetlands increased the odds by 31% (95% BCI: 21-
42%), 11% (95% BCI: 4-19%), 34% (95% BCI: 18-46%) and 37% (95%
BCI: 55-75%). The estimates of the spatial parameters revealed a vari-
ance of 2.61 (95% BCI: 1.64-2.82) and a spatial range (the distance at
which the correlation becomes negligible) of around 85.56 km (95%

                                                                                                                                Article
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Table 2. Remotely sensed environmental variables. 

Variable                Source/product for MR                Spatial resolution (m)         Source/product for HR             Spatial resolution (m)

LC                                       MODIS (MCD012Q1)                                               500                                                 Rapid Eye                                                       5 
Elevation                                        MODIS                                                            100                                                   GDEM2                                                        30 
LST                                      MODIS (MOD13A2)                                                1000                                                         -                                                                -
Rainfall                                    MEFW (ADDS)                                                    8000                                                         -                                                                -
Population                                           -                                                                     -                                            Afripop (Landsat)                                              100 
                                                                                                                                                                              MALAREO (RapidEye)                                          100 
MR, moderate resolution; HR, high resolution; LC, land cover; MODIS, moderate resolution imaging spectroradiometer; LST, land surface temperature.

Figure 1. The MALAREO project area. It is enclosed by the black
line and includes the northern part of South Africa (KwaZulu-
Natal Province), eastern Swaziland, and the southern part of
Mozambique.
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BCI: 56.22-127.32).
The same model was used to predict malaria risk among children up

to 5 years of age over a grid of 3 km resolution. Figure 2 shows that the
two provinces with the highest malaria risk were in the northern part
of the country (the Nampula and Zambezia Provinces). The southern
parts of the country were characterised by lower risk compared to the
rest of the country (<10%), especially Maputo (city and province) and
Gaza Province. Estimates of the number of children between 0 and 5
years infected by malaria parasites were obtained using the predictive
distribution of the risk and the population data at 100 m spatial resolu-
tion provided by AFRIPOP (Figure 3). In most of the country, the num-
ber of infected children per 9 km2 ranges from 1 to 10. In some densely
populated areas, e.g. Maputo and Matola (in the South), and in very
high-risk areas, e.g. the Zambezia Province in the central coastal
region, the number can reach up to 1800 children.

The model validation revealed that the use of HR covariates in the 35
testing locations improved prediction performance. In particular, the
model that employed the MALAREO layer for LULC and GDEM values
had a log-predictive density of -115.12 (95% BCI: -122.32,-104.21),
whilst the model that used MR covariates estimated -132.22 (95% BCI:
-143.11,-121.17). 

Predictions in the same area were carried out at several spatial res-
olutions. Figure 4 depicts the predicted malaria risk among children
aged 0-5 years at 1 km, 500 m and 100 m resolution using MR and HR
data.

Table 4 shows how the estimated number of infected children is
affected by the population layer (and indirectly by the spatial resolution
of the environmental covariates). On average, the total number of
infected children estimated by the models increased with increasing
resolution of the predictive grid. The use of MR variables tended to
result in an overestimation in the number of infections.

Discussion

This study focuses on the use of MR and HR of mapped variables
derived by RS to obtain spatially explicit malaria burden estimates in
geostatistical models. In particular, the work shows the effect of differ-
ent spatial resolutions of elevation data and LULC layers (and derived
population estimates) on the estimation of risk and number of infected
children below the age of 5 years. An alternative definition of the LULC
covariate based on a proximity measure is proposed to study associa-

                   Article

Table 4. Estimated total number of infected children in the
MALAREO area based on moderate and high-resolution prod-
ucts.

                   1 km                         500 m                        100 m

MR    43,555 (42,334-44,234)     45,171 (44,525-46,123)    45,605 (44,532- 46,892)
HR     37,901 (36,884-38,424)     37,919 (37,011-38,626)     38,111 (37,773-39,100)
MR, moderate resolution; HR, high resolution. Median and (95% Bayesian confidence interval).

                              

Table 3. Posterior estimates arising from the geostatistical model
fitted on the full Demographic and Health Survey dataset with
moderate resolution imaging spectroradiometer land cover/land
use. 

Covariate                                    Median (95% BCI)

Rainfall                                                            0.14 (0.07,0.22)
LSTNight                                                           -0.11 (-0.40,0.16)
LSTDay                                                               0.31 (0.09,0.54)
Elevation                                                       -0.03 (-0.14,0.07)
LC category                                                                  

Agriculture                                             -0.09 (-0.17,-0.01)
Bush                                                          0.27 (0.19,0.35)
Forest                                                        0.11 (0.04,0.18)
Savannah                                                   0.30 (0.17,0.45)
Urban                                                         0.05 (-0.16,0.41
Water                                                         0.09 (-0.2,0.40)
Bare soil                                                 -0.59 (-0.91,-0.30)
Wetlands                                                   0.44 (0.32,0.56)

Spatial parameter                                                             
     σ2                                                              2.61 (1.64,2.82)
     ρ                                                                2.31 (1.51,3.43)
BCI, Bayesian confidence interval; LST, land surface temperature; LC, land cover. The LULC categories
refer to the aligned variable.                                                                         

Figure 2. The predicted malaria risk among children up to 5 years
of age. Median estimates are plotted at the 3-km resolution.
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tions of 8 different LULC types with malaria risk and obtain explicit
effect estimation.

The analysis was performed using data collected by the Mozambican
DHS in 2011 with a geostatistical model utilising MR and HR environ-
mental variables obtained by RS. The model was fitted with MR vari-
ables and a grid of 3 km resolution was chosen for the prediction in
order to make direct comparison with previous work by the lead author
(Giardina et al., 2014). Indeed, the coefficients’ estimates of the com-
mon variables (Rainfall, LSTNight and LSTDay) as well as the total malaria
burden measure (number of infected children) were in agreement with
values reported in this paper with the spatial parameters estimates
(variance and decay parameter) showing similar values.

A relatively small number of studies have included LULC classes in
geostatistical models for malaria risk mapping despite their important
role in determining the suitability for transmission of the disease. This
may be due to difficulties in the definition of the variable to be used in
the models. In some applications (e.g. Riedel et al., 2010), the LULC
covariate has been considered as a categorical variable indicating the
relative frequency of each LULC type within a buffer. This approach
might conceptually be the best way of defining the variable. However, it
has drawbacks, e.g., parameter estimates have to be expressed relative
to a baseline category, and certain arbitrariness in the choice of the ref-
erence category as well as with regard to the size of the buffer. We pro-
pose here a proximity measure that does not account for the area cov-
ered by a specific LULC class surrounding the locations, but which is

instead based on the distance between location and each LULC class.
This work shows that wetlands and bare soil are important factors with
regard to risk and protection in malaria modelling. The effect of large-
scale agriculture on malaria risk has always been controversial, as it
has often been assumed that a high number of malaria vectors, result-
ing from irrigation schemes leads to increased malaria in local commu-
nities. However, recent studies in Africa reveal that, for many sites,
there is instead less malaria in irrigated communities than in the sur-
rounding areas. It has been suggested that communities near irriga-
tion schemes would benefit from the greater wealth created and conse-
quently use impregnated bed nets more commonly, have better access
to improved healthcare and receive fewer infective bites compared with
those residing outside such development schemes (Ijumba and
Lindsay, 2001).

Within the MALAREO project a HR LULC map covering the study area
at 5 m resolution was produced. A secondary outcome was an enhanced
population map, obtained by the combination of the LULC layer with
census data, aggregated at 100 m resolution. MODIS LULC categories
(MR) were aligned with the MALAREO LULC categories and used for
validation purposes in the prediction of the malaria parasitemia risk at
locations in the MALAREO area.

The comparison showed that the model which used HR products
(MALAREO LULC and DEM elevation) had a higher predictive ability
than the one that used MR data. The data used for validation were the
locations at which both MR and HR were available, i.e. the locations in
Mozambique that were part of the MALAREO study area. Unfortunately,
a randomly sampled validation set was not possible due to the scarcity
of data. Spatially explicit estimates over the grids of 1 km, 500 m and
100 m showed large differences with respect to risk and its spatial pat-
tern. This could be due to our results being sensitive to different allo-
cation of MODIS categories to the final variable used for the model,
and/or some local features might have been missed as the MODIS
LULC layer is based on a global classification methodology. In particu-
lar, the wetland category showed the largest differences in the compar-
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Figure 3. The predicted number of malaria-infected children up
to 5 years of age. Median estimates are plotted at the 3-km reso-
lution.

Figure 4. Predicted malaria risk (median) obtained by modelling
with covariates. Moderate resolution covariates (first row); high-
resolution covariates (second row) at spatial resolutions of 1 km
(first column), 500 m (second column), and 100 m (third col-
umn).  
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ison with the MALAREO layer. 
The MALAREO LULC layer is more accurate since the categories

were assigned by a supervised algorithm (expert knowledge was incor-
porated) that allowed a more detailed description of the LULC.
However, HR products like the MALAREO LULC are still expensive and
may not be feasible over large areas, which will probably be overcome
through future EO missions like the Sentinels and increased computa-
tional capabilities.

In this study, the estimated total number of infected children
increased with increasing resolution of the predictive grid, which was
independent from the spatial resolution of the covariates used for pre-
diction. The use of MR variables tended to result in an overestimation
of the number of infections. Observed differences between the 1 km
resolution grid and the 500 m one using MR covariates were the result
of aggregation of environmental covariates as well as population den-
sity over larger areas. However, the differences between the 500 m res-
olution grid and the 100 m one were only due to population density, as
the MODIS LULC original resolution was 500 m. 

Conclusions

Accurate estimation of malaria parasitemia risk has important impli-
cations on the planning of cost-effective control measures such as dis-
tribution of impregnated treated nets and IRS. The estimation of num-
bers of infected can further support National National Malaria Control
MCPs in the determination of treatment needs. 
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