
Abstract

Daily observations of potential mosquito developmental habitats in a
suburb of Kumasi in central Ghana reveal a strong variability in their water
persistence times, which ranged between 11 and 81 days. The persistence
of the ponds was strongly tied with rainfall, location and size of the puddles.
A simple power-law relationship is found to fit the relationship between the
average pond depth and area well. A prognostic water balance model is
derived that describes the temporal evolution of the pond area and depth,
incorporating the power-law geometrical relation. Pond area increases in
response to rainfall, while evaporation and infiltration act as sink terms.
Based on a range of evaluation metrics, the prognostic model is judged to
provide a good representation of the pond coverage evolution at most sites.
Finally, we demonstrate that the prognostic equation can be generalised
and equally applied to a grid-cell to derive a fractional pond coverage, and
thus can be implemented in spatially distributed models for relevant vec-
tor-borne diseases such as malaria.

Introduction

Surface hydrology and water body temperature are two key factors
that control the aquatic stage life cycle of mosquitoes and thus adult
abundance by influencing the stability of habitat and larvae growth
rates, respectively. Mosquitoes may exploit any available water for
oviposition, natural or man-made (Imbahale et al., 2011; Fillinger et
al., 2004), permanent or temporary (Fillinger et al., 2004), clean or pol-
luted (Sattler et al., 2005; Awolola et al., 2007; Chinery, 1984) and of
various sizes from hoof-prints of animals to the edges of large water
bodies (Sattler et al., 2005; Mutuku et al., 2006b; Imbahale et al., 2011),
although individual species have preferences of habitat type. For
example, Anopheles gambiae complex mosquitoes, the principal
malaria vector in Sub-Sahara Africa prefer temporary, sunlit water
bodies for their breeding, which become abundant during the rainy
season (Mutuku et al., 2006a; Minakawa et al., 2004), although their
larvae have also been found in polluted waters (Imbahale et al., 2011;
Awolola et al., 2007; Sattler et al., 2005). 
Small O(metre)-sized breeding habitats have many advantages over

larger permanent breeding sites that increase the developmental rate
or survival probability of the aquatic stage. Firstly, these habitats con-
tain small amounts of water and therefore their temperatures are high
relative to deeper water bodies which shortens the larval-pupal devel-
opment time (Munga et al., 2005; Bayoh and Lindsay, 2004; Ndenga et
al., 2011), although high temperature increases larval mortality
(Bayoh and Lindsay, 2003). Several studies have found these micro
habitats to be productive and therefore their contribution to mosquito
vector abundance, especially during the rainy season, should not be
ignored in dynamical models (Bomblies, 2012; Imbahale et al., 2011;
Sattler et al., 2005). For example, in western Kenya, Minakawa et al.
(2004) found more than 80% of Anopheles gambiae s.s. in isolated
pools with water surface areas lower than 0.1 m2. Secondly, such pools
are temporary and therefore contain fewer or no competitors and pred-
ators decreasing the larvae mortality rate (Koenraadt et al., 2004;
Sunahara et al., 2002). Thirdly, human activities contribute to the cre-
ation of these habitats which are found near human settlements and
thus time spent by the gravid mosquito to locate surface water for
oviposition is reduced (Mutuku et al., 2006b; Minakawa et al., 1999).
Another critical factor determining mosquito breeding habitat produc-
tivity is its stability because only habitats that persist long enough can
produce adult mosquitoes (Gianotti et al., 2009).
These mechanisms emphasise the importance of small-sized breed-

ing habitats during the rainy season and how they can account for the
seasonal variation in malaria vector abundance. Therefore, critical fac-
tors influencing the stability and productivity of these transient habi-
tats need to be examined. Low frequency and intensity of rainfall can
lead to desiccation of habitats before adult emergence (Himeidan et
al., 2009; Srivastava et al., 2001). Small bodies on the sub-metre scale
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can produce adult vectors if they are contained in larger scale depres-
sions that collect water (Bomblies et al., 2008), although often the most
productive pond size in terms of number and duration are on the 1 to
10 metre scale (Gianotti et al., 2009). Other important factors that can
control the stability of these small-sized habitats are hydrological
parameters of the area which include soil type, soil moisture content
and water table depth (Bomblies et al., 2009; Montosi et al., 2012).
In order to model malaria effectively using a dynamical modeling

approach, a realistic representation of the surface hydrology is required.
However, most dynamical malaria models have no representation of sur-
face hydrology. One impediment to the development of more realistic
treatment of the availability of ponds is their small spatial scale, which
limits the use of remote sensing techniques to make parametrisation
assumptions, a situation not aided by the lack of in situ observations. The
aim of this paper is therefore to derive a water balance model for the sur-
face area of ponds, driven by the processes of precipitation and surface
runoff, with water lost through overflow, infiltration and evaporation. The
model will be calibrated and evaluated using in situ pond measurements.
The final goal is then to generalise the model to represent the aggregate
total pond availability of order of kilometre sized grid-box such that the
model can be applied to regional-scale vector-borne disease modeling. 
Hayashi and Van der Kamp (2000) introduced a power function area-

depth (A-h) relationship that requires two independent measurements
of pond area and depth to determine scaling and shape constants. This
model (hereafter referred to as Hayashi model) is a diagnostic model of
water bodies that relates the volume, area and depth. This Hayashi model
has been used extensively to study permanent and semi-permanent pond
dynamics in Senegal relevant for vectors of rift valley fever that have spa-
tial scales of tens of metres (Soti et al., 2010). In addition, the model has
also been evaluated for regional terrain (Brooks and Hayashi, 2002;
Minke et al., 2010). However, no study has examined whether such a

model can also be successfully applied to small temporary sub-metre
scale water bodies. We therefore report results of in situ measurements
of a range of such developmental habitats in a peri-urban area of Kumasi
in Ghana, and then evaluate whether the Hayashi model can describe the
relationship between area and depth of these small breeding sites. 
There is considerable variability in the availability and size of small-

scale breeding sites over the course of a rainy season. Thus to model the
evolution of these pools a prognostic treatment is required. A water bal-
ance model is derived that represents some of the key sources and sinks
of ponds, namely rainfall, surface runoff, pond overflow, evaporation and
infiltration. The model incorporates the geometrical model of Hayashi to
convert water volume to pond coverage and thus breeding site availabil-
ity, which is then evaluated using the in situ pond data. 
Finally, to apply the surface hydrology model to regional or national-

scale distributed disease transmission models, the equation is gener-
alised to predict the fractional water coverage constituted by all the
ponds present in a grid-cell that may range in size from a kilometre to
hundreds of kilometres. The aggregate statistics of all the monitored
ponds are used to evaluate the potential of this approach for application
in regional-scale vector-borne disease models.

Materials and Methods

Study area and data
The study was conducted in the Kumasi (Ghana) metropolis com-

prising parts of the Kwame Nkrumah University of Science and
Technology (KNUST) campus and peri-urban areas of Ayeduase, a town
sharing a boundary with the university (Figure 1). For 81 days between
6 June (day 157 in 2011) and 25 August (day 237 in 2011) daily obser-
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Figure 1. Location of the study area: Kwame Nkrumah University of Science and Technology campus and peri-urban areas of the
Ayeduase. Also indicated are the 10 temporary sites together with the meteorological station AgroMet.
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vations of small-scale potential mosquito breeding habitats were
undertaken. Ten sites with continuous water presence for at least 10
days are considered for this study. The monitored ponds were generat-
ed during the course of the monsoonal rains of 2011.
The potential mosquito developmental habitats consisted of a truck

tyre truck, small surface depressions, puddles and ditches which collect
water during the wet season (Figure 2). At each site, parameters meas-
ured include water temperature, water depth and the major and minor
dimensions of water. However, irregular puddles were divided into seg-
ments before measuring major and minor dimensions. The daily depth
of water in each pond was calculated as average of three readings taken
at three marked points within the water coverage area of the pond
using a tape measure with an estimated 1 mm measurement accuracy.
Although study of mosquito larvae was not undertaken, mosquito lar-

vae were observed (by visual inspection without larvae identification)
in all habitats at some point during the study period. Pond measure-
ments were not performed every day during the study period resulting
in some data gaps existing in the time series. The number of potential
water bodies decreased over the period since various ponds dried out
and those that persisted decreased in size and depth in August 2011
due to the reduction of rainfall during that month (Owusu and Waylen,
2009; Manzanas et al., 2014). While some of the habitats dried out with-
in a few days of rainfall events, others persisted throughout the study
period of 81 days. The geographical-coordinates of the sites were
recorded using a simple hand held global position system receiver
(GARMIN eTrex series). Daily rainfall and evaporation data were
obtained from a minute temporal resolution automated rain gauge
installed at the KNUST AgroMet station (Figure 1).
The precipitation and evaporation data used to drive the models

developed in this work were obtained from the KNUST AgroMet weath-
er station which was located very close to the pond sites (see location
AgroMet in Figure 1). In this study, evaporation from the water surface
was simply equated to the ambient air evaporation measured by the
weather station.

Diagnostic pond geometry model
Hayashi and Van der Kamp (2000) developed an area-depth (A-h)

relation for water bodies expressed as A ∝ h2/p , with the pond water
area estimated from eq. 1:

                                                                                                          

(eq. 1)

where A is the pond water surface area, h is the pond water depth, p
represents the pond geometry and href and Aref are reference pond water
depth and surface area measurements, respectively.
The key assumption of the model is that, averaged radially, varia-

tions in the water body geometry average out, so that the relationship
between the water body depth and its areal coverage can be given by a
simple power law. The relationship is specified by the exponent factor
p, which is a constant representing the geometry of the habitat,
describing how the depth relates to the area. Since p is assumed a con-
stant, only two, coincident representative values of pond depth and area
are required in order to close the equation, href and Aref. Several options
exist to set these two parameters. For example, they could be set using
the maximum values of the pond, an ad hoc pair of measurements
taken on a random day, or the average values over an entire measure-
ment campaign. The latter approach is employed here to reduce sensi-
tivity to measurement error.
Once href and Aref are known, the key p parameter is estimated using

a least-squared fit of the power function of the form of eq. 1 to all the
data points. Again, by using all measurements, the sensitivity to meas-
urement error should be reduced relative to the method of Minke et al.
(2010), who computed p based on two separate measurements of water
surface area and depth. The p parameter is therefore equal to 2 divided
by the index of the best-fit regression line.

Prognostic pond area model
A prognostic water balance model for small-sized transient breeding

habitats is developed (Figure 3). The model assumes that ponds are
filled either by precipitation directly falling on their surface area A, or
by surface runoff that occurs in small scale catchments of scale Amax
which represents the maximum possible dimension of the pond.
Rainfall that falls outside the catchment drains to the larger scale river
network and is not collected in ponds. Ponds lose water through the
processes of evaporation, infiltration or overflow losses. The daily volu-
metric water balance of a puddle is approximated by eq. 2:

                   Article

Figure 2. Two typical monitored potential mosquito breeding habitats within the study area. A) site 10; B) site 9.
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(eq. 2)

where represents the rate of change in puddle water volume, Amax

is the pond catchment area approximated as maximum measured
water surface area of the pond, A is the daily pond water surface area,
P, R, E and I are the daily amount of precipitation, runoff, evaporation
and infiltration, respectively. The first term on the right-hand side of
eq. 2 represents the direct contribution of precipitation falling on the
pond area A, the second term (Amax - A) represents the input surface
runoff from the remainder of the catchment area, while the last term
represents loss of water from the puddle through evaporation and infil-

tration. The  term represents the losses due to overflow, 

which is approximated by a simple linear function, such that overflow
increases with the pond volume. The term is zero when the area of the
puddle reaches its maximum (i.e., Amax) in which case additional water
from rainfall and runoff is balanced by outflow.
The runoff R term was estimated using the Soil Conservation

Service curve number (SCS-CN) method developed by the United
States Department of Agriculture (USDA) USDA (1972):
                                                                                                                  

                                                                                                    

(eq. 3b)

                                                                                                         

(eq. 3b)

where S is potential maximum retention (mm) and CN (range between
0 and 100) is the curve number, a dimensionless parameter indicating
the land surface and soil type characteristics. At the lower CN value, all
rainfall infiltrates without generating runoff while all rainfall becomes
runoff at the upper CN threshold. USDA (1972) provides CN values for
various land cover and soil types. Note that CN is also a function of soil

moisture, which is neglected, in the present model.
The loss of pond water due to infiltration increases with increasing

water surface area: with maximum infiltration occurring after rainfall
events, while minimum infiltration occurs when the water level
reduces to reach the clogged region of the pond (Porphyre et al., 2005;
Martin-Rosales and Leduc, 2003). This is represented using a linear
relation with the daily pond water surface area and depth as given by
eqs. 4a and 4b for area and depth, respectively:

                                                                                                         
(eq. 4a)

                                                                                                         
(eq. 4b)

where Imax is the estimated daily maximum infiltration, hmax is the
measured maximum water depth and h is the daily water depth.

In order to translate the volumetric pond equation (eq. 2) to prog-
nostic equations for pond area and depth, we introduce the volume,
height, area relationship of the diagnostic Hayashi model. For generic
depression shape, Hayashi and Van der Kamp (2000) further provided
a relation that links the water depth and surface area to its volume

, and substituting this into the Hayashi

model (eq. 1) gives the relationship between the derivative of pond
area and pond volume:

                                                                                                         

(eq. 5a)

                                                                                                         

(eq. 5b)

It is then straightforward to substitute eq. 2 into eqs. 5a and 5b to

                                                                                                                                Article
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Figure 3. Scheme illustrating the various processes in the pond model.
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derive the prognostic pond area and depth model:

 
(eq. 6a)

 
(eq. 6b)

A simple semi-implicit, backward in time numerical technique is
used to integrate the equation forward in time stably using a daily
timestep, treating linear terms at time level t + 1 for stability. However,
solving for the power terms A−p/2 and h−2/p on the right hand side of eq.
6 at future time levels makes the solution intractable, while solving for
these terms at time level t would imply that the puddle would not be 
refilled once it dries out (i.e., A simple two-step 

solver approach is thus introduced to address this issue. The A−p/2 and
h−2/p terms are approximated with reference values, Aref−p/2 and href−p/2,
respectively to reduce eq. 6 to a simple linear equation. This is then
solved implicitly to provide first guess puddle area and depth values at
the first step:

        

(eq. 7a)

        

(eq. 7b)

where Afg,t and hfg,t provides first guess puddle area and depth values.
For the second step solution, eq. 6 is solved again implicitly but

replacing the power terms A−p/2 and h−2/p terms with Aref−2/p and href−2/p

respectively to provide the final model equation:

      

(eq. 8a)

      

(eq. 8b)

Aggregate pond fraction model for regional simulations
The pond area model is generalised to represent the total coverage

of ponds over grid-cells that may range from several kilometres to over
100 km in dimension, such that it can be used in large-scale, distrib-
uted model for vectors or vector-borne disease transmission (e.g.

Hoshen and Morse, 2004; Tompkins and Ermert, 2013).
If we denote the distributed model grid-cell size as Agrid, and the area

of pond i to be Ai, then the fractional coverage Fi of that single pond is
simply Fi=Ai /Agrid. Thus the rate of change of the fractional coverage of
this single pond that has a shape factor pi is straightforward to derive
which is deduced from eq. 6a:

 
(eq. 9)

The aggregate total fractional coverage is the summation of the n
individual ponds in a grid cell:

(eq. 10)

This summation would be straightforward, except for the fact that
each individual pond has its own value for the shape factor pi. If we
assume, however, that an appropriate value of p can be adopted that
adequately describes the mean shape of the aggregate pond (this is not
simply due to the nonlinearity), which will be referred to as p̃ ,
then the aggregate fractional pond coverage is

  
(eq. 11)

Performance diagnostics
To assess the performance of the models, Nash-Sutcliffe efficiency

[NSE; Nash and Sutcliffe (1970)], the coefficient of determination
(R2) and the relative mean absolute error (RMAE) defined by eq. 12 are
used:

  
(eq. 12)

where Si refers to the ith simulated value, Oi is the ith observation,  Ō is
the mean of observed data,  S̄ is the mean of simulated data and N is the
total number of observations. NSE ranges from  –∞� to 1 where NSE=1
indicates a perfect fit to the data (i.e. a scatter plot of model versus
observations produces a perfect 1:1 line). A value of NSE=0 implies the

                   Article
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model performance is equivalent to using climatology, that is, simply
using the mean of the observations. Zero or  negative NSE values indi-
cates that model has no skill, and its performance is worse than the
mean of the observations.

Results

Pond measurements
The depth and dimension of the ponds were strongly influenced by

rainfall amounts and its frequency as well as the local hydrology of the
pond location. The average pond depths of the ten monitored temporary
small-sized potential mosquito breeding habitats varied between 5.9
and 14.5 cm with the average areas ranging between 1.4 and 9.1 m2 and
decreasing significantly towards the end of the study period (Figure 4).
Note that at the end of the observational period only about half of the
potential breeding habitats were available. Sites 2, 5, 6, 7 and 8 dried
out, site 3 was destroyed, while sites 1, 4, 9 and 10 remained with water
at the end of observational period. This observation also reveals the
link between pond stability and local hydrology of the pond location.

The average pond water depth and surface area, maximum pond
water depth and surface area as well as elevation of these breeding
habitats are shown in Table 1. The total rainfall recorded throughout
the study period was 541.1 mm with July recording the highest rainfall
amount (Figure 4). During the months of June and parts of July (up to
21 July, day 202), the maximum dry period (number of days between
rainy days) was 5 days with 49.9 mm being the maximum daily rainfall
recorded. After 1 July 2011 a dryer period started. The maximum dry
period increased to 9 days and the maximum daily rainfall amounted
only to 15.3 mm. Most of the ponds remained stable containing water
from the start of the experiment until day 207 (26 July 2011) with the
exception of sites 6 and 7, which are located far from the stream and
also at a higher elevation (Figure 1 and Table 1). After this date, about
5 of the ponds desiccated and also significant reduction in both average
area and depth occurred at the end of the study period (Figure 4). For
the ten sites studied, variability in the stability of temporary mosquito
developmental habitats ranged from 11 to 81 days and was strongly
linked with rainfall, local hydrology of habitat location and size of the
habitat (Table 1). For instance, due to the short dry spell occurring at
the Guinea Coast in August between the major and minor rainfall sea-

sons (Owusu and Waylen, 2009; Manzanas et al., 2014), only about half
of the monitored ponds contained water towards the end of August.
However, those ponds with persisted water at the end of observational
period were located close to permanent streams and waterlogged areas
(Figure 1 and Table 1). This is in agreement with the study of
Himeidan et al. (2009), who also found that longer-lived developmental
habitats were located near streams and water sources in the eastern
African highlands. In the same district, Mushinzimana et al. (2006)
made similar observations with more than 60% of positive habitats
found within 50 metres from streams in both dry and rainy seasons.
Similar observations were made by Bomblies et al. (2009); a different
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Figure 4. A) Average area (left axis, red line) and average depth (right
axis, blue line) of the monitored breeding habitats. B) Daily precip-
itation amounts of the automated rain gauge from the Kwame
Nkrumah University of Science and Technology campus.

Table 1. Average area and depth, maximum area and depth, elevation, total number of days when pond contained water and maximum
number of days of continuous water presence of the ten temporary breeding habitats. 

Name     Elevation        Pond water      Average area     Maximum area    Average depth              Maximum depth     Maximum water
                   (m)                 (days)                 (m2)                      (m2)                     (cm)                                (cm)                       (days)

Site 1                259                         81/81                           1.9                                  3.8                                 5.5                                               8.8                                      81
Site 2                258                         65/81                           2.4                                  4.6                                 5.8                                               9.0                                      46
Site 3                257                         31/31                           5.0                                  8.0                                 7.7                                              10.3                                     31

Site 4                256                         81/81                           4.7                                  8.8                                10.7                                             16.7                                     81
Site 5                258                         79/81                           2.5                                  4.9                                 6.8                                              11.0                                     79
Site 6                283                         45/79                           3.6                                  5.0                                 6.7                                               9.7                                      11
Site 7                282                         51/79                           7.5                                 12.5                                7.7                                              10.2                                     13
Site 8                263                         56/80                           5.9                                  8.8                                 7.5                                               9.8                                      56
Site 9                262                         60/60                           1.3                                  1.8                                 8.0                                              11.3                                     60

Site 10              260                         81/81                           5.0                                  7.4                                12.9                                             16.8                                     81
Italics represent sites that did not endure the entire experiment: site 3 was destroyed and site 9 measurement started later on 26 June 2011.
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water table was detected for two Nigerian villages, which led to a strong
difference in the persistence of pools. In addition, these puddles are
potential mosquito breeding habitats since their stability far exceeds
the time required between the eggs laying and adult emergence mos-
quitoes (Depinay et al., 2004). However, the productivity of the longer-
lived ponds might be affected by predators due to their long water per-
sistence times (Chase and Knight, 2003).
Minakawa et al. (2005) observed that pond stability positively correlat-

ed with habitat size and location with the former having a higher correla-
tion coefficient. Their results are consistent with our findings ,where both
size and location influence pond stability. However, our results point to
habitat location having a more pronounced impact. For instance, site 6
(average area: 3.6 m2; average depth: 7.0 cm) and site 7 (average area: 8.5
m2; average depth: 7.7 cm) are located within the same area. In this case,
site 6 with a smaller water volume had a shorter water persistence time
(Table 1). Conversely, site 1 (average area: 1.9 m2; depth: 5.5 cm) reveals
a greater stability than sites 6 and 7, due to its close location to a perma-
nent stream. This site contained water throughout the study period
despite its smaller dimension. This confirms that both habitat size and
local hydrological conditions influence pond stability and within the same
area, size might be the dominant factor (Minakawa et al., 2005), however,
over a wider area, habitats location might be the key factor controlling its
variability in stability. For instance, Himeidan et al. (2009) found that the
percentage of stable habitats was 48.76% and 80.79% for habitats located
on top of the hills and near streams, respectively.

Pond geometry
Using the site data, the best-fit p parameter for the Hayashi model

was derived for each site. Figure 5 shows example for some of the sites
and the p values for all the sites are given in Table 2. The p values range
between 1.1 and 2.0 with an average of 1.6. This range of values lies
within the expected range reported for temporary pools and ponds
(Brooks and Hayashi, 2002; Hayashi and van der Kamp, 2007). For
instance, Brooks and Hayashi (2002) reported p values ranging
between 0.6 and 2.24 for 34 vernal pools. The R2 of the power function
fit range between 0.54 and 0.94. These results indicate that the
Hayashi diagnostic relationship can also describe reasonably well the
geometry of small ponds and forms a good basis on which to build the
prognostic model for pond coverage.

Evaluating the prognostic pond model
The performance of the area-depth (A-h) relation for the 10 micro-

habitats was validated against field observations. The results (Figure
6) demonstrate the model potential to simulate the daily variability of
the pond water surface area and depth. The water area was used to
simulate the daily pond water depth as shown in Figure 6. To assess
the performance of the model, RMAE, R2 and NSE differences
between observation and model output were computed and the results
are summarised in Table 2. The model results are subdivided in rela-
tion to ponds location.

Sites 1 to 5 are located close to permanent stream (Figure 1), the
model captured the observed variability of ponding due to rainfall
events (Figure 6A-D). During the later period of the study, the infil-
tration rate reduces when the pond area is small due to the clogging
effect of clay, the nonlinear representation of infiltration in the model
was able to account for this effect to some extent. The R2 and NSE
range between 0.78 and 0.93 and 0.64 and 0.85, respectively, indicat-
ing that the model was able to reproduce the observed surface area
and depth (Table 2). In addition, the RMAE ranges from 0.10 to 0.23
(see Table 2 for the range) values were obtained for these sites for
both the area and depth.
The model for habitats located in areas characterised by high infil-

tration and far from permanent sources of water underestimates the
generation of ponds (Figure 6E-G). The model fails to simulate the
intermittent drying of ponds as observed and also overestimates the
area during the latter and fairly dry part of the study period for these
sites. Regarding the dry period, the simulation developed ponding on
day 216 due to a 15.3 mm rainfall event. However, no ponding was
observed. A high infiltration rate seems to characterise these sites.
This indicates that the model could be improved by incorporating a
treatment of soil moisture, which would increase or decrease infiltra-
tion or runoff respectively, in the drier periods as the soil dries out.
Regarding sites 6 to 8, the R2 and NSE values range between 0.77

and 0.95 and 0.51 and 0.86, respectively (Table 2). The RMAE range
between 0.23 and 0.52 for both depth and area simulations.
The water table of the waterlogged areas penetrated the surface at

the peak of the rainy season, an effect which is not simulated by the
model. In this case, the infiltration becomes zero and water loss is
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Figure 5. Example of power function fit for sites 5 (A) and 8 (B) using the area-depth relation. The estimated p values for all the sites
are listed in Table 2.
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governed only by evaporation. For these reasons, the model underes-
timates the surface area and depth of the water bodies at sites 9 and
10 (Figure 6 H and I) for the latter part of the study period. The R2 and
NSE values range between 0.87 and 0.95 and 0.57 and 0.79, respec-
tively (Table 2). The RMAE values range between 0.08 and 0.15 (Table
2) for both area and depth simulations.  Overall, the results from the
presented prognostic geometrical model demonstrate the potential of
the model to simulate daily and intraseasonal variability in surface
water area and depth of individual ponds under different local hydro-
logical conditions, except in water-logged situations where the loss
terms are overestimated. These could be addressed by including a
representation of soil moisture in the model, but at the expense of a
considerable more complex model system.

Evaluation of the fraction model
It has been demonstrated that the prognostic water balance model

for pond area presented in this work gives a good representation when
validated with individual ponds. To evaluate the generalised pond frac-
tion model, a value for the aggregate pond geometry p̃ is required. The
value of  ̃p is set using the best fit between daily average area and depth
(Figure 7A), which gives  ̃p=1.4, which is close to the mean value  ̃p=1.6
or the 8 sites used to estimate the fractional water coverage.
Figure 7B shows the time series of simulated and estimated daily

water fraction. The observed value is calculated by simply summing the
pond fractions and assuming a value of Agrid equal to 100 Amax. Instead
the simulated value integrates eq. 11 forward in time implicitly, assum-
ing  ̃p=1.4. The fact that the fit is close to that achieved for the individ-

Figure 6. Comparison of daily observed and simulated pond water surface areas and water depth of temporary water bodies. Solid lines
are simulated values of area (blue) and depth (red). Dots and crosses represent the observed values of the surface area and water depth,
respectively. Sites names are shown under each plot.
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ual ponds indicates that the approximation of assuming a generalised
shape parameter across all individual ponds is a reasonable one. This
demonstrates the useful application of the presented geometrical
model for gridded malaria vector borne disease models to improve their
representation of surface hydrology using a simple model.

Discussion

Surface hydrology is one key factor that controls the life-cycle of
mosquito larvae and thus a treatment is required for dynamical disease
models. A prognostic water balance model was developed using the geo-
metrical assumptions of Hayashi to predict pond coverage and depth,
with sources and sinks due to precipitation, runoff, evaporation and
infiltration. The infiltration increased with pond coverage to represent
the clogged inner regions of puddles. Based on a range of evaluation
metrics, the prognostic model is judged to provide a good representa-
tion of the pond depth and coverage evolution under different hydrolog-

ical conditions. The single pond coverage model was then generalised
to simulate the total fractional coverage of ponds in an area that may
measure tens of kilometres, to be able to apply the model to gridded
regional predictions. If an appropriate aggregate pond geometrical fac-
tor was selected, the model was also able to simulate the aggregate
fractional coverage of the ponds. Thus the model could be used to
improve the representation of surface hydrology in regional vector
borne disease models. The model represented by eq. 11 has been imple-
mented into the Vector-borne disease community model of the
International Centre for Theoretical Physics, Trieste (VECTRI) malaria
model and is available from v1.3.1 onwards.

Conclusions

During the later dry phase of the study period, the model tends to
overestimate the pond area and depth for the sites located far away
from permanent streams (sites 6 to 8), while underestimating within
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Table 2. Computed p values, relative mean absolute error, coefficient of determination and Nash-Sutcliffe efficiency between observa-
tion and model output for various sites for both area and depth simulations. 

Values                                                                                   Sites
                      1                   2                   3                    4                   5                  6                      7                     8                     9                 10

p                         1.5                      1.7                      2.0                       1.6                       1.4                    1.7                          1.5                         1.1                        1.9                     2.0
Area                     
      RMAE         0.15                   0.23                    0.12                     0.15                     0.21                  0.52                        0.40                       0.23                      0.15                   0.08
      R2                0.93                   0.90                    0.90                     0.89                     0.78                  0.77                        0.83                       0.95                      0.90                   0.95
      NSE            0.85                   0.78                    0.71                     0.78                     0.79                  0.51                        0.68                       0.86                      0.57                   0.79
Depth                  
      RMAE         0.13                   0.23                    0.12                     0.10                     0.16                  0.44                        0.34                       0.31                      0.13                   0.13
      R2                0.91                   0.89                    0.86                     0.93                     0.89                  0.80                        0.87                       0.93                      0.92                   0.87
      NSE            0.81                   0.79                    0.64                     0.80                     0.78                  0.64                        0.70                       0.74                      0.63                   0.59
R2, the coefficient of determination; RMAE, relative mean absolute error; NSE, Nash-Sutcliffe efficiency.

A B

Figure 7. A) Power function fit for average of 8 sites (excluding sites 3 and 9), and B) comparison of simulated and estimated water fraction.
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waterlogged areas (sites 9 and 10). This highlights that although the
model was successful in representing the broad sub-seasonal evolution
of ponds and thus represents the zero-order processes that determine
pond fraction, further improvements might be achievable by including
further secondary processes that are presently neglected. One process
would be to incorporate a treatment of soil moisture, which would
increase infiltration in the drier periods prior to the monsoon onset or
as the soil dries out post-monsoon. This would also allow the model to
distinguish between lower lying water-logged areas and areas with
higher infiltration rates. However, accurate treatment of soil moisture
is a challenge and would substantially increase the model complexity.
For example, the agricultural model GLAM (Challinor et al., 2004; Li et
al., 2016) represents the soil column with 25 soil layers, thus requiring
an additional 25 prognostic equations to be solved. The specification of
the soil properties is challenging due to sparsity of data. Moreover,
topography and slope details would be beneficial, in particular to deter-
mine the pond catchments. However, there will always be processes
that cannot be represented in the model. For example, shading and pro-
ductivity of ponds is a function of the vegetation present, which would
be impossible to determine for all ponds on a regional scale. Thus, it is
clear that many of these secondary processes will have to be accounted
for implicitly using calibration of the key pond model parameters. A
generalised calibration technique to be applied in each grid-cell is the
subject of current work and will be reported in a future paper.
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