
Abstract

Malaria affects about half of the world’s population, with the vast
majority of cases occuring in Africa. National malaria control pro-
grammes aim to reduce the burden of malaria and its negative, socio-
economic effects by using various control strategies (e.g. vector con-
trol, environmental management and case tracking). Vector control is
the most effective transmission prevention strategy, while environ-
mental factors are the key parameters affecting transmission.
Geographic information systems (GIS), earth observation (EO) and

spatial modelling are increasingly being recognised as valuable tools
for effective management and malaria vector control. Issues previously
inhibiting the use of EO in epidemiology and malaria control such as
poor satellite sensor performance, high costs and long turnaround
times, have since been resolved through modern technology. The core
goal of this study was to develop and implement the capabilities of EO
data for national malaria control programmes in South Africa,
Swaziland and Mozambique. High- and very high resolution (HR and
VHR) land cover and wetland maps were generated for the identifica-
tion of potential vector habitats and human activities, as well as geo-
information on distance to wetlands for malaria risk modelling, popu-
lation density maps, habitat foci maps and VHR household maps.
These products were further used for modelling malaria incidence and
the analysis of environmental factors that favour vector breeding. Geo-
products were also transferred to the staff of national malaria control
programmes in seven African countries to demonstrate how EO data
and GIS can support vector control strategy planning and monitoring.
The transferred EO products support better epidemiological under-
standing of environmental factors related to malaria transmission, and
allow for spatio-temporal targeting of malaria control interventions,
thereby improving the cost-effectiveness of interventions.

Introduction

There is a vital need for new strategies and innovative health-relat-
ed monitoring approaches that support the reduction of the burden of
environmentally related diseases such as malaria and related negative,
socio-economic effects. According to the World Health Organization
(WHO), malaria is currently endemic in more than 100 countries
worldwide, affects about half of the world’s population, and sees the
largest number of cases reported in Africa (WHO, 2013b). Each year,
approximately 220 million cases and 650 thousands deaths are report-
ed (WHO, 2012b).  In Africa, the highly efficient Anopheles gambiae
mosquito is the dominant vector of Plasmodium falciparum, the most
dangerous of the four human malaria parasites. Besides the serious
situation it poses for the infected individual, malaria has far-reaching
impacts on both the private and the public healthcare sector, which
ultimately impede the economic development of countries or regions.
In addition, increased travel and migration have caused many import-
ed cases outside of endemic areas. For instance, over 100,000 imported
malaria cases have been reported in Europe in the last 10 years by trav-
ellers and immigrants, and even local transmission from imported
cases has been reported (WHO, 2012a). Malaria is influenced strongly
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by the environment, since the mosquito vector requires specific habi-
tats with sufficient surface water for reproduction, a certain humidity
level for adult mosquito survival and temperatures which influence the
development rates of both the vector and the parasite (Ceccato et al.,
2005). The area affected by and intensity of malaria depend on vector
abundance, the control of which is a basic technical element of the
global disease control strategy (WHO, 2013a). 

Several factors that render an area attractive to mosquitoes, such as
proximity to water bodies, land use and land cover (LULC), house
structures and even human behavioural patterns, can be derived from
remote sensing applications. Earth observation (EO) can be used for
the surveillance, monitoring and early warning of diseases closely
associated with environmental conditions. Remotely sensed images
holding information on climatic conditions are powerful predictors of
vector distribution patterns and their average malaria parasite trans-
mission level (Rogers et al., 2002). In epidemiology, the link between
physical measurements of reflected radiation and measures of a dis-
ease, vector or intermediate host, has already been established via log-
ical sequences (Crombie et al., 1999; Curran et al., 2000). Remote sens-
ing has been used to associate LULC types with vector habitats based
on simple classification techniques, as well as complex statistical mod-
els linking satellite-derived meteorological and EO data with vector
biology and abundance (Kalluri et al., 2007; Guerra et al., 2008).
Environmental factors such as land cover, vegetation green-up, perma-
nent water, wetlands, soil moisture and human settlements have a
strong influence on malaria patterns (Beck et al., 2000; Tatem et al.,
2004; Zeilhofer et al., 2007; Dambach et al., 2009).

Interdisciplinary research over the last decades resulted in a better
understanding of the social and economic dimensions of malaria and
facilitated new research into and development of tools leading to
advances in vector control. Building on this knowledge, there is now a
vital need for new monitoring capabilities that directly support disease
control and reduce the burden of environmental related diseases in vul-
nerable countries. An area where Anopheles sustains the basic repro-
ductive rate required for malaria transmission is called an active focus.
Areas within the focus that exceed the average transmission intensity
are known as hotspots. According to Bousema et al. (2012), the identi-
fication and targeting of such foci and hotspots form the cornerstone of
successful malaria control and elimination, while disease modelling –
combining environmental data with population data and malaria case
data – is excellent for defining malaria transmission foci. However, the
spatial scale of these foci is often not sufficient to detect malaria trans-
mission hotspots (Bejon et al., 2010, Bousema et al., 2010). In the past,
the suitability of EO data in spatial and temporal disease pattern stud-
ies was restricted by the data’s low spatial resolution, high costs and
long turnaround times for products. Beck et al. (2000) indicate that
new sensors fulfill the spatial and temporal requirements needed to
make remote sensing a functional tool in disease surveillance and con-
trol. Ceccato et al. (2002) reviewed the capabilities of remote sensing
and later stated that The time is ripe for the wealth of research knowl-
edge and products from developed countries be made available to the
decision-makers in malarious regions of the globe where this informa-
tion is urgently needed (Ceccato et al., 2005).

A primary objective of the present study was to explore the potential
of current satellites and to add value to existing disease-related EO
approaches by using high-resolution (HR) and very high resolution
(VHR) imagery not used thus far for vector control and epidemiological
studies. MALAREO, a research project partly funded by the European
Commission under the seventh framework programme (FP7), aimed to
assess the benefits of new EO monitoring capabilities, enhancing dis-
ease control strategies, reducing disease control costs, providing reli-

able decision support information and supporting sustainable disease
elimination. In cooperation with the national malaria control pro-
grammes (NMCPs) of South Africa, Swaziland and Mozambique, EO-
based geo-information products have been developed that directly sup-
port malaria control interventions and epidemiological research in
these countries. The MALAREO approach made use of HR and VHR
satellite sensors for generating geo-products with the spatial and the-
matic detail required for detailed and reliable decision support. This
article describes the technical details of the developed EO-based geo-
information and the methodologies applied to generate the EO-prod-
ucts that support the work of the NMCPs (MALAREO partner) in south-
ern Africa. 

Materials and Methods

Study area
The MALAREO study area (about 40,000 km2) is located in southern

Africa and covers southern Mozambique, eastern Swaziland and the
part of KwaZulu-Natal affected by malaria in South Africa (Figure 1). It
is located at the fringe of the malaria transmission area and contains
endemic and epidemic malaria areas. The three countries are in differ-
ent stages of malaria elimination and have therefore different require-
ments regarding monitoring disease risk and its related environmental
factors. Cross-border migration causes a considerable amount of
imported cases that can result in new outbreaks and local cases. An
important influence in the study area is the Lubombo Spatial
Development Initiative (LSDI), which includes a cross-border malaria
control program, jointly implemented by Mozambique, South Africa and
Swaziland. A significant reduction in parasite prevalence among the
human population, vector density and sporozoite positivity rates have
been documented following the launch of the comprehensive malaria
control program (Sharp et al., 2007). Recently, funding by LSDI was
suspended in Mozambique, which will likely affect its malaria control
substantially.

Mozambique
Malaria is a major cause of morbidity and mortality in Mozambique.

According to the Ministry of Health, estimated prevalence in two- to
nine-year-olds varies from 40 to 80% (MISAU, 2011). Malaria is endem-
ic and climate favours its transmission throughout the year, with a
peak after the rainy season. The NMCP, with its current remit, was
established in 1982. Mozambique is currently at the malaria-control
stage. 

South Africa
Regions affected by malaria include the eastern parts of Limpopo

and Mpumalanga province, and the northeastern part of KwaZulu-
Natal. Malaria transmission is spatially variable and seasonal, peaking
in the warm and rainy summer months. The South African Government
and the Southern African Development Community (SADC) have sup-
ported intensive malaria control activities over many decades (Balfour,
2002), and succeeded in halting transmission in most of the country,
but malaria remains endemic in the study area. South Africa is current-
ly at the malaria pre-elimination stage and continued support is
required to steer its malaria elimination objectives (Moonasar et al.,
2012).
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Swaziland
Swaziland’s national malaria burden has been greatly reduced, with

laboratory-confirmed cases decreasing from 3.9 to 0.07 cases per 1000
individuals between 1999 and 2009 (Kunene et al., 2011). This reduc-
tion has been attributed to the recent scale-up of vector control activi-
ties in the at-risk region and in areas associated with the cross-border
collaboration with Mozambique and South Africa. Recognizing
Swaziland’s success, the SADC and the African Union forecasted that
Swaziland will reach malaria elimination by 2015 (African Union,
2007). Swaziland is currently at the malaria elimination stage. A loca-
tion-based malaria case tracking system, employing global positioning
systems (GPS), was introduced by the NMCP and has been active since
2010. 

Data
Many HR sensors can be used to monitor LULC change, for example,

to discriminate perennial and transient water bodies and wetlands or
identify human activities. HR instruments such as RapidEye
(http://blackbridge.com/rapideye/), SPOT (http://www.geo-airbusds.

com/en/143-spot-satellite-imagery) and FORMOSAT-2 (http://www.geo-
airbusds.com/en/160-formosat-2) have the advantage of a wide swath
width and thus large area coverage. In the context of house detection
when identifying human settlements, VHR instruments allow feature
mapping in great spatial detail. However, these VHR data are cost-
intensive, limitating their suitability for malaria control. MALAREO
focused on three different types of EO applications, namely, EO for land
cover mapping, EO to directly support the work of the NMCPs and EO
for epidemiological studies. Each of these applications have specific
data characteristic requirements, as well as spatial coverage and data
analysis techniques. The data used in this study are described below by
application.

Earth observation data used for land cover mapping
For land cover mapping, data of the RapidEye satellites were used.

This is a constellation of five identical satellites that collect data in 5
spectral bands, and was launched in August 2008. The sensors’ ability
to acquire data from several viewing angles allows imagery to be cap-
tured at one location on a daily basis (5.5 days at nadir) (Tyc et al.,
2005). The pixel resolution is 6.5 m, which the data provider resamples
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Figure 1. MALAREO study area with high resolution (yellow) and very high resolution (blue) test sites. Backgroud: BingMaps.
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to 5 meters during orthorectification. About 35,000 km2 orthorectified
RapidEye archive data (62 25x25 km tiles) were ordered via the
Copernicus Space Component Data Access system (CSCDA)
(https://copernicusdata.esa.int/) (Figure 2). The data were acquired in
2011 on 5 different dates (between 18 July and 10 November). Only one
of the 62 tiles was acquired on 18/07/2011, while 61 tiles were acquired
within a short period at the beginning of the rainy season, i.e. between
the end of October and mid-November 2011. Hence, seasonal differ-
ences between the scenes were negligible.

Earth observation data for products supporting the national
malaria control programmes

These products were developed with the aim of directly supporting
NMCP managements. In addition to land cover information generated
from HR data, VHR images can help to identify houses and small huts.
The only already available VHR image sources are free image services
such as Google Earth, Microsoft BingMaps or ESRI’s World Imagery
(ArcGIS Basemap Service). These were tested as an alternative to the
cost-intensive VHR data for house mapping. Since additional VHR
imagery was required for mapping houses and small huts, 850 km2 VHR
GeoEye-1 and IKONOS-2 (https://www.digitalglobe.com/) data were

ordered via the ESA CSCDA. VHR imagery is cost-intensive, thus, only
hotspot areas could be considered to be covered with VHR data for
demonstration purposes. Three sites (Figure 1) of high relevance for
the local malaria control activities were chosen to be assessed with
VHR data: i) Mamfene in the Jozini local municipality, KwaZulu Natal,
South Africa (covered by GeoEye-1 data; 0.5 m resolution in panchro-
matic); ii) Ponta do Ouro in the district of Matutuine, Maputo province,
Mozambique (covered by IKONOS-2 data; 0.8 m spatial resolution in
panchromatic); iii) Dwashini in the Hhohho District in Swaziland
where an unexpected malaria outbreak occurred in April 2011 (covered
by GeoEye-1 data; 0.5 m resolution in panchromatic).

Earth observation data used for malaria epidemiological studies
Low-resolution EO data were used to monitor environmental param-

eters as input for malaria incidence modelling. In this study, we used
rainfall estimates (RFE) (temporal resolution: 10 days, spatial resolu-
tion: 8000 m) from the Famine Early Warning Systems Network (FEWS
NET) (http://www.fews.net/) of the United States Agency for
International Development (USAID). Land surface temperature &
emissivity (temporal resolution: daily, spatial resolution: 1000 m), land
cover (temporal resolution: yearly, spatial resolution: 500 m) and vege-
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Figure 2. RapidEye image tiles (quicklooks) used in the study. RapidEye image (left) and the acquisition date per image tile (right).
©RapidEye (2011), provided under European Commission/European Space Agency Global Monitoring for Environment and Security
Space Component Data Access.
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tation indices (temporal resolution: 16 days, spatial resolution: 250 m)
were obtained from the moderate resolution imaging spectroradiome-
ter (MODIS) (http://modis.gsfc.nasa.gov/). The digital elevation model
(DEM) (spatial resolution: 30 m) used came from the Advanced
Spaceborne Thermal Emission and Reflection Radiometer (ASTER)
(http://asterweb.jpl.nasa.gov/gdem.asp). All these low resolution data
have the benefit of being free of charge with good spatial and temporal
coverage. The disadvantage is their low spatial resolution. 

Methodology
Figure 3 shows MALAREO’s EO-based, geo-information product

development concept. Based on the NMCP’s user requirements sur-
veyed at the beginning of the project, EO-based, geo-information prod-
ucts of high relevance for improved planning of integrated vector con-
trol were identified. An EO feasibility study was realized afterwards in
order to define required input data, map products and required method-

ologies to be applied in order to fulfil these user requirements. Some of
these EO-based geo-information products were used as intermediate
inputs in conjunction with additional malaria cases or entomological
data for the malaria incidence modelling as well as for statistical vector
breeding site analysis. The following chapters describe the underlying
methodologies for each EO product shown in Figure 3.

Household mapping using very high resolution data
The integration of terrestrial geo-data into a computerised malaria

control management system for spatio-temporal monitoring of indoor
residual spraying (IRS) coverage, insecticide consumption and applica-
tion rates has already been demonstrated in Mpumalanga, South Africa
(Booman et al., 2003). MALAREO aimed to expand this trend of geo-
data use by adding an EO component for malaria control. VHR images
from GeoEye-1 and IKONOS-2 of the three demonstration sites (Figure
1) were used to identify houses and small huts and to map their distri-
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Figure 3. Concept of earth observation-based geo-information product development in MALAREO.
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bution in these rural areas. Information on the structure type, their
amount and distribution, were deemed valuable for a more efficient
IRS, which is the main vector control intervention in the study area
(together with distribution of insecticide-treated bed nets). National
malaria control programmes aim to reduce the indoor parasite trans-
mission rate via IRS of used houses and huts at the beginning of the
wet season. The IRS campaigns target full area coverage (even remote
single huts) in order to minimize all sources of malaria transmission.
Since the suitability of applied insecticides depends on the type of
building, geo-information on building structure, type and distribution
is helpful. In the study area, the form of the buildings is an indication
for the building material used, whereby round structures are mostly
clay huts with thatched roofs, and square buildings are often made of
bricks with roofs of corrugated tin. With such spatial information on
structure distribution, the amount and type of insecticides needed per
area can be better estimated and the progress and status of IRS cover-
age by the trained spraying teams can be monitored. 

Mapping of houses and huts by remote sensing is challenging in
rural areas, since most of the structures are very small with varying
shape (round or rectangular) and numerous roof types that are hard to
distinguish from other material (e.g. reed roofs). Taubenböck et al.
(2010) presented an approach for feature detection using VHR data in
urban areas. However, a review of the literature showed that no image
analysis approach exists, that is feasible for the detection of small
houses and huts in rural Africa. Figure 4 shows an example of a VHR

panchromatic GeoEye subset representing a homestead with various
building types (round and rectangular) and demonstrating the very
similar appearance of trees.

In this study, an approach for automated house/hut detection in rural
African areas basing on VHR data was developed and tested. An object-
based image classification using geometric, topological and spectral
features was applied. As a first step, the multispectral bands of the VHR
images were resampled to the spatial resolution of the panchromatic
(black and white) band. The images were afterwards segmented into
image objects by using all bands in eCognition software (Trimble
Geospatial Imaging, Munich, Germany). The image is thereby seg-
mented into objects of spatially adjacent and spectrally similar groups
of pixels. The segmentation parameters (scale, shape and compactness
of image objects) were set in a way that the image features of interest
(round and squared houses) were optimally matched and could be dif-
ferentiated from objects of other non-relevant land cover features. A
ruleset was finally defined using geometric parameters such as size
and compactness of the objects, topological parameters such as dis-
tance to other image objects, spectral parameters such as brightness of
the objects, the normalized difference vegetation index (NDVI) as well
as thematic information on land cover in order to reduce misclassifica-
tions (see below). The NDVI was used in order to differentiate between
reed roofs and trees which often showed similar shapes of image
objects (Figures 4 and 5). The final classifications of the three VHR
images showed the spatial distribution of rectangular as well as round

                   Article

Figure 4. Subset of a panchromatic GeoEye image showing a homestead with round and rectangular buildings including examples of
two building structures typical for the study area. ©Geo-Eye, Inc. (2010), provided by E-GEOS S.p.A., under Global Monitoring for
Environment and Security Space Component Data Access. Photos: J. Franke.
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structures in the three demonstration sites. As a no-cost alternative,
Bing Maps was also tested for its use in house mapping. All houses in
the VHR sites were manually digitized in ArcGIS (Redlands, CA, USA),
and the spatial coverage of VHR data from Bing Maps in these three
areas was investigated. At the time, only VHR data for the Mamfene site
in South Africa was integrated in Bing Maps. No VHR data were avail-
able for the other sites.

Land cover and wetland mapping using high resolution data
Previous studies already demonstrated that certain land cover types

correspond with the occurrence of Anopheles mosquitos (Pope et al.,
1994; Zeilhofer et al., 2007; Dambach et al., 2009). The land cover in the
MALAREO study area was assessed by HR RapidEye imagery, since this
geo-information can be used directly by the NMCPs for vector control
planning and as input for various studies on malaria incidence, vector
habitat distribution and population density estimates. The major bene-
fit of using data with 5 m spatial resolution is evident, given how malar-
ia risk often varies within a short distance. For instance, even small
water bodies play an important role as larval breeding sites for malaria
vectors. RapidEye provides the high level of detail of the final land cover

map, which benefits malaria incidence modelling and epidemiological
studies in general. This was useful because the area had never been
mapped at such high spatial detail before. Small water bodies are a
direct indicator for malaria risk and the distance to water is a major
factor when modelling malaria incidence. The higher the resolution of
the data, the higher the number of small water bodies that can be
detected. Since larval breeding is influenced by certain water body
characteristics, temporally flooded wetlands, permanent standing and
flowing water bodies were differentiated using HR data. 

As a first step, a classification scheme is required that includes
classes relevant to achieve the project aims. In total, 11 classes were
considered of relevance to characterize the project area according to
the conditions for the malaria vector and the pattern of human activi-
ties (Table 1). As a result, the classification followed a hybrid classifi-
cation scheme between land cover and land use. In general, class defi-
nitions should be as simple as possible, in order to ensure the highest
classification accuracies (class complexity vs. class accuracy) and to
allow for rapid data processing. 

The RapidEye data, mainly acquired in October and November 2011,
were first preprocessed using a standardized atmospheric correction in
ATCOR (Richter, 1997). The land cover classification of the HR data
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Table 1. List of land cover/land uses and their characteristics considered in MALAREO.

Land cover/land use                    Characteristics and relevance
Forest/woodland                          Tree-dominated land cover
Bush/shrub land                           Open/closed bush/shrub-dominated land cover
Grassland/savannah                    Open grassland-dominated savannah ecosystem
Standing water                             Basins, ponds, lakes etc. and water covered wetlands; larval breeding is favoured by non-turbulent water
Flowing water                               Mainly rivers and ocean; larval breeding is not favoured by turbulent water
Wetland                                          Non-permanent, temporally flooded wetland
Large-scale agriculture              Large-scale irrigated sugarcane plantations were recently established in the study area and might favour vector breeding through irrigation
Subsistence farming                   Farming plots for subsistence agriculture and cattle breeding
Settlement/infrastructure         Location of population for potential malaria transmission
Bare soil/rock                                Mainly mining, rocky outcrops and open sandy areas
Roads/tracks                                  Transportation infrastructure

Figure 5. Panchromatic GeoEye image of a rural homestead (left) and the classified image segments with identified huts (right).Non
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was conducted applying an object-based image analysis with a prede-
fined hierarchical rule-set in eCognition software. Object-based classi-
fication is often applied for HR/VHR imagery. For this type of data, a
pixel-based approach causes a grainy appearance of classes over the
scene due to single, isolated, class pixels. This effect can be signifi-
cantly reduced by using object-based approaches.

Since some LULC classes, defined in MALAREO, showed a high class
complexity, manual classification steps were necessary (e.g. large-scale
agriculture, subsistence farming, settlement/infrastructure and wet-
land). For instance, a temporally flooded wetland can be covered by
water, by dense grass or have no vegetation cover at all, which results
in wide differences in spectral signatures. These differences within a
single land cover class cannot be accounted for by an automated rule-
set and require logic that can only be exercised via manual assignment
of an object. Although, by strict definition, wetlands include water bod-
ies, this paper defines wetlands as only temporally-flooded wetlands.
Water bodies are an independent, separate class.

Due to the fact that land cover was assessed using RapidEye data and
image tiles from 5 different image acquisition dates (and that each of
the 62 slightly overlapping image tiles were classified separately), dif-
ferences between class objects could occur in the overlapping areas
(e.g. due to differences in image segments between tiles). In order to
create a seamless classification of the study area, classifications of the
image tiles were ultimately fitted by applying a decision fusion
approach to each sub-object within overlapping areas showing different
class memberships. As a last step, an object-based accuracy assessment
of the classification was completed, whereby 270 random image objects
were visually interpreted by a project partner uninvolved in the primary
classification procedure. The resulting reference land cover classes
were compared to the image classification and accuracy metrics were
calculated.

Distance to inland water and wetlands
Distance to water is a major determinant of malaria risk. On a local

scale, vector densities around reservoirs depend on the distance from
the water body and the suitability of the water body to act as a vector
breeding habitat (Zeilhofer et al., 2007). Besides the fact that anophe-
line mosquitoes can be displaced over long distances through various
factors such as air travel (Tatem et al., 2006), the natural flight range
of anopheline mosquitoes is estimated at between 0.5 and 2.5 km from
their breeding habitats (Russell and Santiago, 1934; Charlwood and
Alecrim, 1989; Keiser et al., 2005; Zeilhofer et al., 2007). As an input for
modelling malaria incidence and mapping habitat foci, distance to
inland water and distance to wetlands were assessed by calculating the
Euclidean distance to the water and wetland layers derived from the HR
land cover classification. The Euclidean distance is simply defined as
the shortest straight line distance between two points. 

Population density estimates
When modelling the spatial distribution and spread of malaria, accu-

rate and detailed information on population distribution and popula-
tion density is of significant importance. The AfriPop project, launched
in July 2009, was initiated with the aim of producing a detailed and
freely-available population distribution map for the whole of Africa
(http://www.afripop.org). AfriPop has therefore constructed a GIS-
linked database with census and official population data. Population
count data were combined with detailed, satellite-derived settlement
extents to map population distributions across Africa at a finer spatial
resolution than ever before (Linard et al., 2012). These settlement
extents were used to refine existing land cover data sets such as
GlobCover (ESA) (http://due.esrin.esa.int/page_globcover.php), provid-

ing significantly improved gridded population datasets across large
areas through redistribution of population figures from census and
using land cover-based weightings (Tatem et al., 2007; Linard et al.,
2010). In MALAREO, a spatially enhanced and updated AfriPop dataset
was generated for the study area (Deleu et al., 2015). The HR land
cover/use classification allowed a detailed identification of human set-
tlements, particularly of small homesteads in the rural area. The
MALAREO settlement extents were used to generate an enhanced and
updated version of the AfriPop dataset for the project area with
improved spatial detail. The enhanced AfriPop dataset is based on the
HR land cover map, census data of 2007 and UN urban/rural growth
rates for 2011. 

Habitat foci map
Transmission of malaria takes place in the spatial intersection of the

vector habitat and the human habitat. Geo-information on these habi-
tat foci allows identifying priority areas for malaria control interven-
tions such as integrated vector management. The population density in
proximity to potential vector breeding sites (inland water bodies and
wetlands) was therefore analysed by considering the enhanced
MALAREO AfriPop data in relation to distance to inland water bodies
and wetlands, as given by the HR land cover map. The flight range of
anopheline mosquitoes has been estimated at between 0.5 and 2.5 km
from their breeding habitats (Russell and Santiago, 1934; Charlwood
and Alecrim, 1989; Keiser et al., 2005; Zeilhofer et al., 2007). The max-
imum distance displayed in a habitat foci map is adjustable. As a result,
this study created multiple habitat foci maps with maximum distance
ranging from 0.5 to 2.5 km.

Malaria incidence modelling and vector breeding site analysis
The products described in this paper supported further epidemiolog-

ical and entomological studies. These included Bayesian modelling for
malaria incidence prediction using malaria case data, as well as mod-
elling of potential vector breeding sites and the identification of envi-
ronmental factors that influence the occurrence of larvae (Dlamini et
al., 2015).

Results
A number of maps were produced by the study. The final VHR and HR

geo-information products generated in MALAREO can all be freely
accessed upon request for further use. 

Very high resolution household maps 
Figure 6 shows an example of the results of the developed house

detection approach for the Mamfene test site (ZA). The map shows the
distribution of building types in the area with statistical information on
type of structure per km2. These data were made available as GIS layers
for the NMCPs. Representatives of 6 southern African countries were
trained by MALAREO to use these data in a GIS environment (QGIS), to
improve the planning of bed nets distribution and IRS (full area cover-
age and estimation of required insecticides), and monitoring of their
campaign progress. These data were generated for all three VHR sites.
Due to the lack of independent reference data on structure type and
distribution for a quantitative accuracy assessment, only a qualitative
assessment of the accuracy was possible. Due to the integration of land
cover information in the classification process, a high level of spatial
accuracy and precision of the structure type classification could be
achieved and only few false positives were found outside of settle-

                   Article

Non
 co

mmerc
ial

 us
e o

nly



ments. A slight over-detection of structures inside of homesteads was
observed, since some other infrastructure features were identified as
buildings. In terms of thematic accuracy, a non-systematic confusion
between round and rectangular houses was partly observed, which sug-
gests general validity of the statistical figures on structure types per
area. Table 2 lists the spatial statistics on structure types per area for
the VHR test sites as a basis for insecticide consumption estimation
and number of required bed nets.

In assessing the cost-free data alternative, spatial coverage of VHR
data in Bing Maps was only sufficient in the Mamfene study area. As a
result, an additional site at the boarder triangle between Mozambique,
Swaziland and South Africa (Naamacha) was mapped in order to

assess labour intensity of this manual mapping approach. Depending
on the site, digitizing structures using BingMaps in ArcGIS took about
6.2 and 10.3 min per km2 for an experienced image interpreter. These
no-cost/low-cost data sources have some benefits and limitations.
Whereas their major benefit is the cost-effectiveness, their limitation
is low spatial coverage and partial lack of metadata, like the date of
acquisition. However, these free data sources are constantly being
updated to improve coverage and are already an alternative image
source for some EO applications. However, the current VHR image cov-
erage of these free image sources only sparsely cover rural areas of
Africa, which means that these data sources are not yet suitable to sup-
port malaria control. Another limitation of the use of such no-cost/low-
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Table 2. Statistics on building type distribution in the very high resolution test sites.                   

VHR test site                                                                                    No. of round   No. of squared Buildings    Round structures   Square structures
                                                                                                            structures        structures     per km2            per km2                   per km2

Mamfene (Jozini Municipality, KwaZulu Natal), South Africa                                     3793                        16,089                   49.9                            9.5                                     40.4
Ponta do Ouro (Matutuine district, Maputo Province), Mozambique                       58                            2826                    17.5                            0.4                                     17.2
Dwashini (Hhohho District), Swaziland                                                                          4476                        11,404                   41.4                           11.7                                    29.7
Naamacha, boarder triangle MZ-SZ-ZA                                                                            1239                          2086                   133.0                          49.6                                    83.4
VHR, very high resolution. In the first three test sites VHR data from GeoEye and IKONOS was used; the results from Naamacha are based on BingMaps.

Figure 6. Household map for Mamfene, South Africa based on classified GeoEye data with spatial statistics on the distribution of build-
ing structure types. Background: BingMaps.
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cost data sources is that only manual digitizing of relevant land cover
features is possible, which increases personnel costs. 

High resolution land cover and wetland maps
Figure 7 shows a subset of the 2011 LULC map based on HR

RapidEye data. The map’s spatial detail allowed for detection of small-
scale LULC features which could substantially improve epidemiological
modelling and malaria control management. The accuracy of the land
cover map was assessed by a stratified random sampling approach. The
results of the accuracy assessment showed an overall accuracy of 80.7%
for the land cover classification, with a kappa index of 0.78. The malar-
ia-relevant classes flowing water and large-scale agriculture demon-
strate the highest accuracies (100%). Average user’s accuracy was
85.2%. The grassland/savannah class was the least accurate class, with
68.1% accuracy. This is expected to be mainly due to confusion with the
class bush-/shrub land, and by the continuous transition of these land
covers in the area. This class confusion substantially decreased the
overall accuracy of the land cover classification, since most of the other
classes showed higher accuracies than 80%. Table 3 shows the land
cover statistics in the study area, which is dominated by forest/wood-
land, bush-/shrub land and grassland/savannah.

The wetland map of the whole study area is displayed in Figure 8.
Due to the high spatial resolution of the RapidEye data, even small wet-

lands could be identified that could act as vector breeding sites. In total,
3046 standing water bodies and 10,503 non-permanently flooded wet-
lands were identified. This layer was used as input for the distance to
wetland calculation, modelling of malaria incidence (Giardina et al.,
2015), habitat foci mapping and assessment of potential vector breed-
ing sites (Dlamini et al., 2015).

Distance to inland water and wetlands
The Euclidian distance to inland water (standing and flowing water)

and the distance to wetlands were calculated for the study area as input
for the modelling of malaria incidence, since distance to potential
breeding sites is a major determinant. Figure 9 shows the distance to
inland water map (in meters). 

Enhanced AfriPop population density map
The AfriPop approach was applied in MALAREO by the use of the HR

land cover map and census data of 2007, whereby the UN urban/rural
growth rates for 2011 were additionally considered in order to account
for recent population trends (Deleu et al., 2015). The result was a spa-
tially enhanced and updated AfriPop dataset for the study area. 

Habitat foci map
Population density within the spatial intersection of potential vector
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Figure 7. Subset of the high resolution land cover/land use map for an area in Swaziland.
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Table 3. Land cover statistics of the study area.

LC class                                        Area (km2)                                                                   Area (%)

Forest/woodland                                             8617.8                                                                                                                
Bush-/shrub land                                             5454.5                                                                                                                
Grassland/savannah                                      12,602.5                                                                                                              
Wetland                                                              1448.2                                                                                                                
Large-scale agriculture                                   795.0                                                                                                                 
Subsistence farming                                        751.3                                                                                                                 
Flowing water                                                   3648.9                                                                                                                
Standing water                                                  784.8                                                                                                                 
Roads/tracks                                                      316.0                                                                                                                 
Bare soil/rock                                                    122.7                                                                                                                 
Settlement/infrastructure                              569.8                                                                                                                 
Sum                                                                   35,111.5                                                                                                              
LC, land cover.

Figure 8. High resolution wetland map that differentiates flowing and standing water bodies as well as non-flooded wetlands.
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habitat and human habitat was investigated using the inland water
bodies and wetland layer, and the enhanced, updated AfriPop data. The
area of intersection was determined by applying various distances from
wetlands within the flight range of the anopheline mosquitoes, result-
ing in different habitat foci maps. Figure 10 shows the population den-
sity within a 1km buffer to major inland water bodies as identified with
RapidEye imagery. This analysis showed that about 1.78 million people
live in the study area, of which 28% (0.47 million) live within a 1 km
distance to major inland water bodies. The habitat foci map indicates
priority areas for malaria control interventions. 

Discussion

The key technology required to support the malaria vector control
and management programmes, as well as malaria epidemiology
through EO products, is the range of existing satellites. In the past, EO
sensor abilities limited the use of EO data in epidemiology and disease
control. However, today there are numerous sensors with improved
spatial, temporal and spectral characteristics, and multiple missions
are planned to launch additional, high-performance sensors into space.

The combination of remote sensing and GIS has strengthened the
opportunities for disease surveillance, control and early warning. The
results demonstrate the potential of HR geo-information for the
improvement and support of malaria control management and epidemi-
ological studies. Although the ability to enhance malaria control
through GIS-based management systems has already been demonstrat-
ed (Booman et al., 2003), this project added additional HR and VHR EO
components.

Low performance of the EO sensors available in the past, high data
costs and long product turnaround times, as well as previous remote
sensing data or statistical models with low spatial resolution, meant
studies were only carried out in small areas with impractical time
frames for updates. The last few decades have shown a substantial
increase in potential EO approaches and knowledge regarding environ-
mental parameters that influence spatial and temporal disease risk pat-
terns. In 1998, Hay et al. provided an excellent review of earlier avail-
able remote sensing techniques for malaria epidemiology that can now
be compared with today’s technologies. The current and future range of
satellite systems enables the development of new and innovative EO
services for health applications (Rogers et al., 2002; Ceccato et al.,
2005). As demonstrated in MALAREO with HR and VHR data, the spatial
detail of disease risk and their environmental factors could be
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Figure 9. Distance to inland water map.
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improved substantially, which can vary greatly across small distances.
With the use of HR data at a national scale and with frequently sched-
uled monitoring, such geo-information products can directly support
the health sector in Africa.

Users from the NMCPs in the study area were involved in the devel-
opment of these products by defining their requirements. All final prod-
ucts were provided for integration in their working environment and
management systems. Besides the development and provision of these
EO products, a major issue is the capacity development in the NMCPs
that is required to ensure that this geo-information can be used effec-
tively. Therefore, apart from teaching local staff the processes behind
EO product development, a major requirement is to provide training in
the use of GIS, geostatistics and how to interpret EO products. In
MALAREO, three workshops were held for end users of the NMCPs of
southern African countries with the aim of transferring knowledge,
whereby feasibility in terms of data, methodologies, financial
resources, hard- and software and improvement of the existing sys-
tems/methods (using open-sources software) were taken into account.
In general, the overall future approach should combine user require-
ments, existing capacity and funding strategies to develop long-term
perspectives. 

EO data costs are another factor in determining the sustainability of

remotely sensed data in malaria control. Low to medium resolution
data are available free of charge and can already be used for some dis-
ease-related applications. For instance, data from satellite sensors such
as MODIS can be used for climatic suitability assessments and medium
resolution data from Landsat-8 (30 m) (e.g. via http://www.usgs.gov/)
can be used for land cover mapping. However, particularly in the con-
text of malaria, there is a major benefit of HR and VHR data, since
small land cover features (e.g. small water bodies, wetlands, houses and
huts in rural areas, etc.) often play major roles in the malaria transmis-
sion cycle. HR and VHR data are particularly suitable for mapping
small-scale variations in determining factors of malaria risk. The
potential of VHR images was tested in the present study, even if they
are still too expensive for operational use in malaria control. Though
promising results could be achieved for parts of the study area with free
image services (Google Earth, BingMaps etc.), but better coverage is
required.  It might, however, be a realistic alternative if coverage and
updating improve in the future. The RapidEye system proved to be very
useful for malaria control and epidemiological studies, but even their
comparably low costs of 1.28 USD/km² (see http://blackbridge.com/
rapideye/index.html for pricing updates) are likely to exceed the budg-
ets of the NMCPs in some countries in southern Africa. However, new
HR earth observation missions such as the Sentinels
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Figure 10. The habitat foci map shows the population density within the distance of the flight range of anopheline mosquitos from
potential breeding sites. This example shows the population density within a 1 km buffer to inland water bodies.
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(http://www.esa.int/) have a free and open data policy (ESA and the
European Commission), which will further encourage the use of EO
techniques in the health sector. 

Handling and processing vast amounts of HR data requires a high
level of automization. Standardized, reliable and timely geo-informa-
tion must be derived from EO data that can be integrated in spatial
decision support systems (SDSS). Such systems should be developed in
order to extend EO capacity into operational disease surveillance, con-
trol and early warning with a generic focus on resource-poor environ-
ments and architectures. Kelly et al. (2012) and Shaw (2012) have
requested further development, validation and sustainable implemen-
tation of SDSS tools in operational disease control. The operationaliza-
tion of the service generation within a SDSS will be a key for providing
up-to-date information on disease risk. This project provided a range of
EO-based geo-information products for vector control and management
as well as malaria epidemiology, helping to better understand malaria-
related environmental factors and directly support malaria control man-
agement. Through targeted capacity development, the use of the proj-
ect results could be sustained beyond the project duration. Monitoring
techniques such as those demonstrated in MALAREO need to be dis-
seminated among the funding agencies supporting the NMCPs and
among malaria control managers, in order to raise awareness of new
opportunities to improve malaria eradication efforts.

Conclusions

The monitoring applications developed in the MALAREO project
added a HR EO component to existing malaria control strategies in
southern Africa. Earth observation monitoring approaches were
designed to meet the user needs of the NMCPs in South Africa,
Swaziland and Mozambique, and the technical know-how needed was
developed, resulting in the introduction of open-source GIS and the use
of the MALAREO EO products. The outcomes of the project have high
potential for operationalization, transferability to other countries and
replicability for studies on other environmental related diseases. High
resolution data from the Sentinel mission will continue to advance the
use of EO techniques in malaria control and epidemiology, through its
improved technical capabilities as well as free and open data policy.
With this emerging suitable satellite technology, further efforts are
necessary to raise awareness among decision-makers concerning EO
benefits, and ultimately establishing EO as a ubiquitous tool for malar-
ia monitoring. 

References

African Union, 2007. Advocacy strategy document presented at the 3rd
session of the AU conference of Ministers of Health. Africa Malaria
Elimination Campaign ed., Johannesburg, South Africa.

Balfour T, 2002. TB and malaria in SADC countries. In Petrida L, ed.
South African health review 2002. Health Systems Trust, Durban,
South Africa, pp 305-26. Available from:
http://www.hst.org.za/uploads /files/chapter16.pdf

Beck LR, Bradley ML, Wood BL, 2000. Remote sensing and human
health: new sensors and new opportunities. Emerg Infect Dis
6:217-66.

Bejon P, Williams TN, Liljander A, Noor AM, Wambua J, Ogada E, Olotu
A, Oiser FHA, Hay SI, Färnert A, Marsh K, 2010. Stable and unstable

malaria hotspots in longitudinal cohort studies in Kenya. PLoS Med
7:e1000304. 

Booman M, Sharp BL, Martin CL, Manjate B, La Grange JJ, Durrheim
DN, 2003. Enhancing malaria control using a computerised man-
agement system in southern Africa. Malaria J 2:13.

Bousema T, Drakeley C, Gesase S, Hashim R, Magesa S, Mosha F,
Otieno S, Carneiro I, Cox J, Msuya E, Kleinschmidt I, Maxwell C,
Greenwood B, Riley E, Sauerwein R, Chandramohan D, Gosling R,
2010. Identification of hot spots of malaria transmission for target-
ed malaria control. J Infect Dis 201:1764-74.

Bousema T, Griffin JT, Sauerwein RW, Smith DL, Churcher TS, Takken
W, Ghani A, Drakeley C, Gosling R, 2012. Hitting hotspots: spatial
targeting of malaria for control and elimination. PLoS Med
9:e1001165. 

Ceccato P, Connor PJ, Jeanne I, Thomson MC, 2005. Application of geo-
graphical information systems and remote sensing technologies
for assessing and monitoring malaria risk. Parasitologia 47:81-96.

Ceccato P, Gobron N, Flasse S, Pinty B, Tarantola S, 2002. Designing a
spectral index to estimate vegetation water content from remote
sensing data. Part 1: theoretical approach. Remote Sens Environ
82:188-97.

Charlwood J, Alecrim WA, 1989. Capture-recapture studies with the
South American malaria vector Anopheles darlingi. Root. Ann Trop
Med Parasit 83:569-76.

Crombie MK, Gilles RR, Arvidson RE, Brookmeyer P, Weill GJ, Sultan M,
Harb M, 1999. An application of remotely derived climatological
fields for risk assessment of vector-borne disease: a spatial study of
Filariasis prevalence in the Nile delta, Egypt. Photogramm Eng
Rem S 65:1401-9.

Curran PJ, Atkinson PM, Foody GM, Milton EJ, 2000. Linking remote
sensing, land cover and disease. Adv Parasit 47:37-80.

Dambach P, Sié A, Lacaux JP, Vignolles V, Machault V, Sauerborn R,
2009. Using high spatial resolution remote sensing for risk map-
ping of malaria occurrence in the Nouna district, Burkina Faso.
Global Health Action 2:10.3402/gha.v2i0.2094.

Deleu J, Franke J, Gebreslasie M, Linard C, 2015. Improving AfriPop
dataset with settlement extents extracted from RapidEye for the
border region South-Africa, Swaziland and Mozambique.
Geospatial Health (in press).

Dlamini SN, Franke J, Vounatsou P, 2015. Assessing the relationship
between environmental factors and malaria vector breeding sites
in Swaziland using multi-scale remotely sensed data. Geospatial
Health (in press).

Giardina F, Franke J, Vounatsou P, 2015. Geostatistical modeling of
malaria risk in Mozambique: assessing the effect of remotely-
sensed imagery spatial resolution. Geospatial Health (in press).

Guerra CA, Gikandi PW, Tatem AJ, Noor AM, Smith DL, Hay SI, Snow
RW, 2008. The limits and intensity of plasmodium falciparum
transmission: implications for malaria control and elimination
worldwide. PLoS Med 5:300-11.

Hay SI, Snow RW, Rogers DJ, 1998. From predicting mosquito habitat to
malaria seasons using remotely sensed data: practice, problems
and perspectives. Parasitol Today 14:306-13.

Kalluri S, Gilruth P, Rogers D, Szczur M, 2007. Surveillance of arthropod
vector-borne infectious diseases using remote sensing techniques:
a review. PLoS Pathog 3:1361-71. 

Keiser J, Caldas de Castro M, Maltese MF, Bos R, Tanner M, Singer BH,
Utzinger J, 2005. Effect of irrigation and large dams on the burden
of malaria on a global and regional scale. Am J Trop Med Hyg
72:392-406.

Kelly GC, Tanner M, Vallely A, Clements A, 2012. Malaria elimination:

                   Article

Non
 co

mmerc
ial

 us
e o

nly



moving forward with spatial decision support systems. Trends
Parasitol 28:297-304. 

Kunene S, Phillips AA, Gosling RD, Kandula D, Novoyny JM, 2011. A
national policy for malaria elimination in Swaziland: a first for sub-
saharan Africa. Malaria J 10:313.

Linard C, Gilbert M, Snow RW, Noor AM, Tatem AJ, 2012. Population dis-
tribution, settlement patterns and accessibility across Africa in
2010. PLoS One 7:e31743.

Linard C, Gilbert M, Tatem AJ, 2010. Assessing the use of global land
cover data for guiding large area population distribution modelling.
Geoj Lib 76:525-38.

MISAU, 2011. Moçambique inquérito demográfico e de saúde 2011.
Ministério da Saúde, Maputo, Mozambique.

Moonasar D, Nuthulaganti T, Kruger PS, Mabuza A, Rasiswi ES, Benson
FG, Maharaj R, 2012. Malaria control in South Africa 2000-2010:
beyond MDG6. Malaria J 11:294.

Pope KO, Rejmankova E, Savage HM, Arredondo-Jimenez JI, Rodriguez
MH, Roberts DR, 1994. Remote-sensing of tropical wetlands for
malaria control in Chiapas, Mexico. Ecol Appl 4:81-90.

Richter R, 1997. Correction of atmospheric and topographic effects for
high spatial resolution satellite imagery. Int J Remote Sens
18:1099-11.

Rogers DJ, Randolph SE, Snow RW, Hay SI, 2002. Satellite imagery in
the study and forecast of malaria. Nature 415:710-5.

Russell PF, Santiago D, 1934. Flight range of the Funestus-Minimus sub-
group of Anopheles in the Philippines. Am J Trop Med 14:139-57.

Sharp BL, Kleinschmidt I, Streat E, Maharaj R, Barnes KI, Durrheim
DN, Ridel FC, Morris N, Seocharan I, Kunene S, La Grange JP,
Mthembu JD, Maartens F, Martin CL, Barreto A, 2007. Seven years
of regional malaria control collaboration. Mozambique, South
Africa, and Swaziland. Am J Trop Med Hyg 76:42-7.

Shaw NT, 2012. Geographical information systems and health: current
state and future directions. Healthc Inform Res 18:88-96.

Tatem AJ, Noor AM, von Hagen C, Di Gregorio A, Hay SI, 2007. High res-
olution population maps for low income nations: combining land
cover and census in East Africa. PLoS One 2:e1298.

Tatem AJ, Noor AM, Hay SI, 2004. Defining approaches to settlement
mapping for public health management in Kenya using medium
spatial resolution satellite imagery. Remote Sens Environ 93:42-52.

Tatem AJ, Rogers DJ, Hay SI, 2006. Estimating the malaria risk of
African mosquito movement by air travel. Malaria J 5:57.

Taubenböck H, Esch T, Wurm M, Roth A, Dech S, 2010. Object-based
feature extraction using high spatial resolution satellite data of
urban areas. J Spat Sci 55:117-33.

Tyc G, Tulip J, Schulten D, Krischke M, Oxfort M, 2005. The RapidEye
mission design. Acta Astronaut 56:213-9.

WHO, 2012a. WHO guide on international travel and health. World
Health Organization, Geneva, Switzerland. Available from:
http://www.who.int/ith/en/.

WHO, 2012b. World malaria report: 2012. World Health Organization,
Geneva, Switzerland. Available from: http://www.who.int/malaria/
publications/world_malaria_report_2012/report/en/index.html.

WHO, 2013a. Vector control of malaria. World Health Organization,
Geneva, Switzerland. Available from: http://www.who.int/
malaria/areas/vector_control/en/.

WHO, 2013b. Vectors, environment and society research. World Health
Organization, Geneva, Switzerland. Available from: http://www.
who.int/tdr/research/vectors/en/.

Zeilhofer P, dos Santos ES, Ribeiro ALM, Miyazaki RD, dos Santos MA,
2007. Habitat suitability mapping of Anopheles darlingi in the sur-
roundings of the Manso hydropower plant reservoir, MatoGrosso,
Central Brazil. Int J Health Geogr 6:7.

                                                                                                                                Article

                                                                              [Geospatial Health 2015; 10:335]                                                           [page 131]

Non
 co

mmerc
ial

 us
e o

nly




