
Abstract

Rift Valley fever (RVF) is a mosquito-borne viral zoonotic disease
that occurs throughout sub-Saharan Africa, Egypt and the Arabian
Peninsula, with heavy impact in affected countries. Outbreaks are
episodic and related to climate variability, especially rainfall and flood-
ing. Despite great strides towards better prediction of RVF epidemics,
there is still no observed climate data-based warning system with suf-
ficient lead time for appropriate response and mitigation. We present
a dynamic risk model based on historical RVF outbreaks and observed
meteorological data. The model uses 30-year data on rainfall, temper-

ature, relative humidity, normalised difference vegetation index and
sea surface temperature data as predictors. Our research on RVF
focused on Garissa, Murang’a and Kwale counties in Kenya using a
research design based on a correlational, experimental, and evalua-
tional approach. The weather data were obtained from the Kenya
Meteorological Department while the RVF data were acquired from
International Livestock Research Institute, and the Department of
Veterinary Services. Performance of the model was evaluated by using
the first 70% of the data for calibration and the remaining 30% for val-
idation. The assessed components of the model accurately predicted
already observed RVF events. The Brier score for each of the models
(ranging from 0.007 to 0.022) indicated high skill. The coefficient of
determination (R2) was higher in Garissa (0.66) than in Murang’a
(0.21) and Kwale (0.16). The discrepancy was attributed to data distri-
bution differences and varying ecosystems. The model outputs should
complement existing early warning systems to detect risk factors that
predispose for RVF outbreaks. 

Introduction

Rift Valley fever (RVF) is a viral zoonosis that has had pronounced
health and economic impacts in much of sub-Saharan Africa
(Anyamba et al., 2010). This arbovirus has been responsible for devas-
tating outbreaks of severe human and animal disease, which have
gone beyond Africa, reaching the Arabian Peninsula in 2000 (Bird et
al., 2008). The last major outbreak in East Africa took place 2006-2007
and is reported to have resulted in economic losses exceeding USD 60
million (Anyamba et al., 2010). RVF is a vector-borne disease caused
by a virus that belongs to the family Bunyaviridae, genus Phlebovirus
that affects domestic livestock such as sheep, cattle, camels and goats,
in which animal species it causes abortions (Cook and Zumla, 2003)
associated with high neonatal mortality (Davies and Martin, 2003).
The RVF virus infects also humans (Soti et al., 2012). It is transmitted
transovarially by Aedes or Culex mosquitoes (Hightower et al., 2012).
Since its isolation and characterisation in Kenya in 1931, RVF has
been seen to disproportionately affect vulnerable communities with
poor resilience to economic and environmental challenge (WHO, 2009;
Osman et al., 2013). 
Major outbreaks were experienced in Egypt in 1977-1978 and 1993,

in the Senegal River Valley in 1987, in Madagascar in 1990, 1992 and
2008, in northern Kenya and Somalia in 1997, 1998 and 2007, in Saudi
Arabia and Yemen in 2000, in Sudan in 2007 and in Southern Africa
in 2010 (Soti et al., 2012), often with devastating consequences. For
example, the outbreaks in Somali and Ethiopia led to a loss of USD
132 million following Saudi Arabia’s imposition of a trade ban on live
animals from Ethiopia, Somalia and Kenya (Rich and Wanyoike,
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2010). In Kenya, the spread of RVF has been rising systematically,
from the confines of a single district in the Rift Valley area in the 1912-
1950 period to 55% of the national districts in 2007. As a result, various
parts of the country have gradually become enzootic, resulting in peri-
odic epizootics following the first report of the symptoms connected
with this disease in 1912 (Murithi et al., 2010). The areas in Kenya
where RVF is enzootic include Nakuru, Nairobi, Thika, Maragua,
Laikipia, Uasin Gishu, Trans Nzoia, Kiambu, Machakos, Kilifi, and
Kwale. Maragua sub-County in Murang’a has had 23 outbreaks since
the first report in 1951; Garissa Central sub-County in Garissa has had
21 outbreaks since 1961, when the disease was first reported there,
while Kwale in Kwale County has experienced 21 outbreaks since 1961
(Murithi et al., 2010). 
Early warning messages for RVF outbreaks, especially in East Africa,

are often given by international institutions such as the Emergency
Prevention System (EMPRES-i), the National Aeronautics and Space
Administration (NASA) and the World Health Organization (WHO). In
Kenya, Somalia and Tanzania, a RVF model based on satellite measure-
ments of sea surface temperatures (SST) and the normalised differ-
ence vegetation index (NDVI) data (a measure of greenness that can
vary between -1 and + 1) were used to provide a two to six weeks early
warning for December 2006 to May 2007 (Anyamba et al., 2009), while
other studies have predicted longer lead times. For example, Linthicum
et al. (1999) showed that the RVF can be predicted 5 months in advance
using SST anomalies and satellite NDVI data. The numerous studies
and predictions on the risk of RVF outbreaks have mainly been based
on satellite data, whereas the current work has used observed climate
data from three study sites in Kenya. 
The general objective of this study was to develop a dynamic model

for predicting the risk of RVF outbreaks in Kenya with a lead-time of at
least three months in epizootic areas of the country. The choice of type
of model and variables were largely informed by the documented find-
ings of other scientists in an attempt to fill the obvious gaps. Special
reference to rainfall, temperature, relative humidity and the nor-
malised difference vegetation index (NDVI).

Materials and Methods

Study sites 
The study sites were counties Garissa (0o27’25”S, 39o39’30”E),

Murang’a (0o45’S 37o7’E) and Kwale (4o10’S, 39o27E). The specific
locations selected were Garissa Central and Bura in Garissa county,
Makuyu and Maragua in Murang’a county and Kwale and Kinango in
Kwale county as shown in Figure 1. The three sites are at varying alti-
tudes with Garissa at 138 m, Murang’a (Thika) at 1501 m and Kwale
422 m. Meteorological data for Murang’a were obtained from Thika
Meteorological Station (0o01’S 37o06E). The three sites were selected
because they are key RVF-prone geographical areas of Kenya that are
known to have experienced serious RVF outbreaks in the past as they
are endemic for the disease (Murithi et al., 2010).
All the three counties are in the zone of Kenya that generally expe-

riences two main rainfall seasons, the long rains from March to May,
and the short rains from October to December as shown in Figure 2.
The mean maximum and minimum monthly temperature patterns for
the study sites are also shown in the figure. As Kwale station does not
record temperatures, we used mean monthly temperature data from
Moi International Airport (Mombasa), approximately 28 km away from
the county headquarters, as proxy data for Kwale. 

Primary data
The study sites were drawn from RVF hotspots in Kenya that had

experienced at least 21 years of RVF outbreaks since the year of its
introduction in the respective sub-counties, and at least 45% of years
of involvement in national outbreaks after the RVF introduction.
Stratified random sampling was done to obtain two villages per study
site, where 50 farmers were then selected for sampling, ensuring that
those selected all kept livestock. The sampled respondents provided
information, through questionnaires, on their knowledge of the cli-
matic seasons in their geographical areas, the types of livestock kept,
and the types of diseases their animals had suffered during the pre-
ceding ten years. The information thus obtained was validated by
means of interviews with key informants from each of the study sites. 

Dynamic risk prediction 
A dynamic risk model based on historical RVF outbreaks and climate

data to guide veterinary and public health policies on prevention and
control of RVF outbreaks was developed from an experimental
research design. This is a logistic regression model (within the frame-
work of a generalised linear model) with the RVF cases as response
variable where 1 is defined as occurrence and 0 as non-occurrence
(Quinn and Keough, 2004). The predictor variables were rainfall,
NDVI, relative humidity at 06:00 and at 12:00 GMT, maximum and min-
imum temperatures and SST. The model was constructed and run by
means of the R statistical software (R Core Team, 2014). All predictors
were investigated with the aim of a three-month lag period except
NDVI, for which a four-month lag period was considered, as it is an
indicator for rainfall in the preceding month (Hightower et al., 2012).
The fitted logistic regression model for each location was the follow-
ing:

glm(formula) = Cases~factor(Month) + Rain + NDVI + RH06 +
RH12 + Tmax + Tmin + SSTs

                  
where glm (generalised linear model) is the function designed to fit
all the predictors and describes how response variable relates to the
linear predictors. Cases indicate occurrences (1) or non-occurrence
(0) of RVF; Rain is the measure of the monthly total rainfall in mm;
NDVI denotes the mean monthly NDVI figure (between -1 and + 1);
RH06 and RH12 are the observed mean monthly relative humidity data
(expressed as %) at 06:00 GMT and 12:00 GMT; Tmax and Tmin are the
mean monthly maximum and minimum temperatures in centigrades;
SSTs is sea surface temperature in °C. Month is included in the model
as a factor to distinguish it from the predictor variables since it con-
tains repetitive units of 1-12. 

Model training and validation
The training model was run on 70% of the weather data and validat-

ed on 30% of these data. The training data were from 1981 to 2000,
while the validation data were from 2001 to 2010. The RVF prediction
models for Garissa, Murang’a (Thika municipality) and Kwale were
based on the variables confirmed as significant predictors in the ini-
tial run. The adequacy of each of the regression models was checked
through an examination of the goodness of fit and determining how
similar the observed response variables were to the expected or pre-
dicted values (Quinn and Keough, 2004). 

Model skill 
To evaluate the quality of our models, we used both the summary
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Figure 1. Location of Kenyan Rift Valley fever hotspots exemplified by Garissa, Murang’a and Kwale counties. The figure at top-right
is the map of Kenya and the boundaries of its 47 counties. The connecting lines indicate locations of Murang’a, Kiambu, Kwale (bot-
tom left) and Garissa (bottom right) counties. The three counties are a sample of Rift Valley fever hotspots in Kenya. Thika munici-
pality is marked in purple, near Kakuzi, in the top map (Kiambu and Murang’a).
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Figure 2. Mean monthly rainfall and temperature patterns: A) Garissa, B) Thika, C) Kwale. 
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output of the models as well as the coefficient of determination (R2),
which measure the variation in the dependent variable explained by
the variation in the independent variable (Keller, 2011) and the Brier
Score (BS). The latter is a measure of model errors where BS=0 indi-
cates best skill and BS=1 no skill (Wilks, 2011). This was done by
employing the logistic regression function using the R statistical soft-
ware. 

Results

Tables 1-3 show the outputs of the model for Garissa, Thika, and
Kwale meteorological stations. They present the estimate, standard

error, Z value, P value for the outcome and the variables (rainfall, NDVI,
relative humidity, temperatures of air and the sea surface). The vari-
ables that the generalised linear model depicted as significant
(P<0.05) were re-run on the model and the prediction outputs plotted
as shown in Figures 3-5. The predictors in the second run were there-
fore correlated on the basis of their significance in the first run as
shown in Tables 1-3. The model for Garissa (Table 1) indicated rainfall,
NDVI, RH12, minimum temperature and SST as the stronger predictors
(P<0.05). Table 2 represents the model output for Thika. It shows the
relative humidity at 06:00 GMT and minimum temperature as the only
two significant variables in this run of the model. Table 3 depicts the
model output for Kwale. It shows that the significant predictors in this
zone are relative humidity at 06:00 GMT, minimum temperature and
SST. This observation is expected as relative humidity increases with
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Table 1. Garissa model output.

Variable (3-month lag)          Estimate           Standard error       Z value             P value          Significance               R2          Briers score

Rain                                                            -7.279                             3.345                      -2.176                     0.0295                      Positive                        0.66                    0.007
NDVI                                                         -10.285                            4.609                       -2.232                     0.0256                      Positive                                                        
RH06                                                         -14.916                            8.369                      -1.782                     0.0747                     Negative                                                       
RH12                                                          34.972                            17.435                      2.006                      0.0449                      Positive                                                        
Tmax                                                             22.998                            12.457                      1.846                     0.0649                     Negative                                                       
Tmin                                                             14.587                             7.492                       1.947                     0.0515                      Positive                                                        
SSTs                                                          15.270                             7.384                       2.068                     0.0387                      Positive                                                        
NDVI, normalised difference vegetation index; RH06, relative humidity at 06:00 GMT; RH12, relative humidity at 12:00 GMT; Tmax, temperature maximum; Tmin, temperature minimum; SSTs, sea surface temperatures.

Table 2. Thika model output. 

Variable (3-month lag)         Estimate           Standard error       Z value             P value          Significance               R2          Briers score

Rain                                                          -0.070                              0.596                        -0.118                      0.906                      Negative                       0.21                    0.022
NDVI                                                          1.825                               0.674                        2.708                      0.007                       Positive
RH06                                                          1.294                               0.989                        1.307                      0.191                      Negative
RH12                                                          0.601                               1.510                        0.398                      0.690                      Negative
Tmax                                                            1.188                               1.649                        0.720                      0.471                      Negative
Tmin                                                            -2.535                              1.280                       -2.065                      0.039                       Positive
SSTs                                                         84.832                           136.108                      0.623                      0.533                      Negative                           
NDVI, normalised difference vegetation index; RH06, relative humidity at 06:00 GMT; RH12, relative humidity at 12:00 GMT; Tmax, temperature maximum; Tmin, temperature minimum; SSTs, sea surface temperatures.

Table 3. Kwale model output. 

Variable (3-month lag)         Estimate           Standard error       Z value             P value           Significance              R2          Briers score

Rain                                                           0.363                               0.832                        0.436                      0.663                       Negative                      0.16                    0.018
NDVI                                                       -742.813                          416.474                      -1.784                      0.075                       Negative
RH06                                                       -55.101                           21.067                      -2.615                      0.009                        Positive
RH12                                                        31.865                            18.440                       1.728                      0.084                       Negative
Tmax                                                           17.743                            93.146                       0.190                      0.849                       Negative
Tmin                                                          -137.579                           61.699                      -2.230                      0.026                        Positive
SSTs                                                        364.209                          153.384                      2.374                      0.018                        Positive
NDVI, normalised difference vegetation index; RH06, relative humidity at 06:00 GMT; RH12, relative humidity at 12:00 GMT; Tmax, temperature maximum; Tmin, temperature minimum; SSTs, sea surface temperatures. 
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decrease in temperature reaching its highest value very early in the
morning under conditions of an unchanging dew point temperature.
It is also noteworthy that the minimum temperature variable was

found to be significant in all the respective runs of the model in
Garissa, Murang’a and Kwale. NDVI seemed to be a stronger predictor
than rainfall, as it is a measure of greenness recorded every month
compared to dry periods that at times record no rainfall in a month. The
SST variable was depicted as a significant predictor for Garissa and
Kwale but not for Murang’a, a fact that could be attributed to the prox-
imity of the two sites to the Indian Ocean. Proximity to the sea puts
Garissa and Kwale within the same surface wind regimes. An earlier
study by Indeje and Semazzi (1999) confirms the existence of a strong
correlation between rainfall over parts of East Africa and the lower
equatorial stratospheric zonal wind during the months of March-May
and June-August. Wolff et al. (2011) observe the broad inverse relation
between rainfall and windiness in their description of the characteris-
tic surface ocean warming in the western Indian Ocean that leads to
intensification and shifts of the Inter-Tropical Convergence Zone
(ITCZ), resulting in increased precipitation over East Africa and weak-
ening of the local surface winds.

Rift Valley fever prediction for Garissa county
Figure 3 (A) is the training model output, while Figure 3 (B) is the

validation model output for Garissa county. Figure 3 (A) shows that the
model accurately predicts the outbreaks of Rift Valley fever in 1997 and
1998 and Figure 3 (B) that the validation model predicts the outbreak
as observed at the end of 2006 and beginning of 2007. These outputs
were based on rainfall, NDVI, relative humidity at 12:00 GMT, minimum
temperature and SST, the variables found to be significant predictors in
the initial run of the model aimed to determine the strength of the
meteorological predictors (Table 1). 
The outcome suggests that the selected parameters are part of the

variables that may be related to the development of meteorological sys-

tems that are conducive to the development of the RVF vectors as well
as the virus that causes the RVF. As a measure of vegetation, NDVI is
related to rainfall, which is especially evident in rain-fed natural
ecosystems and agricultural areas (Anyamba et al., 2010). Warm mini-
mum temperatures facilitate the development of mosquito larvae in
flooded waters following heavy rainfall episodes. This argument is sup-
ported by the temperature patterns that characterise the Garissa area. 

Rift Valley fever prediction for Murang’a county
Figure 4 presents the RVF prediction for Murang’a county. The pre-

diction model was trained using weather data from 1981 to 2000 result-
ing in the output as shown in Figure 4A. The significant parameters in
the initial run of the model were NDVI and minimum temperature
(Table 2). The model was validated by means of weather data from 2001
to 2010 resulting in the output as shown in Figure 4B. The outcomes of
both models depict accurate prediction, as the Department of
Veterinary Services (DVS) reports confirm that there were RVF out-
breaks in 1983, 1989, 1993, 1997 and 1998 as indicated in Figure 4A and
in 2006-07 as shown in Figure 4B. The topography of Murang’a county,
at an average altitude of 1200 m, shares the proximity of the central
highlands, where greenness may be assumed even during long periods
of absence of rain. NDVI may therefore be a stronger predictor than
rainfall, though it may not ensure availability of vector habitats without
water. Elevated minimum temperatures during the peak months of the
rainfall seasons are conducive to mosquito larval development and may
therefore be a factor that enhances the predictive aspect of the param-
eter. 

Rift Valley fever prediction for Kwale county
The outputs of the prediction and validation models for RVF in Kwale

county are shown in Figure 5A and B, respectively. This output is based
on relative humidity at 06:00 GMT, minimum temperature and SST, the

                   Article

Figure 3. Rift Valley fever prediction in Garissa: model outputs.
A) training, B) validation. The red lines are for predicted out-
breaks while the blue ones represent actual occurrences.

Figure 4. Rift Valley fever prediction in Murang’a: model outputs.
A) training, B) validation. The red lines are for predicted out-
breaks while the blue ones represent actual occurrences.
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variables that were found to be significant predictors in the initial run
of the model that was aimed to determine the strength of the meteoro-
logical predictors (Table 3). The training model accurately predicted
the RVF outbreaks of 1983, 1993 and 1998. Although it gives very weak
signals for 1989 and 1997, when RVF outbreaks also occurred according
to the DVS records, the validation model was found to predict the 2006
RVF outbreak fairly accurately (Figure 5B). 

Discussion

Bearing in mind the need for massive applications of control meas-
ures at the earliest indications of elevated rainfall and flooding, it was
felt to be important to consider the accuracy of the data used in model-
ling, given the huge costs involved in administering sustained mosqui-
to larval control. 

General performance of the model
Varying coefficients of determination were obtained. Garissa had

R2=0.66, Murang’a R2=0.21 and Kwale R2=0.16. While the topographi-
cal differences between the three sites may be appreciated, the low
coefficients of determination for Murang’a and Kwale suggest the need
for further refinement of the model. In order to improve on the skill of
the model, the climatological patterns should be considered with regard
to the difference in dates of onset of the rainfall seasons by the geo-
graphical and ecological zones. Further research on season-based pat-
terns of discreet weather variables with respect to RVF outbreaks could
yield important results. With respect to risk mapping, thresholds could
also vary with geographical location, while some may flood upon receiv-
ing seasonal rainfall in excess of 400 mm, others may do so already at

200 mm in a season (Anyamba, 2010). These could at least explain part
of the variation in model output. 
The training and validation models also show peaks when the weath-

er conditions could have favoured RVF outbreaks. Absence of outbreaks
where such peaks do not coincide with observed or reported outbreaks
could be attributed to acquired immunity.
It was noted that besides the positive predictions that were con-

firmed by reports of actual outbreaks, especially the 1983, 1989, 1993,
1997-98 and 2006-07 RVF outbreaks, the model output included positive
predictions where there were no outbreaks. Even though we could not
explain all the false positives, we found that most of them coincided
with periods of extreme rainfall events. Some of the notable years in
this respect are 1987-88, 1991-92 and 2000-01 as shown in Figure 6A-
C, which present the rainfall anomalies time series from 1981 to 2010
at Garissa, Thika and Kwale, respectively. In our view, the model pre-
dicts risk during these periods based on the favourable factors, rainfall
being a key variable. It may also be pointed out that interventions, fol-
lowing regular surveillance by the DVS, may have provided immunity to
livestock, thereby reducing the risk of a RVF outbreak in spite of mete-
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Figure 5. Rift Valley fever prediction in Kwale: model outputs. A)
training, B) validation. The red lines are for predicted outbreaks
while the blue ones represent actual occurrences.

Figure 6. A time series plot of rainfall anomalies and Rift Valley
fever prediction epidemics in the period January 1981 to
December 2010. A) Garissa, B) Thika, C) Kwale.
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orological factors favourable for infection indicated by the model.
Besides the acquired immunity suggested here, there may also be
undetected, yet significant, demographic and spatial expansion of the
RVF virus during the intervening period between one and two out-
breaks (Bird et al., 2008). 

Variables of importance
Variables thought to have an influence on the epizootic include the

Southern Oscillation Index (SOI) (http://www.cgd.ucar.edu/cas/cata-
log/climind/soi.html) and the SST. The SOI has been considered in the
effort to determine the best predictors of RVF by means of autoregres-
sive integrated moving average (ARIMA) models (http://people.
duke.edu/~rnau/411arim.htm). Past RVF events in East Africa have
been found to be closely linked to the occurrence of the warm phase of
the El Niño Southern Oscillation (ENSO) (http://climate.ncsu.edu/cli-
mate/patterns/ENSO.html), a phenomenon that is accompanied by pro-
longed periods of warm SSTs in the central, eastern equatorial Pacific
Ocean and the Indian Ocean (Kelly-Hope and Thomson, 2008). These
conditions lead to heavy rainfall and flooding of vast areas that serve as
habitats for Culex and Aedes mosquitoes, the primary vectors of the
RVF virus (Anyamba et al., 2010). It is on this basis that the SST as a
variable was included as a factor in the models. 
Anyamba et al. (2010) used NDVI as proxy for ecological dynamics

and rainfall. This requires a lag of about one month as NDVI is a meas-
ure of vegetation greenness, which in turn is closely related to rainfall.
In an attempt to develop a model for the prediction of RVF in the East
African region with a lead time of 2 to 5 months, Linthicum et al.
(1999) used equatorial Pacific and Indian Ocean SST as well as NDVI
anomaly data. We used lagged NDVI data by one month as input in the
model for comparison purposes, since this study was largely based on
observed actual meteorological data. As proxy for rainfall, it may, how-
ever, be misleading if applied to areas that rely on irrigation or where
there have been sudden or recent changes of land use. 
While NDVI and SST components are commonly referred to, both in

this study and the one by Linthicum et al. (1999), satellite-generated
data on weather variables such as rainfall, relative humidity and tem-
perature must also be taken into account. Most RVF outbreaks in Kenya
are associated with above-normal rainfall, which is mainly responsible
for favouring breeding of the vector mosquitoes by creating conditions
allowing sufficient amounts of surface water. The fact that mosquito
eggs can only hatch in water enhances the recognition of rainfall as
one of the major factors influencing the transmission of RVF. In arid
and semi arid zones, such as Garissa, where the average monthly rain-
fall does not exceed 120 mm (Figure 2A), rainfall curtails RVF trans-
mission. It is thus an important component in the model owing to its
impact on the vectorial capacity of RVF. 
Temperature is recognised as another key variable that also influ-

ences the vectorial capacity through its dual effect on the vector mos-
quito and the growth of the RVF parasite in its body. Temperature vari-
ations influence the extrinsic incubation period (EIP) of the virus,
effects that not only vary with the mosquito species but also the virus
genotype (Reisen et al., 2006). Temperature affects also the develop-
ment rates of mosquito larvae, the gonotrophic cycle as well as the sur-
vivorship of both the adults and the larvae (Ceccato et al., 2012). In
Kwale county (coast) and Garissa [arid and semi arid lands (ASAL)],
temperature is not the limiting factor for the development of the vector,
as average temperatures rarely go below 18°C, as it is in Murang’a,
where marked seasonal variations are observed. The three models pre-
sented portray minimum temperature as an important variable, while
maximum temperature is downplayed rendering credence to the mini-
mum temperature variable as an important factor in the development

of mosquito larvae. Figure 2A-C shows that April, the peak month of the
Long Rains season, is also the month with the highest average mean
minimum temperature, a situation that clearly favours the develop-
ment of mosquito larvae (Muturi et al., 2007). 
Relative humidity was considered as an important component by us

as different Culex species have been found generally not to live long
enough to complete their transmission cycle when the relative humid-
ity is consistently below 60% (Grover-Kopec et al., 2006; Muturi et al.,
2007). Relative humidity is therefore an important predictor alongside
temperature and rainfall. Common Culex habitats are ponds, bamboo,
fallen logs, leaf axils, streams and rock pools (Muturi et al., 2007). One
of the features observable in these habitats is their high capacity for
holding water as well as retention of humidity. Relative humidity is a
limiting factor in Garissa as the monthly average never goes beyond
62% even in April and November, which are the wettest months. It is
notable that the model picks relative humidity at 12:00 GMT as a signif-
icant predictor for Garissa and RH at 06:00 GMT for Kwale county given
that it is a limiting factor in Garissa (ASAL) but not in Kwale (coast). 
The presence of RVF may have been sustained and often amplified

by the ease of movement of animals within different ecological zones.
The Kenyan coast, where Kwale county is located, is listed among
zones considered to be outside the potential epizootic area mask with
regard to the 2006-07 RVF epidemic (Anyamba et al., 2010). This obser-
vation was corroborated by respondents and key informants during
interviews conducted for this study.

Conclusions

A dynamic high-skill model for the prediction of RVF outbreaks in
three specific Kenyan counties was developed and validated. The model
outcomes varied with geographical location and meteorological vari-
ables, such as rainfall, NDVI, temperature, relative humidity and SST at
a lead-time of three months. The differences were also attributed to
data distribution differences as well as the varying ecosystems repre-
sented by the three sites. Besides rainfall, minimum temperature was
found to be the most significant predictor in each of the models. The
results suggest the need for consideration of strategic uses of the
dynamic risk prediction models with respect to geographical zoning
and other meteorological predictors. The installation of automatic
weather stations, especially in areas without meteorological stations,
would improve the accuracy of the risk prediction considerably.
Strategic uses of this model approach include timing of mitigation pro-
grammes such as vaccination, guided by the dynamic prediction model.
Awareness programmes on the predictive signals from the model would
also go a long way towards reaching livestock herders and farmers. 
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